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Abstract. We unconditionally determine IQ(d), the set of possible prime degrees of cyclic K-
isogneies of elliptic curves with Q-rational j-invariants and without complex multiplication over
number fields K of degree ≤ d, for d ≤ 7, and give an upper bound for IQ(d) for d > 7. Assuming
Serre’s uniformity conjecture, we determine IQ(d) exactly for all positive integers d.

1. Introduction

Let E/K be an elliptic curve over a number field. If there exists a K-rational cyclic isogeny
φ : E → E′ of degree n, this implies that kerφ is a Gal(K/K)-invariant cyclic group of order n and
we will say that E/K has an n-isogeny.

When talking about possible isogeny degrees of elliptic curves over number fields, it makes sense
to restrict to only elliptic curves without complex multiplication (CM). This is because an elliptic
curve E with complex multiplication by an order O of an imaginary quadratic field L will have
p-isogenies for infinitely many primes p over any number field containing L. We will restrict to
elliptic curves without CM in the whole paper, without further mention.

Understanding the possible torsion groups and possible degrees of a cyclic isogeny is one of the
basic problems in the study of elliptic curves over number fields. After the possible torsion groups
[12] and prime degrees of isogenies [13] of elliptic curves over Q were determined by Mazur, Kenku
[6, 7, 8, 9] soon completed the classification of possible degrees (not just of prime order) of isogenies
of elliptic curves over Q.

From then, there has been much progress in understanding the possible torsion groups of elliptic
curves over number fields: primes that can divide the order of the torsion of an elliptic curves over
number fields of degree d were determined by Kamienny [5] for d = 2, Parent [15, 16] for d = 3 and
bounds for the size of such primes for general d were determined by Merel [14].

Unfortunately, there has been much less progress in understanding possible degrees of isogenies.
A full list of primes p such that p divides n for some n-isogeny of an elliptic curve over a number
field of degree d > 1 is not known, even when one restricts to elliptic curves defined over a single
number field K 6= Q. We should mention that, for a fixed number field K, Larson and Vaintrob
[10] recently proved that such a list of possible degrees is finite, assuming the Generalized Riemann
Hypothesis.

In this paper, we give a list of primes IQ(d) that divide n for some n-isogeny of an elliptic curve
with Q-rational j-invariant without CM over a number field of degree ≤ d. This can be considered
to be an analogue of a similar result of Lozano-Robledo [11] for the torsion, and in fact we will use
similar methods as in that paper.
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We should note that when studying p-isogenies one can look at the set of elliptic curves with
rational j-invariant instead of the set of elliptic curves with coefficients from Q. The latter set
has density 0 in the former over any number field 6= Q and using any sensible ordering. We can
study just the j-invariants because a p-isogeny is a quadratic–twist-invariant property, while having
p-torsion is not (except when p = 2). In other words the set of elliptic curves with a p-isogeny is a
coarse moduli space, while the set of elliptic curves with p-torsion (for p > 3) is a fine moduli space.

By the aforementioned result of Mazur [13] we know that

IQ(1) = {2, 3, 5, 7, 11, 13, 17, 37}.

Note that by definition IQ(1) ⊆ IQ(d) for all d ≥ 1.
We prove the following result.

Theorem 1.1. IQ(d) = IQ(1) for all d ≤ 7.

We also give an unconditional upper bound on IQ(d) for all positive integers d in Theorem 3.4.
In Section 4, we describe IQ(d) for all positive integers d, under the assumption that Serre’s

uniformity conjecture (see Conjecture 2.3) is true.

2. Preliminaries: Galois representations

Studying both the torsion and isogenies of elliptic curves can be viewed as a more general problem
of studying their Galois representations. Let E[n] = {P ∈ E(Q)|nP = 0} denote the n-th division
group of E over Q and let Q(E[n]), the field obtained by adjoining the coordinates of all points in
E[n], be the n-th division field of E. The Galois group GQ = Gal(Q/Q) acts on E[n] and gives rise
to a homomorphism

ρE,n : GQ ↪→ GL2(Z/nZ)

called a mod n Galois representation. The composition of the determinant map and ρn is the
cyclotomic character χn. For a number field K, E(K)[n] denotes the set of K-rational points in
E[n].

Let p be a prime and ε a fixed quadratic non-residue of Fp. Following [11], we define

Cns =

{(
a εb
b a

)
: a, b ∈ Fp, (a, b) 6≡ (0, 0) (mod p)

}
to denote the non-split Cartan subgroup of GL2(Fp). Futhermore, we define

M(a, b) :=

{(
a εb
b a

)
: a, b ∈ Fp, (a, b) 6≡ (0, 0) (mod p)

}
,

N(c, d) :=

{(
c εd
−d −c

)
: c, d ∈ Fp, (c, d) 6≡ (0, 0) (mod p)

}
and

C+ns = {M(a, b), N(c, d), a, b, c, d ∈ Fp, (a, b), (c, d) 6≡ (0, 0) (mod p)}
be the normalizer of the non-Split Cartan subgroup.

Let E/Q be an elliptic curve and p ≥ 5 a prime, and let K be an extension of Qp of the least
possible degree such that E has good or multiplicative reduction over K. Let e be the ramification
index of K over Qp; it is well known that e ≤ 6 [17].
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Theorem 2.1 ([1, 2, 13, 17]). Let p /∈ IQ(1) be a prime and e be the ramification index of K/Qp,
as defined above. Then the image G of ρE,p(GQ) is either

(1) Contained in the normalizer of a non-split Cartan subgroup: then G contains the e-the power
of a non-split Cartan subgroup, or

(2) Surjective, i.e. G = GL2(Fp).

In fact, Zywina [19] recently proved an even more precise result of what the image of ρE,p looks
like if p /∈ IQ(1).

Proposition 2.2 ([19], Proposition 1.13.). Suppose E/Q, p /∈ IQ(1) and ρE,p is not surjective.
Then

(1) If p ≡ 1 (mod 3), then ρE,p(GQ) is conjugate in GL2(Fp) to C+ns.
(2) If p ≡ 2 (mod 3), then ρE,p(GQ) is conjugate in GL2(Fp) to either C+ns or (C+ns)3.

Serre’s Open image theorem [17] implies that for an elliptic curve E/Q without CM, for all but
finitely many primes p, ρE,p is surjective.

We should note that there does not exist one known elliptic curve E/Q such that for a prime
p /∈ IQ(1), the representation ρE,p is not surjective. Sutherland [18] has recently checked this for all
elliptic curves [3] (over 2 million of them) with conductor up to 350000 and all elliptic curves in the
Stein-Watkins database (more than 140 million curves).

These observations gives rise to Serre’s Uniformity conjecture states that there should exist a
bound B, not depending on the elliptic curve E, such that ρE,p is surjective for all p > B and for
all elliptic curves over Q. Here we state the following version of this conjecture.

Conjecture 2.3 (Serre’s uniformity conjecture, see [19], Conjecture 1.12.). For E/Q, p /∈ IQ(1),
the representation ρE,p is surjective.

3. Degree of the field of definition of a p-isogeny

To prove Theorem 1.1, we will need to find the minimal degree of definition of a p-isogeny of an
elliptic curve with Q-rational j-invariant. By Theorem 2.1 and Proposition 2.2, we need to consider
2 cases: either ρE,p is surjective or its image is surjective or is contained in a normalizer of non-split
Cartan subgroup.

Let P ∈ E[p] be a point of degree p and C = 〈P 〉 be the subgroup generated by P . For a number
field K, we define K(P ) to be the field obtained by adjoining the coordinates of P to K and K(C)
to be smallest extension of K such that the p-isogeny φ with kernel C is defined over K, or in other
words, the smallest number field such that Gal(K(C)/K(C)) acts on C.

3.1. Full image.

Proposition 3.1. Let E/Q be an elliptic curve and p a prime such that ρE,p is surjective, and C
of E[p] of order p. Then [Q(C) : Q] = p+ 1.

Proof. Let {P,R} be the basis of E[P ]. The field of definition of Q(C) is then the fixed field of the
subgroup

H =

{(
a b
0 c

)
: a, c ∈ F×p , b ∈ Fp

}
.

We have |GL2(Fp)| = p(p− 1)2(p+ 1) and |H| = p(p− 1)2, so we conclude that

[Q(〈P 〉) : Q] = |GL2(Fp)/H| = p+ 1.
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3.2. Normalizer of non-split Cartan. A result that we will need is the following easy lemma.

Lemma 3.2. Let E/K be an elliptic curve over a number field and P ∈ E[p]. Let C = 〈P 〉. Then
[K(P ) : K(C)] divides p− 1.

Proof. By definition E has a p-isogeny over K(C). Then the same proof as [4, Lemma 7], taking
K(P ) instead of Q as the base field (which does not make a difference in the proof) proves the
claim. �

Now we can prove our result.

Proposition 3.3. Let E/Q be an elliptic curve and p a prime such that the image of ρE,p is
contained in the normalizer of the non-split Cartan subgroup and let 〈P 〉 = C ⊆ E[p] a cyclic
subgroup of order p. Then

(1) If p ≡ 2 (mod 3), then [Q(C) : Q] ≥ p+ 1.
(2) If p ≡ 2 (mod 3), then [Q(C) : Q] ≥ (p+ 1)/3.
(3) If E does not have additive reduction at p, then [Q(C) : Q] ≥ p+ 1.

Proof. For an elliptic curve E/Q such that the image of ρE,p is contained in the normalizer of the
non-split Cartan subgroup, by the proof of [11, Theorem 7.3] the field of smallest degree Q(P ) over

which a point P of order p is defined is ≥ p2−1
a , where a is the smallest integer such that ρE,p(GQ)

contains an a-th power of Cns1.
On the other hand, by Lemma 3.2, we have [Q(P ) : Q(C)] ≤ p− 1. Together this implies that for

any P ∈ E[p],

[Q(C) : Q] ≥
p2−1
a

p− 1
≥ p+ 1

a
.

By Proposition 2.2,

a =

{
1 if p ≡ 1 (mod 3),

1 or 3 if p ≡ 2 (mod 3),

from which (1) and (2) follow.
Part (3) follows from part (1) of Theorem 2.1, since by assumption we have e = 1 and hence

ρE,p(GQ) contains Cns. �

3.3. Proof of Theorem 1.1. Let p /∈ IQ(1) and d(p) be the minimal field of definition of a p-isogeny
of an elliptic curve with rational j-invariant.

By Propositions 3.1 and 3.3, we have that d(p) ≥ p + 1 if p ≡ 1 (mod 3) and d(p) ≥ (p + 1)/3
if p ≡ 2 (mod 3). Since for p /∈ IQ(1), we have p ≥ 19 for p ≡ 1 (mod 3) and p ≥ 23 for p ≡ 2
(mod 3), it follows that d(p) ≥ 8 for all p /∈ IQ(1), proving the Theorem. �

Note that we have in the proof above in fact proved an unconditional upper bound for IQ(d), for
all integers d.

1In the statment of [11, Theorem 7.3], it says that [Q(P ) : Q] ≥ p−1
e

, where e is as defined in Section 2, since this

guarantees that ρE,p(GQ) contains Ce
ns. But from the proof we see that it is true that [Q(P ) : Q] ≥ p2−1

a
, where a

(which may be smaller than e) is the smallest integer such that ρE,p(GQ) contains Ca
ns.
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Theorem 3.4. For all positive integers d,

IQ(d) ⊆ IQ(1) ∪ {p prime : p ≤ d− 1, p ≡ 1 (mod 3)} ∪ {p prime : p ≤ 3d− 1, p ≡ 2 (mod 3)} .

4. Results assuming Serre’s uniformity conjecture

If we assume Conjecture 2.3, we can prove stronger results.

Theorem 4.1. Suppose Conjecture 2.3 is true. Then for all positiver integers d,

IQ(d) = IQ(1) ∪ {p prime : p ≤ d− 1} .
In particular IQ(d) = IQ(1) for d ≤ 19.

Proof. Let p /∈ IQ(1) and d(p) be the minimal field of definition of a p-isogeny of an elliptic curve
with rational j-invariant. Then by assumption ρE,p is surjective and by Proposition 3.1, d(p) = p+1.

�
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831–838. 1
[17] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–

331. 2, 2.1, 2
[18] A. Sutherland, Computing images of Galois representations attached to elliptic curves, preprint. http://arxiv.

org/abs/1504.07618 2
[19] D. Zywina, On the possible images of the mod l representations associated to elliptic curves over Q, preprint.

http://www.math.cornell.edu/~zywina/papers/PossibleImages/PossibleImages.pdf 2, 2.2, 2.3

https://homepages.warwick.ac.uk/staff/J.E.Cremona/ftp/data/INDEX.html 
https://homepages.warwick.ac.uk/staff/J.E.Cremona/ftp/data/INDEX.html 
http://arxiv.org/abs/1504.07618
http://arxiv.org/abs/1504.07618
http://www.math.cornell.edu/~zywina/papers/PossibleImages/PossibleImages.pdf


6 FILIP NAJMAN

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
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