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Abstract

In this paper, using a method of Luca and the author, we find all
values x such that the quadratic polynomials x2 + 1, x2 + 4, x2 + 2
and x2 − 2 are 200-smooth and all values x such that the quadratic
polynomial x2 − 4 is 100-smooth.
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1 Introduction.

For any integer n we let P (n) be the largest prime factor of n with the
convention P (0) = P (±1) = 1. We say that a integer s is m-smooth if
P (s) < m. In 1964, Lehmer [8] found all positive integer solutions x to
the inequality P (x(x + 1)) ≤ 41. Notice that this amounts to finding all
odd positive integers y = 2x + 1 such that P (y2 − 1) ≤ 41. There are 869
such solutions. In [9], Luca found all positive integer solutions of the similar
looking inequality P (x2 + 1) < 100. There are 156 of them. In [6], Guzmán
Sánchez found the largest solutions of P (x2 +2) < 100 and P (x2−2) < 100.
Recently, Luca and the author, in [10] extended Lehmer’s results, finding
all the solutions to P (x2 − 1) < 100. There are 16167 solutions of this
inequality.

In this paper, we find all the positive integer x that are a solution to the
inequalities

P (x2 + 1) < 200, (1)

extending Luca’s results,

P (x2 + 4) < 200, (2)

P (x2 − 4) < 100, (3)
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P (x2 + 2) < 200, (4)

and
P (x2 − 2) < 200. (5)

By solving (4) and (5) we will extend the results of Guzmán Sánchez (see
[6]).

When considering the inequality (3), we have to consider all the primes
in the factorization of x2 − 4 (except 2, as we will later see), while when
considering (1) and (2) we can disregard the primes congruent to 3 modulo
4 and when considering (4) and (5) we need only consider the prime 2 and
the primes congruent to 1 or 3 modulo 8 for (4) and the primes congruent
to 1 or 7 modulo 8 for (5). This is the reason we can only find 100-smooth
values of x2 − 4, compared to 200-smooth values of all the other quadratic
forms.

In [8], [9] and [10] the following approach was taken. Assume that x is
a positive integer such that P (x2± 1) ≤ K for the appropriate K. Then we
can write

x2 ± 1 = dy2, (6)

where d is squarefree, and P (dy) ≤ K. This implies that only a small
number n of primes participates in the factorization of d. For example,
n = 13 for P (x2 − 1) ≤ 41 (as in [8]), n = 12 for P (x2 + 1) < 100 (as in [9])
and n = 25 for P (x2 − 1) < 100 (as in [10]). In all the cases, we can write
equation (6) in the form

x2 − dy2 = ∓1.

Thus, our possible values for x appear as the first coordinate of one of the
solutions of at most 2n − 1 Pell equations. For a given Pell equation, the
sequence (yn/y1)n≥1 forms a Lucas sequence with real roots. The Primitive
Divisor Theorem for Lucas sequences with real roots (see, for example, [4],
or the more general result from [1] which applies to all Lucas sequences)
says that if n > 6, then yn has a prime factor which is at least as large as
n − 1. In the mentioned papers it suffices to check the first 42, 98 and 98
values respectively of the component x of the Pell equations involved and
among these one finds all possible solutions of the equations considered.

It is easy to see that in these calculations the number of equations be-
comes huge. An even bigger problem are the coefficients of the Pell equa-
tions, as the size of the solutions grows exponentially in respect to d. This
means that just writing down the solution takes exponential time. This is
why in [10] compact representations of the solutions to the Pell equations
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were used. A compact representation of an algebraic number β ∈ Q(
√
d) is

a representation of β of the form

β =
k∏

j=1

(
αj

dj

)2k−j

, (7)

where dj ∈ Z, αj = (aj + bj
√
d)/2 ∈ Q(

√
d), aj , bj ∈ Z, j = 1, . . . , k, and

k, α and dj have O(log d) digits. A detailed description of compact repre-
sentations and their use can be found in [7]. Using compact representation
cuts down the space needed from exponential to polynomial in respect to
d and the time needed to compute the regulator of the appropriate real
quadratic field from exponential to subexponential. Without the use of
compact representations, the results of [10] would be hopelessly unattain-
able. For comparison, in [8] 8191 equations were considered, the largest of
them having d = 304250263527210 and the largest solution having less than
8600 digits, while in [10] 33554431 equations were considered, the largest of
them having d = 2305567963945518424753102147331756070, and many of
the solutions having billions of digits.

In this paper, we will use the same strategy to improve on the results of
[9] concerning the inequality (1), using compact representations where stan-
dard representations were previously used. In examining the inequalities (2)
and (3) we will consider fundamental units ηd of the quadratic fields Q(

√
d)

satisfying the condition that the cube of ηd is the fundamental solution of
the Pell equation x2−dy2 = −1 for the case (2) and x2−dy2 = 1 for the case
(3). When considering the inequalities (4) and (5), we will use the fact that
if ν is the smallest solution of the equation x2 − dy2 = ±2, then ν2/2 = ηd.
This means that all the solutions of x2−dy2 = ±2 are of the form ν2n+1/2n.
One can show that the solutions form a Lehmer sequence with real roots,
and by a result of Ward (see [14], and [1] for a more general result), we
again have control over the prime factors of the members of the sequence.
Again, it is necessary to use compact representations when representing the
solutions of all these equations.

Note that k = ±1,±2,±4 are the only values of k such that the integer
solutions x to the inequality P (x2 + k) < M , for some bound M , can be
determined in this manner. This is because only for these cases do the
solutions of the corresponding equations form either a Lucas or Lehmer
sequence. Buchmann, Győry, Mignotte and Tzanakis found all solutions of
P (x3 + 1) < 31, which leads to P (x2 + 3) < 31 in [3]. They did this by a
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case by case study and considered each of the Pellian equations (there are
16 of them) separately.

2 The inequality P (x2 + 1) < 200.

Let x be a integer such that x2 + 1 is 200-smooth. By a classical result of
Fermat, a number can be represented as a sum of to squares only if it has
no prime divisors congruent to 3 modulo 4. This means that x2 + 1 can be
divisible only by 2 and the 21 primes congruent to 1 modulo 4 up to 200.
We can now write x2 + 1 = dy2, i.e. x2 − dy2 = −1, where

d = 2a1 · 5a2 · · · 197a22 , ai ∈ {0, 1} for i = 1, . . . 22.

This is a negative Pell equation, so (x, y) = (Xn, Yn), where Xn + Yn

√
d =

(X1 + Y1

√
d)2n+1, for some positive integer n and X1 + Y1

√
d being the

fundamental solution of the negative Pell equation. We have 222 − 1 =
4194303 equations that we need to consider. The largest d appearing is
d = 940258296925944608662895221235664431210. Note that this d is more
than 400 times larger than any d appearing in [10].

One can easily check that Y1 divides Yn. We define un = Yn
Y1

. The
sequence (un) is a Lucas sequence of the first kind with real roots η and
ζ. By a result of Carmichael (see [4]), the Primitive Divisor Theorem, this
implies that for every n > 12, un has a primitive divisor p, a prime satisfying,
among other properties, p ≡ ±1 (mod n). This implies that for n > 200,
there exists a prime p ≥ 200 dividing un. Thus, only the first 200 values of
(Yn) can possibly be 200-smooth. This means that we only need to consider
the first 200 solutions of each negative Pell equation.

We will follow the methods of [10] very closely, so we will give only an
outline of the algorithm (for a detailed explanation of each step see [10]).
The algorithm that finds all the solutions goes through all the possible values
d and for each, does the following: First it computes the regulator of the
quadratic field Q(

√
d) using Buchmann’s subexponential algorithm (see [2]).

The results of this algorithm are dependent on the Generalized Riemann
hypothesis. Next, using the computed regulator, we construct a compact
representation of the fundamental solution X1 + Y1

√
d of the negative Pell

equation x2 − dy2 = −1, using the methods from [11]. Now, using the
algorithm for modular arithmetic described in [12], we check whether Y1 is
200-smooth. If it is, then we check which of the Yn, 2 ≤ n ≤ 200 is 200-
smooth. Each 200-smooth value of Yn gives us a solution Xn of our problem.
If Y1 is not 200-smooth, then no Yn will be. There is one last check that
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needs to be done: compute all the convergents pn

qn
of the continued fraction

expansion of
√
d such that qn < z, where z is the 200-smooth part of Y1, and

check whether there exists a convergent pn

qn
such that p2

n − q2n = −1. This
test removes the dependence of our results on the Generalized Riemann
hypothesis. In all tested cases it failed, as if a convergent pn

qn
satisfying

the test were to be found, it would imply that the Generalized Riemann
hypothesis is false.

We obtain the following results:

Theorem 1. a) The largest three solutions of the equation P (x2 + 1) <
200 are x = 69971515635443, 120563046313 and
104279454193.

b) The largest solution of P (x4 + 1) < 200 is x = 10.

c) The largest solution of P (x6 + 1) < 200 is x = 8.

d) The largest n such that P (x2n + 1) < 200 has a solution is n = 9, the
solution being x = 2.

e) The inequality P (x2 + 1) < 200 has 811 solutions.

f) The greatest power n of the fundamental solution of the negative Pell
equation (X1 + Y1

√
d)n which leads to a solution of our problem is

n = 9 for d = 5. The case d = 5 also gives us most solutions, namely
4 of them.

Proof:
Part b) is proved by finding the largest square of all the x, c) by finding the
largest a cube, etc.

3 The inequality P (x2 + 4) < 200.

Obviously, P (x2 + 1) < 200 iff P ((2x)2 + 4) < 200. Thus, we have allready
obtained all the even solutions to the inequality (2). It remains to find the
odd solutions. Let ηd = u+v

√
d

2 be the fundamental unit of the quadratic
field Q(

√
d) and x1 + y1

√
d the fundamental solution of the Pell equation

x2 − dy2 = 1. Then x1 + y1

√
d = ηn

d , where n = 1, 2, 3 or 6, and the exact
value can be found by examining u and v modulo 8, from the following table:
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d v u n

d ≡ 1 (mod 4) v ≡ 0 (mod 4) − 1
v ≡ 2 (mod 4) − 2

d ≡ 5 (mod 16) v ≡ 1 (mod 2) u ≡ ±3v (mod 8) 3
u ≡ ±v (mod 8) 6

d ≡ 13 (mod 16) v ≡ 1 (mod 2) u ≡ ±v (mod 8) 3
u ≡ ±3v (mod 8) 6

d ≡ 2 (mod 4) v ≡ 0 (mod 2) − 1
v ≡ 1 (mod 2) − 2

d ≡ 3 (mod 4) − − 1

Table 1

It is easy to see that x2 − dy2 = −4 will have a solution iff n = 6 in Table
1, and then the solutions will be of the form

Xm + Ym

√
d = 2ηk

d ,

where k ≡ ±1 (mod 6). Also, one can see that n = 6 only if d ≡ 5 (mod 8).
This also means that we do not have to consider 2 in the factorization of d,
leaving only the 21 primes congruent to 1 modulo 4.

Using the same algorithm from Section 2, with the appropriate minor
changes, we obtain the following results.

Theorem 2. a) The largest three odd solutions of the equation P (x2 +
4) < 200 are x = 191686681859, 112899039159 and 28608252345.

b) The largest odd solution of P (x4 + 4) < 200 is x = 923.

c) There are no odd solutions to P (x2n + 4) < 200 for n ≥ 3.

d) The inequality P (x2 + 4) < 200 has 344 odd solutions.

f) The greatest power n of the smallest solution of our problem (X1 +
Y1

√
d)n which leads to a solution is n = 19 for d = 5. The case d = 5

also gives the most solutions, namely 5 of them.

4 The inequality P (x2 − 4) < 100.

Obviously, P (x2 − 1) < 100 iff P ((2x)2 − 4) < 100. Thus, we have already
obtained in [10] all the even solutions to the inequality (2). It remains to
find the odd solutions. Again, let ηd = u+v

√
d

2 be the fundamental unit of
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the quadratic field Q(
√
d) and x1 + y1

√
d the fundamental solution of the

Pell equation x2 − dy2 = 1, and x1 + y1

√
d = ηn

d , where n can be found in
Table 1. It is easy to see that x2 − dy2 = 4 will have a solution iff n = 3 in
Table 1, and then the solutions will be of the form

Xm + Ym

√
d = 2ηk

d ,

where k 6≡ 0 (mod 3). Again, one can see that n = 3 only if d ≡ 5 (mod 8),
so once again we can disregard the prime 2 in the factorization of d.lready
obtained in [10] all the even solutions to the inequality (2). It remains to
find the odd solutions. Again, let ηd = u+v

√
d

2 be the fundamental unit of
the quadratic field Q(

√
d) and x1 + y1

√
d the fundamental solution of the

Pell equation x2 − dy2 = 1, and x1 + y1

√
d = ηn

d , where n can be found in
Table 1. It is easy to see that x2 − dy2 = 4 will have a solution iff n = 3 in
Table 1, and then the solutions will be of the form

Xm + Ym

√
d = 2ηk

d ,

where k 6≡ 0 (mod 3). Again, one can see that n = 3 only if d ≡ 5 (mod 8),
so once again we can disregard the prime 2 in the factorization of d.

Using the same algorithm from Section 2, with the appropriate minor
changes, we obtain the following results.

Theorem 3. a) The largest three odd solutions of the equation P (x2 −
4) < 100 are x = 407479035814853, 335682488669673 and
250734674482437.

b) The largest odd solution of P (x4 − 4) < 100 is x = 59.

c) The largest odd solution of P (x6 − 4) < 100 is x = 7.

d) The largest n such that P (x2n − 4) < 100 has a solution is n = 7, the
solution being x = 3.

e) The inequality P (x2 − 4) < 100 has 2846 odd solutions.

f) The greatest power n of the smallest solution of our problem (X1 +
Y1

√
d)n which leads to a solution of our problem is n = 10 for d = 5.

The case d = 5 also gives the most solutions, namely 7 of them.
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5 The inequality P (x2 + 2) < 200.

Consider the equation x2 − dy2 = ±2, where d is square free, and let x1 +
y1

√
d = ν be the least solution. Obiviously, d ≡ 2, 3 (mod 4) has to hold.

One can see that, using the notation from Table 1, this implies n = 1 or
2. From a result of Perron (see [13, p. 126-129]), if d 6= 2, at most one of
the equations x2 − dy2 = −1, x2 − dy2 = 2 and x2 − dy2 = −2 is solvable.
This implies that n = 2 is impossible. By a elementary argument (see for
example [7, p. 420]), one can also show that ν2/2 = ηd holds. This can be
reformulated in terms of the infrastructure of a real quadratic field by saying
the ideal with norm ±2 appears half way through the cycle of the principal
class, or in terms of continued fractions by saying that the p2

l/2−dq
2
l/2 = ±2,

where l is the length of the continued fraction expansion of
√
d. Thus all

the solutions of x2 − dy2 = ±2 are of the form

xk + yk

√
d = νηk

d =
ν2k+1

2k
, for k ≤ 0.

Now let

α =
x1 + y1

√
d√

2
and β =

x1 − y1

√
d√

2
.

Then

yk =
αk − βk

√
2d

,

and

uk =

{
yk
y1

if k is odd
yk
y2

if k is even

is a Lehmer sequence. Note that only the odd members of this sequence
yield a solution to our equation. Thus, by the Primitive divisor theorem for
Lehmer sequences (see [14] and [1]), only the first 100 odd members of the
sequence (uk)k≥0 can possibly be 200-smooth.

To narrow down our search we will use the following results of Yokoi:

Theorem 4. ([15, Theorems 1 and 2])
Let t + u

√
d, where d is a squarefree positive integer congruent to 2 or 3

modulo 4, be the fundamental unit of the real quadratic field Q(
√
d).

a) The Diophantine equation x2 − dy2 = 2 is solvable if and only if t ≡ 1
(mod d).
b) The Diophantine equation x2−dy2 = −2 is solvable if and only if t ≡ −1
(mod d).
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Proposition 5. ([15, Proposition 2])
a) If the Diophantine equation x2−dy2 = 2 is solvable then p ≡ ±1 (mod 8)
for any odd prime factor p of d.
b) If the Diophantine equation x2 − dy2 = −2 is solvable then p ≡ 1 or 3
(mod 8) for any odd prime factor p of d.

Using Theorem 4 and Proposition 5 to narrow down our search, we
procced in the same manner as for (1), (2) and (3). We obtain the following
results:

Theorem 6. a) The largest three odd solutions of the equation P (x2 +
2) < 200 are x = 9575480365630, 14629598023 and 8850900308.

b) The largest odd solution of P (x4 + 2) < 200 is x = 171.

c) The largest solution of P (x6 + 2) < 200 is x = 3.

d) The largest n such that P (x2n + 2) < 200 has a solution is n = 5, the
solution being x = 2.

e) The inequality P (x2 + 2) < 200 has 914 solutions, of which 516 are
odd and 398 are even.

f) The greatest power n such that

(X1 + Y1

√
d)2n+1

2n

leads to a solution of our problem is n = 8 for d = 2. The case d = 3
gives the most solutions, namely 6 of them.

6 The inequality P (x2 − 2) < 200.

We search for the solutions of this inequality as explained in the previous
section, again using Theorem 4 and Proposition 5 to narrow down our search.
We obtain the following results:

Theorem 7. a) The largest three solutions of the equation P (x2 − 2) <
200 are x = 324850200677887, 1600947755823 and 494400410248.

b) The largest solution of P (x4 − 2) < 200 is x = 47.

c) The largest odd solution of P (x6 − 2) < 200 is x = 10.
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d) The largest n such that P (x2n − 2) < 200 has a solution is n = 5, the
solution being x = 2.

e) The inequality P (x2 − 2) < 200 has 537 solutions, of which 313 are
even and 224 are odd.

f) The greatest power n such that

(X1 + Y1

√
d)2n+1

2n

leads to a solution of our problem is n = 7 for d = 2. The case d = 2
also gives the most solutions, namely 5 of them.

Problem number 4 on the list [5] of open problems concerning Diophan-
tine equations is to find all the solutions (x, y, p) to

x2 − 2 = yp,

where p is a odd prime. By searching through our solutions we prove the
following proposition.

Proposition 8. If the Diophantine equation x2− 2 = yp, where p is an odd
prime, then P (y) > 200.

Remark. The tables produced by our computations can be found on
the web page http://web.math.hr/~fnajman.
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