
ON THE NUMBER OF n-ISOGENIES OF ELLIPTIC CURVES

OVER NUMBER FIELDS
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Abstract. We find the number of elliptic curves with a cyclic isogeny of

degree n over various number fields by studying the modular curves X0(n).

We show that for n = 14, 15, 20, 21, 49 there exists infinitely many quartic fields
K such that #Y0(n)(Q) 6= #Y0(n)(K) < ∞. In the case n = 27 we prove that

there are infinitely many sextic fields such that #Y0(n)(Q) 6= #Y0(n)(K) < ∞.

1. Introduction

An isogeny of elliptic curves is a rational morphism from one elliptic curve to
another that sends the identity of the first curve to the identity of the second. An
isogeny is said to be cyclic if its kernel is cyclic. All the possible degrees of cyclic
isogenies of elliptic curves over Q, together with the number of Q-isomorphism
classes having a cyclic isogeny of each degree, were determined by Mazur [5] and
Kenku [2, 3, 4].

Let K be a number field. If there exists a K-rational cyclic isogeny φ : E → E′

of degree n, this means that Kerφ is Gal(K/K)-invariant cyclic group of order n
and we will say that E/K has an n-isogeny. Denote by Y0(n) the affine curve whose
K-rational points classify K-isomorphism classes of pairs (E,C), where E/K is an
elliptic curve and C is a cyclic (Gal(K/K)-invariant) subgroup of E. Let X0(n) be
the compactification of Y0(n), obtained by adding the cusps.

Our goal in this paper is to study the number of elliptic curves with a n-isogeny
over fixed number fields, where n is an integer such that the modular curve X0(n)
is of a genus 1. Let S be the set of n-s such that X0(n) is of genus 1:

(1) S = {11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49}.
The reason we choose only n such that X0(n) is of genus 1 is because in fact

only this case is interesting: if X0(n) is of genus 0, then #Y0(n)(K) will be infinite
over any number field (here one implicitly uses the fact that X0(n) has at least one
rational cusp together with the fact that the number of cusps is finite), while if
X0(n) is of genus ≥ 2, then by Faltings’ theorem it follows that #Y0(n)(K) will be
finite over any number field.

For all of the n ∈ S, #Y0(n)(Q) is finite (and in some cases 0).
The second author showed [7] that if K is of prime degree (over Q), then in all but

finitely many explicitly listed cases, it holds that either #Y0(n)(Q) = #Y0(n)(K)
or #Y0(n)(K) =∞. The same was also shown for the modular curves Y1(n) (which
parameterize isomorphism classes of elliptic curves together with a point of order
n) of genus 1. On the other hand, it is shown in [6] that there exist infinitely many
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quartic fields K such that #Y1(n)(Q) 6= #Y1(n)(K) < ∞. In this paper we show
a similar result for the curves Y0(n), where n is such that there exists a quadratic
field such that #Y0(n)(Q) 6= #Y0(n)(K) <∞. We denote this set by T ;

T = {14, 15, 20, 21, 27, 49}.
More explicitly, we show that there exists infinitely many quartic fields K such

that #Y0(n)(Q) 6= #Y0(n)(K) < ∞ for n = 14, 15, 20, 21, 49. For n = 27 we show
that there are infinitely many sextic fields such that #Y0(n)(Q) 6= #Y0(n)(K) <∞.

The results for n = 14, 15, 20, 21, 49 are obtained essentially by 2-isogeny descent
(see [9, Proposition 4.9, p.302.]) and following the general strategy of [6]. The main
idea is to prove that, in an explicitly given family of number fields, the rank of the
X0(n)(K) equals zero for each number field K, and that the number of non-cuspidal
torsion points over K is greater than #X0(n)(Q)tors. The case n = 27 cannot be
handled by 2-isogeny descent (at least not over Q) since it does not possess a 2-
torsion point. We circumvent this problem by using the fact that X0(27) is an
elliptic curve with j-invariant 0 and prove a general result about ranks of such
elliptic curves over cubic extensions of number fields containing ζ3, where ζ3 is a
primitive third root of unity.

2. The cases n = 14, 15, 20, 21, 49

As mentioned in the introduction, proving that rank(X0(n)(K)) = 0 is done by
using 2-isogeny-descent groups. Let X = X0(n), φ a 2-isogeny from X to X ′, and
ψ is its dual isogeny and Sψ(X) and Sφ(X ′) be the corresponding 2-isogeny-Selmer
groups. Then

rank(X(K)) ≤ log2(|Sψ(X)| · |Sφ(X ′)|)− 2.

For details, see [9, Chapter X].

We will also use, without mention, the well-known fact that if L = K(
√
d) is a

quadratic extension of K, then

rank(E(L)) = rank(E(K)) + rank(Ed(K))

where Ed is the quadratic twist of E by d.

Theorem 1. Let p be a prime satisfying p ≡ 3 (mod 8) and
(

7
p

)
= −1. Then,

rank(X
(p)
0 (14)(Q)) = rank(X

(−7p)
0 (14)(Q)) = 0.

Proof. From [6, Theorem 3] and the fact that the curves X0(14) and X1(14) are
isogenous, it directly follows the statement of the theorem (isogenous curves have
the same rank). �

Corollary 2. There exist infinitely many primes p such that for K = Q(
√
−7,
√
p),

rank(X0(14)(K)) = 0.

Proof. This is a direct consequence of Dirichlet’s theorem on arithmetic progressions
applied on primes that satisfy conditions of Theorem 1. �

Theorem 3. Let p be a prime satisfying p ≡ 5 (mod 8), p ≡ 2 (mod 3) and(
p
5

)
= −1. Then, rank(X

(p)
0 (15)(Q)) = rank(X

(−p)
0 (15)(Q)) = 0.

Proof. From [10] we know that the explicit model of X0(15) is

(2) y2 + xy + y = x3 + x2 − 10x− 10.
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In order to prove the theorem, we shall use a method of descent via 2-isogenies.
Therefore, we need to transform (2) from the Weierstrass form into the form y2 =
x3 + ax2 + bx, suitable for the application of this method. We calculate b2 =
a2

1 + 4a2 = 5, b4 = a1a3 + 2a4 = −19 and b6 = a2
3 + 4a6 = −39, so x0 is a root

of x3 + 5x2 − 152x − 624 = 0. It is easy to check that x0 = 12 satisfies the latter
equation. Therefore, a = 3x0 + b2 = 41, b = (a + b2)x0 + 8b4 = 400. Finally, we

obtain the following curves (we write E(n) instead of X
(n)
0 (15)(Q) and E′(n) for

the curve 2-isogenous to E(n)):

E(p) : y2 = x3 + 41px2 + 400p2x,

E′(p) : y2 = x3 − 82px2 + 81p2x,

E(−p) : y2 = x3 − 41px2 + 400p2x,

E′(−p) : y2 = x3 + 82px2 + 81p2x.

Let us examine the size of the associated φ-Selmer groups for each of these curves.

1. E(p) : y2 = x3 + 41px2 + 400p2x

We have to examine the solvability of the quartic (torsor) N2 = b1M
4 +

41pM2e2 + b2e
4 with b1b2 = 400p2, respecting gcd(M, e) = 1 and assuming

without loss of generality that b1 is square-free. Thus,

b1 ∈ {±1, ±2, ±5, ±10, ±p, ±2p, ±5p, ±10p}.

An obvious solution is b1 = 1, but b1 = −p is also a solution; namely in this
case we have (M, e,N) = (5, 1, 0). Let us now check other possible values
of b1.
1.1. b1 = −1

The torsor becomes N2 = −M4 +41pM2e2−400p2e4. Reducing mod-
ulo 3 and noticing that p ≡ 2 (mod 3) we getN2 ≡ −M4+M2e2−e4 ≡
2 (mod 3), which is not a quadratic residue modulo 3. Therefore,
−1 /∈ Sψ(E(p)).

1.2. b1 = 2

We get the equation

(3) N2 = 2M4 + 41pM2e2 + 200p2e4.

When e is even and M is odd, the right hand side of (3) is congruent
to 2 modulo 4, and that is a contradiction with the left hand side.
If both M and e are odd, then N2 ≡ 2 + p ≡ 7 (mod 8), and that
is not possible. We are left with the case when M is even and e
odd. Then, N is also even so we can take M = 2t,N = 2N ′ and
transform (3) into N ′2 = 8t4 + 41pt2e2 + 50p2e4. Reducing modulo
4 we get N ′2 = pt2 + 2p2 ≡ 2, 3 (mod 4), but that is impossible, so
2 /∈ Sψ(E(p)).

1.3. b1 = 2p

The equation is

(4) N2 = p(2M4 + 41M2e2 + 200e4).
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When e is even and M is odd, the right hand side of (4) is congru-
ent to 2 modulo 4. Taking both M and e odd, the right hand side
is congruent to 3p modulo 4, or 3 modulo 4 which is not a quadratic
residue modulo 4. If M is even and e odd, we can take M = 2t.
Then, N2 = p(32t4 + 164t2e2 + 200e4). By taking N = 2N ′ and
dividing by four, we get N ′2 = p(8t4 + 41t2e2 + 50e4), which gives
N ′2 ≡ p(2 + t2) ≡ 2, 6, 7 (mod 8), and that is impossible, which im-
plies 2p /∈ Sψ(E(p)).

1.4. b1 = −5

In this case the torsor is N2 = −5M4 + 41pM2e2 − 80p2e4. Here
we will observe reduction modulo 5 because the right hand side is con-
gruent to pM2e2 modulo 5. Since the left hand side is a square and(
p
5

)
= −1, the only possible options are either 5|M or 5|e. In both

cases we get 5|N , so the left hand side is divisible not just by 5, but
by 25. Therefore, the right hand side also needs to be divisible by 25.
If 5|e, then because the right hand side is divisible by 25, it follows
that 5|M4, or 5|M , and that is impossible because of gcd(M, e) = 1.
The case 5|M is proved analogously. Thus, −5 /∈ Sψ(E(p)).

1.5. b1 = 5

The torsor becomes N2 = 5M4 + 41pM2e2 + 80p2e4. Concluding
along the same lines as in the case b1 = −5 we get 5 /∈ Sψ(E(p)).

1.6. b1 = 10

The torsor is

(5) N2 = 10M4 + 41pM2e2 + 40p2e4.

In this case we observe the parity of M and e. When e is even and
M odd, N2 is congruent to 2 modulo 4, and if both of them are
odd, then N2 ≡ p + 2 ≡ 3 (mod 4). The remaining case is when
M is even and e odd; let us assume that M = 2t. The equation (5)
becomes N2 = 160t4 + 164pt2e2 + 40p2e4. Taking N = 2N ′ and di-
viding by four, we get N ′2 = 40t4 + 41pt2e2 + 10p2e4, which gives
N ′2 ≡ p(t2 + 2p) ≡ 2, 3 (mod 4), and that is impossible. Therefore,
10 /∈ Sψ(E(p)).

1.6. b1 = 10p

We examine the equation N2 = p(10M4 +41M2e2 +40e4). Concluding
as in the case b1 = 10, we get N2 ≡ 2p ≡ 2 (mod 4) for e even and M
odd, and N2 ≡ 3p ≡ 3 (mod 4) for both e and M odd. Taking e odd,
M = 2t and N = 2N ′ we get N ′2 ≡ p(2 + t2) ≡ 2, 3 (mod 4) which
implies that 10p /∈ Sψ(E(p)).

Since Sψ(E(p)) is a group, we have p, −2p, −2, 5p, −5p, −10p, −10 /∈
Sψ(E(p)). Namely, if for example 5p ∈ Sψ(E(p)), then because −p ∈
Sψ(E(p)) we would have −p · 5p = −5 ∈ Sψ(E(p)), which we have showed
that was not true. It follows that #Sψ(E(p)) = 2.
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2. E′(p) : y2 = x3 − 82px2 + 81p2x

Observing the torsor N2 = b1M
4 − 82pM2e2 + b2e

4 with b1b2 = 81p2

it easily follows that b1 = 1 and b1 = p give the solutions (1, 0, 1) and
(1, 1, 0). Negative values are not possible because in that case the right
hand side of the torsor is negative and cannot be a square. There is only
one case to observe, b1 = 3 (eliminating this case automatically elimi-
nates the case b1 = 3p because Sφ(E′(p)) is a group). Reducing the
torsor N2 = 3M4 − 82pM2e2 + 27p2e4 modulo p, we get N2 ≡ 3M4

(mod p). Because of p ≡ 2 (mod 3) and p ≡ 1 (mod 4) it follows that(
3
p

)
= −1 which implies p|M and p|N . Taking M = pt and N = pk

yields k2 = 3p2t4 − 82pt2e2 + 27e4, which reduced modulo p once more
gives k2 ≡ 27e4 (mod p). M and e are coprime so e cannot be divisible
by p and 3 is not a quadratic residue modulo p. Hence 3 /∈ Sφ(E′(p)) and

3p /∈ Sφ(E′(p)), which implies #Sφ(E′(p)) = 2 and rank(X
(p)
0 (15)(Q)) = 0.

3. E(−p) : y2 = x3 − 41px2 + 400p2x

The torsor is N2 = b1M
4−41pM2e2 +b2e

4 with b1b2 = 400p2. Possible val-
ues for b1 are {1, 2, 5, p, 2p, 5p, 10p, 10} (for negative values the right hand
side is negative). Except b1 = 1, b1 = p is also an element of Sψ(E(−p)),
because in that case (M, e,N) = (5, 1, 0) is a solution. Let us show that
other values of b1 do not give solutions.
3.1. b1 = 2

The torsor is N2 = 2M4 − 41pM2e2 + 200p2e4. When e is even and
M odd, then N2 ≡ 2 (mod 4) and when both M and e are odd,
N2 ≡ 2 − p ≡ 5 (mod 8). If e is odd, M = 2t and N = 2N ′ we get
N ′2 ≡ 2p2 − pt2 ≡ 2, 5, 6 (mod 8) which implies that 2 /∈ Sψ(E(−p)).

3.2. b1 = 5p

The torsor is N2 = p(5M4 − 41M2e2 + 80e4). Reducing modulo 5
we get N2 ≡ 4pM2e2 (mod 5), which implies that either 5|M or 5|e.
Namely, because of

(
p
5

)
= −1 it follows that

(
4p
5

)
= −1. In both cases

we get that the left hand side is divisible by 25, so the same must hold
for the right hand side, and that is possible only if both M and e are
divisible by 5. This is a contradiction, so 5p /∈ Sψ(E(−p)).

3.3. b1 = 10

The torsor is N2 = 10M4 − 41pM2e2 + 40p2e4. Reducing modulo
4 and modulo 8 easily eliminates the cases when e is even and M odd,
and when both M and e are odd. If e is odd, M = 2t and N ′ = 2N
then N ′2 = 40t4 − 41pt2e2 + 10p2e4 ≡ 2p2 − pt2 ≡ 2, 5, 6 (mod 8), so
10 /∈ Sψ(E(−p)).

The values 2p, 5, 10p /∈ Sψ(E(−p)) as well, therefore #Sψ(E(−p)) = 2.
4. E′(−p) : y2 = x3 + 82px2 + 81p2x

We examine the quartic N2 = b1M
4 + 82pM2e2 + b2e

4 with b1b2 = 81p2.
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The value of b1 can be one of {±1, ±3, ±p, ±3p}, and for b1 = 1 and
b1 = −p there are solutions (M, e,N) = (1, 0, 1) and (M, e,N) = (1, 1, 0).
4.1. b1 = 3

The torsor is N2 = 3M4 + 82pM2e2 + 27p2e4. Combining reduc-

tion modulo p and the fact that
(

3
p

)
= −1 (proved while examining

the φ-Selmer group of E′(p)), we get p|M and p|N . However, reduc-

ing the torsor modulo p once more, this implies
(

3
p

)
= 1, which is a

contradiction. Thus, 3 /∈ Sφ(E′(−p)).
4.2. b1 = −1

The equation to observe is N2 = −M4 + 82pM2e2 − 81p2e4. When e
is even and M odd, N2 ≡ −M4 ≡ 7 (mod 8) which is not possible.
Similarly, when M is even and e odd we get N2 ≡ −p2e4 ≡ 7 (mod 8).
When both of them are odd, we can take M2 = 8a + 1, p = 8b + 5
and e2 = 8c + 1, so the torsor becomes N2 = −64a2 + 9216abc +
1152ab+ 5760ac+ 704a− 69632b2c2− 17408b2c− 1088b2− 87040bc2−
20608bc − 1216b − 27200c2 − 6080c − 336. Observing congruences
modulo 64 we have N2 ≡ 48 (mod 64) and this is impossible, hence
−1 /∈ Sφ(E′(−p)).

4.3. b1 = 3p

In this final case, the torsor is N2 = p(3M4 + 82M2e2 + 27e4). The
cases when M is even and e odd, and vice versa give N2 ≡ 7 (mod 8).
If both M and e are odd, then putting M2 = 8a + 1, e2 = 8b + 1
gives N2 ≡ p

(
8 + 64(3a2 + 2ab+ a+ 3b2 + b)

)
≡ 40 (mod 64), which

is not possible, so 3p /∈ Sφ(E′(−p)).
Other possible values of b1 (−3p, p, −3) are also not in Sφ(E′(−p)) because
Sφ(E′(−p)) is a group, therefore #Sφ(E′(−p)) = 2. Since #Sψ(E(−p)) = 2

as well, we conclude that rank(X
(−p)
0 (15)(Q)) = 0.

�
We prove the following corollary similarly as Corollary 2:

Corollary 4. There exist infinitely many primes p such that for K = Q(i,
√
p),

rank(X0(15)(K)) = 0.

The next corollary is a direct consequence of the Theorem 3 and the fact that
X0(15) and X1(15) are isogenous:

Corollary 5. Le p be a prime such that p ≡ 5 (mod 8) and p ≡ 2 (mod 3). Then
rank(X1(15)(Q(i,

√
p))) = 0.

Theorem 6. Let p be a prime satisfying p ≡ 3 (mod 4), and
(
p
5

)
= −1. Then,

rank(X
(p)
0 (20)(Q)) = rank(X

(−p)
0 (20)(Q)) = 0.
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Proof. The explicit model of X0(20) is y2 = (x + 1)(x2 + 4) from which we easily
obtain curves to observe:

E(p) : y2 = x3 − 2px2 + 5p2x,(6)

E′(p) : y2 = x3 + px2 − p2x,(7)

E(−p) : y2 = x3 + 2px2 + 5p2x,(8)

E′(−p) : y2 = x3 − px2 − p2x.(9)

Here we made some simple transformations to obtain curves in such forms. Namely,
to get E(p) from the explicit model we use the substitution x 7→ x−1. Furthermore,
E′(p) and E′(−p) are simplified by dividing their coefficients a and b (in the short
Weierstrass form) with u2 and u4 respectively.

1. E(p) : y2 = x3 − 2px2 + 5p2x

The torsor is in this case N2 = b1M
4 − 8pM2e2 + b2e

4 where b1b2 = 5p2.
It is obvious that 1, 5 ∈ Sψ(E(p)) and that negative values of b1 imply neg-
ative value of the right hand side of the torsor. By observing congruences
modulo powers of 2 (similarly as in the cases 1.2. and 3.3. of the proof of
Theorem 3) and respecting the assumption p ≡ 3 (mod 4), it easily follows
that p /∈ Sψ(E(p)). Since Sψ(E(p)) is a group; 5p /∈ Sψ(E(p)) as well, so
#Sψ(E(p)) = 2.

2. E′(p) : y2 = x3 + px2 − p2x

The torsor is N2 = b1M
4 + 16pM2e2 + b2e

4, b1b2 = −p2. For b1 = −1
and b1 = 1 the torsor has integer solutions, and for other values of b1
not. Namely, the case b1 = p is eliminated reducing modulo 5, because of(
p
5

)
= −1, and the case b1 = −p is eliminated using the fact that Sφ(E′(p))

is a group, so #Sφ(E′(p)) = 2 and rank(X
(p)
0 (20)(Q)) = 0.

3. E(−p) : y2 = x3 + 2px2 + 5p2x

The torsor is N2 = b1M
4+8pM2e2+b2e

4, b1b2 = 5p2, so 1, 5 ∈ Sψ(E(−p)).
For negative values of b1 the right hand side is negative and cannot be a
square, and the cases b1 = p is eliminated by reducing modulo powers of 2.
Since Sψ(E(−p)) is a group, it follows that #Sψ(E(−p)) = 2.

4. E′(−p) : y2 = x3 − px2 − p2x

This case is dealt with exactly as the E′(p) case, so we will skip it. It

follows that rank(X
(−p)
0 (20)(Q)) = 0 and the statement is proved.

�
From Theorem 6 we easily prove the next corollary:

Corollary 7. There exist infinitely many primes p such that for K = Q(i,
√
p),

rank(X0(20)(K)) = 0.

Theorem 8. Let p be a prime satisfying p ≡ 1 (mod 3), p ≡ 3 (mod 4), and(
p
7

)
= 1. Then, rank(X

(p)
0 (21)(Q)) = rank(X

(−3p)
0 (21)(Q)) = 0.

Proof. While transforming the explicit model of X0(21), y2 + xy = x3 − 4x − 1,
into the form where (0, 0) is a point of order 2, we are supposed to determine the
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integer root of polynomial x3 + x2 − 64x− 64. The polynomial has three different
rational roots, so we choose x0 = 8. From this we get the curves:

E(p) : y2 = x3 + 25px2 + 144p2x,

E′(p) : y2 = x3 − 50px2 + 49p2x,

E(−3p) : y2 = x3 − 75px2 + 1296p2x,

E′(−3p) : y2 = x3 + 150px2 + 441p2x.

1. E(p) : y2 = x3 + 25px2 + 144p2x

As in the previous theorem, we see that the possible values of b1 are
{±1, ±2, ±3, ±6, ±p, ±2p, ±3p, ±6p}. Obviously, b1 = 1 gives an
integer solution, but the value b1 = −p also gives a family of integer solu-
tions: (M, e,N) = (4x, 0, x). The remaining cases are eliminated as follows.
1.1. b1 = 2

The torsor is N2 = 2M4 + 25pM2e2 + 72p2e4. Since the discrimi-
nant of the polynomial on the right hand side is a square, we can write
it as

(10) N2 = (M2 + 8pe2)(2M2 + 9pe2).

It easily follows that the greatest common divisor of the brackets on
the right hand side of (10) is either 1 or 7. Therefore, only two systems
of equations are possible:

M2 + 8pe2 = 2,

2M2 + 9pe2 = 2,

and

M2 + 8pe2 = 72,

2M2 + 9pe2 = 72.

Note that after reduction modulo 3, they become the same system.
By using p ≡ 1 (mod 3), that system is easily eliminated. Namely, if
3 - M , then in the second equation 2 should be a quadratic residue
modulo 3, which is not true. If 3|M , then 3 - e, hence in the first
equation we get that 2 needs to be be a quadratic residue modulo 3.
We conclude 2 /∈ Sψ(E(p)), which combined with −p ∈ Sψ(E(p)) gives
−2p /∈ Sψ(E(p)).

1.2. b1 = 3

The torsor is N2 = 3M4 + 25pM2e2 + 48p2e4. If M and e are both
odd, then N2 ≡ 3 + p ≡ 2 (mod 4), which is impossible. If e is even
and M is odd, then N2 ≡ 3 (mod 4), which is also impossible. We are
left with the case when M is even and e is odd. If we denote M = 2t,
then N needs to be even as well, so we can take N = 2l and get
l2 = 12t2 + 25pt2e2 + 12p2e4. If t is odd, then l2 ≡ p ≡ 3 (mod 4), so
the only remaining case is when t is even. Let us denote t = 2t′, l = 2l′

(l also needs to be even) so we finally get l′2 = 48t′2 +25pt′2e2 +3p2e4,
or equivalently l′2 ≡ 3(t′2+1) (mod 4), which gives l′2 ≡ 2, 3 (mod 4),
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but neither of these two cases is possible. Thus, 3 /∈ Sψ(E(p)), and
consequently −3p /∈ Sψ(E(p)).

1.3. b1 = 6

The torsor is N2 = 6M4 +25pM2e2 +24p2e4, so we get a factorization

(11) N2 = (3M2 + 8pe2)(2M2 + 3pe2).

The greatest common divisor of the factors on the right hand side is
either 1, or p, or 7, or 7p. Hence, we get systems of equations of the
form

3M2 + 8pe2 = a2,

2M2 + 3pe2 = a2,

where a = gcd(3M2 + 8pe2, 2M2 + 3pe2). All these systems become
the same one after reducing modulo 3 and are easily eliminated by
taking p ≡ 1 (mod 3). If 3|M , then 3 - e, so we get from the first
equation that 2 has to be a quadratic residue modulo 3. If 3 -M , then
we arrive to the same conclusion in the second equation. Therefore,
6 /∈ Sψ(E(p)), and −6p /∈ Sψ(E(p)).

1.4. b1 = p

The torsor is N2 = pM4 + 25pM2e2 + 144pe4. This case is eliminated
by observing congruences modulo powers of 2, in the same manner as
in case 1.2. Thus, p /∈ Sψ(E(p)), and −1 /∈ Sψ(E(p)).

1.5. b1 = 2p

From the torsor N2 = 2pM4 + 25pM2e2 + 72pe4, we obtain the appro-
priate factorization

(12) N2 = p(2M2 + 9e2)(M2 + 8e2).

By observing the factors on the right hand side of (12), we get the
systems of the equations

2M2 + 9e2 = ap2,

M2 + 8e2 = a2,

and

2M2 + 9e2 = a2,

M2 + 8e2 = ap2,

where a ∈ {1, 7}. After reducing modulo 3 and taking p ≡ 1 (mod 3),
all these systems become the same. That system is easily eliminated
by taking 3 - M (first equation), or 3|M, 3 - e (second equation).
Thus, 2p /∈ Sψ(E(p)), and −2 /∈ Sψ(E(p)).

1.6. b1 = 3p

The torsor is N2 = 3pM4 + 25pM2e2 + 48pe4, and this is equivalent
to

(13) (6M2 + 25e2)2 − 49e4 = 12p2.
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From the assumption
(
p
7

)
= 1 we conclude that the right hand side

of (13) is either divisible by 7, or does not give a quadratic residue
modulo 7. However, reduction modulo 7 leaves on the left hand side a
square (6M2 + 25e2)2, so it needs to hold

(14) 7 | 6M2 + 25e2.

Let us write the torsor as

N2 = p(M2 + 3e2)(3M2 + 16e2).

Since gcd(M2+3e2, 3M2+16e2) ∈ {1, 7}, and from (14) it follows that
7|M2 +3e2 and 7|3M2 +16e2, we conclude that gcd(M2 +3e2, 3M2 +
16e2) = 7. Thus, we observe the systems

M2 + 3e2 = 7p2,

3M2 + 16e2 = 72,

and

M2 + 3e2 = 72,

3M2 + 16e2 = 7p2.

With the assumption p ≡ 3 (mod 4), both systems are eliminated
reducing modulo powers of 2. Namely, if M is even, we get from the
first equation of the first system that 3 needs to be a quadratic residue
modulo 4, a contradiction. If M is odd, then the left hand side of
the second equation is congruent 3 modulo 8, which is a contradiction
with the right hand side. Let us focus now on the second system. If
M is odd, then from the second equation of the second system we get
that 3 has to be a quadratic residue modulo 4. If M is even, then e
must be odd. When M is divisible by 4, then the left hand side of the
first equation is congruent 3 modulo 8, which is a contradiction with
the right hand side. If M is divisible by 2, but not by 4, then the left
hand side of the second equation is congruent 12 modulo 16, but that
is not true for the right hand side. Therefore, 3p /∈ Sψ(E(p)), and
−3 /∈ Sψ(E(p)).

1.7. b1 = 6p

The torsor is N2 = 6pM4 + 25pM2e2 + 24pe4, which gives

N2 = p(3M2 + 8e2)(2M2 + 3e2).

This case is eliminated analogously as the case 1.5. Thus, 6p /∈
Sψ(E(p)), and −6 /∈ Sψ(E(p)).

The analysis of the cases 1.1. - 1.7. eliminated all remaining possible values
of b1. Therefore, #Sψ(E(p)) = 2.

2. E′(p) : y2 = x3 − 50px2 + 49p2x

There are only four possible values of b1 in this case: {1, 7, p, 7p}. For b1 = 1
and b1 = p there are solutions (1, 0, 1) and (1, 1, 0), while the cases b1 = 7
and b1 = 7p are eliminated reducing modulo 7, because of

(
p
7

)
= 1. We

conclude that #Sφ(E′(p)) = 2 and consequentely rank(X
(p)
0 (21)(Q)) = 0.
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3. E(−3p) : y2 = x3 − 75px2 + 1296p2x

Except b1 = 1, the value b1 = 3p also gives an integer solution (M, e,N) =
(4, 0, 1) of the associated torsor. Negative values of b1 are eliminated imme-
diately, so we are left with the cases {2, 3, 6, p, 2p, 6p}. b1 = 2 and b1 = 2p
yield a contradiction by observing congruences modulo 3, the latter addi-
tionally using the assumption p ≡ 1 (mod 3). The case b1 = 3 is eliminated
reducing modulo powers of 2. Because Sψ(E(−3p)) is a group, remaining
cases fail as well. Thus, #Sψ(E(−3p)) = 2.

4. E′(−3p) : y2 = x3 + 150px2 + 441p2x

The values b1 = 1 and b1 = −3p give an integer solution of the associ-
ated torsor, the latter (M, e,N) = (1, 1, 0). When b1 = −1 or b1 = −7,
we get a contradiction modulo 3 for all p. For b1 = −p and b1 = −7p
we additionally use the condition p ≡ 1 (mod 3). The value b1 = −3 is
eliminated reducing modulo 32, and the values b1 = −21 and b1 = −21p
reducing modulo 7 and using the assumption

(
p
7

)
= 1. All other cases are

eliminated by using the fact that Sφ(E′(−3p)) is a group, which implies

#Sφ(E′(−3p)) = 2 and finally rank(X
(−3p)
0 (21)(Q)) = 0.

�
As in the other cases, Theorem 8 also implies the next corollary:

Corollary 9. There exist infinitely many primes p such that for K = Q(
√
−3,
√
p),

rank(X0(21)(K)) = 0.

Theorem 10. Let p be a prime satisfying p ≡ 1 (mod 4), and
(
p
7

)
= −1. Then,

rank(X
(p)
0 (49)(Q)) = rank(X

(−7p)
0 (49)(Q)) = 0.

Proof. An explicit model of X0(49) is y2 +xy = x3−x2− 2x− 1. By transforming
it into the form suitable for descent via 2-isogenies, we get the curves

E(p) : y2 = x3 + 21px2 + 112p2x,

E′(p) : y2 = x3 − 42px2 − 7p2x,

E(−7p) : y2 = x3 − 147px2 + 5488p2x,

E′(−7p) : y2 = x3 + 294px2 − 343p2x.

By calculating its j-invariant (that is -3375), we notice that E(p) has a complex
multiplication with the ring of integers of Q(

√
−7). Hence, the curves E(p) and

E(−7p) are isogenous, so we will compute the rank just for the first of them.

1. E(p) : y2 = x3 + 21px2 + 112p2x

The associated torsor has obvious integer solutions for b1 = 1 and b1 = 7.
The values b1 = p and b1 = 2p can be easily eliminated by using the as-
sumption

(
p
7

)
= −1, and the value b1 = 2 by using p ≡ 1 (mod 4). When

b1 is negative, the right hand side of the torsor is negative, which is impos-
sible, and all other cases are eliminated by the group structure of Sψ(E(p)).
Thus, #Sψ(E(p)) = 2.

2. E′(p) : y2 = x3 − 42px2 − 7p2x

There are integer solutions of the associated torsor for b1 = 1 and b1 = 7,
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the case b1 = p fails because of
(
p
7

)
= −1 and the case b1 = −p because of

p ≡ 1 (mod 4). We conclude #Sφ(E′(p)) = 2 and rank(X
(p)
0 (49)(Q)) = 0.

Since E(p) and E(−7p) are isogenous, rank(X
(−7p)
0 (49)(Q)) = 0 as well. �

Corollary 11. There exist infinitely many primes p such that for K = Q(
√
−7,
√
p),

rank(X0(49)(K)) = 0.

3. The case n = 27

Recall from [6] that Q(
√
−3) is the only quadratic field K with the property

that #Y0(27)(Q) 6= #Y0(27)(K) <∞. All three Q(
√
−3)-rational points on Y0(27)

correspond to the same CM j-invariant, −12288000. We will construct infinitely
many extensions F of K such that #Y0(27)(Q) 6= #Y0(27)(F ) < ∞. However, in
this case we will not construct quadratic extensions of Q(

√
−3), but instead cubic

ones.
As X0(27)(Q(

√
−3)) ' Z/3Z ⊕ Z/3Z, one cannot use 2-isogeny descent in this

case because X0(27)(Q(
√
−3)) has no 2-torsion. However, the existence of a 3-

torsion point leads one to use the 3-Selmer group in place of the 2-isogeny-Selmer
group. For simplicity denote X = X0(27); a short Weierstrass model for X is

X : y2 = x3 − 432

which can also be written (in projective coordinates) as

X ′ : x′3 + y′3 = z′3.

A cubic twist Cn of X, where n ∈ K∗/(K∗)3, can be written as

Cn : y2 = x3 − 432n2

or as
C ′n : x′3 + y′3 = nz′3.

Denote by E(K)(n′) the n-free part of E(K), i.e. E(K)/E(K)[n]. Whereas

in the previous section we used the fact that rank(E(F (
√
d))) = rank(E(F )) +

rank(Ed(F )), for any number field F, we will use the following lemma in this case.

Lemma 12. Let C/K be an elliptic curve with j-invariant 0 over a number field
K containing ζ3. Let F = K( 3

√
m), where m is a cubefree integer and denote by

Cm and Cm2 cubic twists of C which become isomorphic to C over F . Then

C(F )(3′) ' C(K)(3′)⊕ Cm(K)(3′)⊕ Cm2(K)(3′).

In particular,

rank(C(F )) = rank(C(K)) + rank(Cm(K)) + rank(Cm2(K)).

Proof. Let σ be a generator of Gal(F/K), defined by σ( 3
√
m) = ζ3 3

√
m. Note that

C, Cm and Cm2 are all isomorphic over F and that the points fixed by Gal(F/K)
are isomorphic to C(K), and

Cm(K) ' {P ∈ C(F ) : Pσ = ζ2
3P, P = P},

(see [1]) and similarly,

Cm2(K) ' {P ∈ C(F ) : Pσ = ζ3P, P = P}.
Let P ∈ C(F ). Then

(15) Q = P + Pσ + Pσ
2

∈ C(K),
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(16) Q′ = P + ζ3P
σ + ζ2

3P
σ2

∈ Cm(K),

(17) Q′′ = P + ζ2
3P

σ + ζ3P
σ2

∈ Cm2(K).

By adding (15), (16) and (17), we get

3P ∈ C(K) + Cm(K) + Cm2(K).

Thus for any point P ∈ C(F ), 3P can be written as the sum of a point on C(K),
a point on Cm(K) and a point on Cm2(K).

Now we prove the reverse: let Q ∈ C(K), Q′ ∈ Cm(K) and Q′′ ∈ Cm2(K) be
all non-zero points. As all these curves are isomorphic over F , we can view Q′ and
Q′′ as points on C(F ), by mapping them by the appropriate isomorphism.

We claim that points Q, Q′ and Q′′ are independent (one point cannot be written
as a linear combination of the others) in C(F ) if and only if none of these points
are annihilated by multiplication by 3.

Suppose

(18) αQ+ βQ′ + γQ′′ = 0.

Applying σ and σ2 to this equation, one gets

(19) αQ+ ζ2
3βQ

′ + ζ3γQ
′′ = 0,

and

(20) αQ+ ζ3βQ
′ + ζ2

3γQ
′′ = 0.

Adding the 3 equations, one gets 3αQ = 0, which is, by assumption, true if and
only if α = 0. By multiplying equation (19) by ζ3 and (20) by ζ2

3 and then adding
all the equations together, one gets 3βQ′ = 0. Hence β = 0. By the same argument,
one concludes that γ = 0.

By what we have shown, it is an easy to see that the

C(F )(3′) ' C(K)(3′)⊕ Cm(K)(3′)⊕ Cm2(K)(3′),

as claimed. �

Remark 1. Note that a more highbrow (and shorter) way of stating the above result
would be to decompose the Q(ζ3)-linear representation Q⊗C(F ) of Gal(F/K) into
the sum of its irreducible eigenspaces, but we felt that a more explicit proof was
appropriate.

We are now ready to prove the following:

Theorem 13. Let p ≡ 2, 5 (mod 9) be a prime. Then

#Y0(27)(Q) 6= #Y0(27)(Q(
√
−3, 3
√
p)) <∞.

Proof. From [6] we have

#Y0(27)(Q) < #Y0(27)(Q(
√
−3) ≤ #Y0(27)(Q(

√
−3, 3
√
p)),

so we need to prove that #Y0(27)(Q(
√
−3, 3
√
p)) < ∞, or in other words that

rank
(
X0(27)(Q(

√
−3, 3
√
p))

)
= 0.

As already mentioned X0(27) = C1, and from Lemma 12 it follows that

rank
(
X0(27)(Q(

√
−3, 3
√
p))

)
= rank

(
C1(Q(

√
−3))

)
+ rank

(
Cp(Q(

√
−3))

)
+ rank

(
Cp2(Q(

√
−3))

)
.



14 MILJEN MIKIĆ AND FILIP NAJMAN

Now one uses the fact that C1, Cp and Cp2 are elliptic curves with complex multi-
plication by Z[ζ3], and it follows that they are ismorphic to their quadratic twists
by −3. Now we have

rank
(
X0(27)(Q(

√
−3, 3
√
p))

)
= 2rank(C1(Q)) + 2rank(Cp(Q)) + 2rank(Cp2(Q)).

It is well known (and easily verifiable) that rank(C1(Q)) = 0. For the facts that
rank(Cp(Q)) = 0 and rank(Cp2) = 0, see [8, Theorem VIII]. �
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