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Abstract. We prove that all elliptic curves over quadratic fields with
a subgroup isomorphic to C16, as well as all elliptic curves over cubic
fields with a subgroup isomorphic to C2×C14, are base changes of elliptic
curves defined over Q. We obtain these results by studying geometric
properties of modular curves and maps between modular curves, and
then obtaining a modular description of these curves and maps.

1. Introduction

By the Mordell–Weil theorem, the Abelian group E(K) of K-rational
points on an elliptic curve E over a number field K is finitely generated.
This group can therefore be decomposed as E(K) ' E(K)tor ⊕ Zr, where r
is the rank of E over K.

Let Φ(d) denote the set of isomorphism classes of finite groups G with
the property that there exists an elliptic curve E over a number field K of
degree d such that E(K)tor ' G. In this paper we will show that for d = 2
and d = 3 and for certain groups G ∈ Φ(d), if E(K)tor ' G, it turns out
that E is a base change of an elliptic curve over Q.

The first example of a result where the torsion of an elliptic curve over a
number field of given degree yields information about its field of definition
can be found in [2]. There it was shown that if an elliptic curve over a
quadratic field K has a point of order 13 or 18, then K is a real quadratic
field. In other words, there are no elliptic curves over imaginary quadratic
fields with a point of order 13 or 18. Another result in the same paper shows
that if an elliptic curve over a quartic field K has a point of order 22, then
K has a quadratic subfield over which the modular curve Y1(11) has points;
note that “most” quartic fields do not have quadratic subfields. In [3], it is
proved that if an elliptic curve over a quartic field K has a point of order 17
and L is the normal closure of K over Q, then Gal(L/Q) is isomorphic to
D4 or S4.

The goal of this paper is to prove the following two theorems.
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Theorem 1.1. Every elliptic curve over a quadratic field with a subgroup
isomorphic to C16 is a base change of an elliptic curve over Q with a sub-
group isomorphic to C8.

Theorem 1.2. If E is an elliptic curve over a cubic field K with a subgroup
isomorphic to C2 × C14, then K is normal over Q and E is a base change
of an elliptic curve over Q.

We found examples of elliptic curves that are not base changes of elliptic
curves over Q with all possible torsion groups over quadratic fields apart
from C16, and with all possible torsion groups over cubic fields apart from
C2 × C14 and C21. The case of C21 is somewhat special: there is a unique
curve over a cubic field with this torsion group, and the curve is a base
change of an elliptic curve (with Cremona label 162b1) over Q. This curve
was found by the second author [10] and was proved to be the only such
curve in yet unpublished work of Derickx, Etropolski, Morrow and Zureick-
Brown.

In Section 2 we prove Theorem 1.1; in Section 3 we prove the more dif-
ficult Theorem 1.2. We deduce these results from geometric properties of
modular curves and maps between modular curves, combinined with the
modular description of these curves and maps. For a congruence subgroup
Γ ⊆ SL2(Z), let XΓ be the corresponding modular curve and let YΓ be the
complement of the cusps in XΓ.

The idea of the proof of Theorem 1.1 is as follows. There exists a con-
gruence subgroup Γ′ ⊂ SL2(Z), containing Γ1(16) as a subgroup of index 2,
such that all the degree 2 points on Y1(16) map to Q-rational points of YΓ′

under the natural morphism X1(16) → XΓ′ . The modular descriptions of
X1(16) and XΓ′ then allow us to conclude that the points of degree 2 on
Y1(16) in fact parameterize elliptic curves defined over Q.

Moving on to the setting of Theorem 1.2, let Γ = Γ1(2, 14). The proof
of Theorem 1.2 follows the same lines, with the difference that in this case
there will be two maps qH : XΓ → XΓ/H and qH′ : XΓ → XΓ/H

′ of degree 3,
where the quotient curves XΓ/H and XΓ/H

′ of genus 0 are constructed in
Section 3.1. We prove that all cubic points of YΓ are inverse images of
rational points of YΓ/H or YΓ/H

′ under the maps qH and qH′ . Using an
explicit equation for XΓ, we compute the group of Q-points of the Jacobian
of XΓ (Proposition 3.8) and describe the set of effective divisors of degree 3
on XΓ (Proposition 3.9). It is then not hard to deduce that all cubic points
on Y (Γ) arise from Q-rational points on YΓ/H or YΓ/H

′.

2. Elliptic curves with 16-torsion over quadratic fields

In this section we will prove Theorem 1.1. We write

Γ′ =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a ≡ d ≡ 1 (mod 8),
c ≡ 0 (mod 16)

}
.
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The curves X1(16) and XΓ′ have genus 2 and 0, respectively, and the map

π : X1(16)→ XΓ′

of degree 2 is a quotient map for the diamond automorphism 〈9〉 on X1(16).
It was already shown in [2] that all quadratic points on Y1(16) are inverse
images under π of Q-rational points of YΓ′ .

Proof of Theorem 1.1. Consider a point of Y1(16)(K) corresponding to a
pair (E,P ), where E is an elliptic curve over a quadratic field K and
P ∈ E(K) is a point of order 16. Let σ be the generator of Gal(K/Q).
Using the fact that the hyperelliptic involution on X1(16) is the diamond
automorphism 〈9〉, it was proved in [2, § 4.5] that there exists an isomor-
phism

µ : Eσ
∼−→ E

satisfying

µ ◦ µσ = id and µ(P σ) = 9P.

(This µ differs from the one in [2] by a sign.) It follows, although this was
not explicitly stated in [2], that E can be descended to Q. The isomorphism
µ maps (2P )σ to 2(9P ) = 18P = 2P . Therefore not only E, but also the
point 2P of order 8 is defined over Q. �

The above argument can be made explicit as follows. The modular curve
X1(16) admits the equation

X1(16) : v2 − (u3 + u2 − u+ 1)v + u2 = 0.

From [2], it follows that all quadratic points (u, v) on Y1(16) satisfy u ∈ Q.
One can write down, in terms of the coordinates (u, v), equations for the
universal elliptic curve E and for the universal point P of order 16 on E.
(The resulting equations are the same as those obtained by Rabarison [12,
Section 4.4], up to a change of variables in the equation for X1(16).) One
can then descend the pair (E, 2P ) to Q by writing E in Tate normal form
with respect to the point 2P . This gives the Weierstrass equation

E : y2 + axy + by = x3 + bx2 with 2P = (0, 0),

where

a = 1− u2(u− 1)(u+ 1)

u2 + 1
and b =

−u2(u− 1)(u+ 1)

(u2 + 1)2
.

Since these expressions do not contain v, we obtain a Weierstrass equation
for E with coefficients in Q.
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3. Elliptic curves with (2, 14)-torsion over cubic fields

Next, we take Γ = Γ1(2, 14) = Γ(2) ∩ Γ1(7). We will study Γ and the
corresponding modular curve XΓ using several auxiliary congruence sub-
groups. Let Γ∗(2) be the unique subgroup of SL2(Z) that contains Γ(2) and
such that (Γ∗(2) : Γ(2)) = 3; more precisely,

Γ∗(2) =

{
Γ ∈ SL2(Z)

∣∣∣∣ γ ≡ (1 0
0 1

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)
(mod 2)

}
.

We also define

Γ∗(7) =

{(
a b
c b

)
∈ SL2(Z)

∣∣∣∣ a, d ≡ 1, 2, 4 (mod 7),
c ≡ 0 (mod 7)

}
.

We note that Γ∗(7) does not contain the matrix
(−1 0

0 −1

)
. It does have two

conjugacy classes of elliptic elements of order 3, corresponding to two specific
Γ∗(7)-structures on an elliptic curve with j-invariant 0.

The groups Γ∗(2) and Γ∗(7) contain Γ(2) and Γ1(7), respectively, as nor-
mal subgroups of index 3. We define A3 and C3 as the respective quotients
Γ∗(2)/Γ(2) and Γ∗(7)/Γ1(7), and we make the identifications

A3 = (Γ∗(2) ∩ Γ1(7))/Γ,

C3 = (Γ(2) ∩ Γ∗(7))/Γ,

A3 × C3 = (Γ∗(2) ∩ Γ∗(7))/Γ.

The group A3 ×C3 has four subgroups of order 3; besides A3 and C3, there
are two further subgroups H and H ′.

3.1. Geometric properties of modular curves. The modular curve XΓ

equals X1(2, 14). Furthermore, the modular curve XΓ∗(7) is just X0(7),
but we will denote it by X∗(7) in view of the fact that it is defined using
Γ∗(7) instead of Γ0(7), which is essential to our method. We will also need
the modular curves X1(7) and X1(14). The curves X∗(7) and X1(7) have
genus 0. The curve X1(14) has genus 1, and is isomorphic to the elliptic
curve over Q with Cremona label 14a4.

The group Γ∗(7)/Γ acts on XΓ. The action of the various subgroups of
interest gives rise to the following diagram, where the numbers next to the
arrows indicate the degrees:

XΓ

X1(14) XΓ/A3 XΓ/H XΓ/H
′ XΓ/C3

X1(7) XΓ/(A3 × C3)

X∗(7)

2
3 3 3

3

3
2

3

3 3

3

3
2
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The index of a cusp on a modular curve X is the order of vanishing of
the discriminant modular form, or equivalently the ramification index of the
canonical map X → X(1), at this cusp.

Lemma 3.1. The curve XΓ has genus 4. It has 18 cusps: 9 of index 2 and
9 of index 14.

Proof. The map XΓ → X1(14) of degree 2 is unramified over the open subset
Y1(14); this follows for example from the fact that there is a universal elliptic
curve over Y1(14) and that its 2-torsion is étale. As for the cusps, for each
d ∈ {1, 2, 7, 14} there are three cusps of index d on X1(14), and the above
covering is ramified exactly above the six cusps of index 1 or 7 on X1(14).
The Hurwitz formula gives

2g(XΓ)− 2 = 2(2g(X1(14))− 2) + 6.

Both statements now follow easily. �

Lemma 3.2. The groups A3 and C3 act freely on XΓ.

Proof. The action of the group C3 on XΓ descends to an action on X1(14)
via the group of diamond automorphisms {〈1〉, 〈9〉, 〈11〉}. Under any iden-
tification of X1(14) with an elliptic curve, the automorphisms 〈9〉 and 〈11〉
act as translations by 3-torsion points and hence have no fixed points. It
follows that C3 acts freely on X1(14), and hence also on XΓ.

The group A3 acts freely on YΓ because Y1(7) is a fine moduli space. The
cusps also have trivial stabilizer; this follows from the fact that the indices
of all cusps are coprime to the order of A3. �

Corollary 3.3. The quotient maps

XΓ → XΓ/A3,

XΓ → XΓ/C3

are unramified. Each of the curves XΓ/A3 and XΓ/C3 has 6 cusps: 3 of
index 2 and 3 of index 14. Both curves have genus 2.

Proof. The first two statements are immediate from Lemma 3.2; the last
one follows from the Hurwitz formula. �

Lemma 3.4. (1) The curve XΓ/(A3×C3) has genus 0. It has two cusps:
one of index 2 and one of index 14.

(2) The map XΓ → XΓ/(A3 ×C3) has ramification index 3 at 12 points
of XΓ (lying above 4 points of XΓ/(A3 × C3)) and is unramified
everywhere else.

Proof. The map XΓ/A3 → X1(7) is unramified over Y1(7) by Lemma 3.2, so
the map XΓ/(A3×C3)→ X∗(7) is unramified outside the cusps. Since X∗(7)
has genus 0, the Hurwitz formula implies that this last map is ramified above
the two cusps of X∗(7) and that XΓ/(A3×C3) has genus 0. This proves (1).

By the Hurwitz formula and the fact that the mapXΓ/A3 → XΓ/(A3×C3)
is cyclic of degree 3, this map is totally ramified at 4 points. The claim (2)
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now follows from the fact that the map XΓ → XΓ/A3 is unramified (the
same argument works for C3). �

Lemma 3.5. The curves XΓ/H and XΓ/H
′ have genus 0.

Proof. Let P be one of the 12 ramification points of the mapXΓ → XΓ/(A3×
C3). Then the stabilizer GP of P in A3×C3 is of order 3 and different from
A3 and C3 since the latter two groups act freely on XΓ by Lemma 3.2.
Therefore GP is either H or H ′. Let nH be the number of points P ∈ XΓ

with stabilizer H, and similarly for nH′ . The Hurwitz formula gives

2g(XΓ)− 2 = 3(g(XΓ/H)− 2) + 2nH ,

2g(XΓ)− 2 = 3(g(XΓ/H
′)− 2) + 2nH′ .

Adding the two equations and using g(XΓ) = 4 and nH + nH′ = 12, we get
g(XΓ/H) + g(XΓ/H

′) = 0, which implies the claim. �

We conclude that the curve XΓ admits two maps of degree 3 to a curve
of genus 0, namely the quotient maps

qH : XΓ → XΓ/H, qH′ : XΓ → XΓ/H
′.

By construction, both are cyclic with Galois groups H and H ′, respectively.
Pull-back of divisors along the two maps qH and qH′ gives rise to two lines
L and L′ (copies of P1

Q) inside Sym3XΓ. Both maps are ramified at ex-
actly 6 points, and the two sets of 6 points are disjoint because of Lemma
3.4(2). This implies that XΓ embeds as a smooth curve of bidegree (3, 3) in
XΓ/H ×XΓ/H

′ ' P1
Q × P1

Q, and that L and L′ are disjoint. Furthermore,
because a curve of genus 4 admits at most two linear systems of degree 3 and
dimension 1 (see [6, IV, Example 5.2.2]), every non-constant map XΓ → P1

Q
of degree 3 can be identified with either qH or qH′ via an isomorphism of P1

Q
with XΓ/H or XΓ/H

′, respectively.
We fix one rational cusp, say O = (0, 0), and we consider the Jacobian JΓ

of XΓ and the (non-dominant) rational map

(1)
φ : Sym3XΓ → JΓ

D 7→ [D − 3O]

Lemma 3.6. The map φ contracts the lines L and L′ and is injective outside
L ∪ L′.

Proof. Consider two distinct points of Sym3XΓ corresponding to effective
divisors D, D′ of degree 3 on XΓ. Then φ(D) = φ(D′) if and only if D
and D′ are linearly equivalent. In this case, there exists a rational function
f on XΓ with divisor D−D′. Such an f gives a map of degree at most 3 to
P1
Q; this can be identified with either qH or qH′ , since XΓ is not hyperelliptic.

This implies that φ(D) = φ(D′) if and only if either both D and D′ are pull-
backs of points under qH : XΓ → XΓ/H, or both are pull-backs of points
under qH′ : XΓ → XΓ/H

′. �
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Proposition 3.7. The modular curve XΓ is isomorphic to the smooth pro-
jective curve of bidegree (3, 3) in P1

Q × P1
Q given by the equation

(2) XΓ : (u3 + u2 − 2u− 1)v(v + 1) + (v3 + v2 − 2v − 1)u(u+ 1) = 0.

The (u, v)-coordinates of the 9 rational cusps are

(0, 0), (0,−1), (0,∞),

(−1, 0), (−1,−1), (−1,∞),

(∞, 0), (∞,−1), (∞,∞).

The 9 cusps with field of definition Q(ζ7)+ are defined by

u3 + u2 − 2u− 1 = v3 + v2 − 2v − 1 = 0.

Our initial proof of the above proposition proceeded by viewing XΓ as
the S3-cover of the curve X1(7) corresponding to the moduli problem of
labelling the three points of order 2 by the set {0, 1, 2}. As this proof involves
rather long calculations, we do not give it here, but refer to the independent
derivation of the above equation for XΓ by Derickx and Sutherland [4, § 3.1].

3.2. Proof of the main result. We first determine the structure of JΓ(Q).
As XΓ is a non-hyperelliptic genus 4 curve, note that JΓ(Q) cannot be
computed directly in any current computer algebra system.

Proposition 3.8. The group JΓ(Q) is generated by differences of rational
cusps and is isomorphic to C2 × C2 × C6 × C18.

Proof. The modular Abelian variety JΓ over Q decomposes up to isogeny as
JΓ ∼ E × E ×B, where E is an elliptic curve and B is an Abelian surface.
A computation with newforms in either Magma or Sage [13] shows that
the L-functions of E and B do not vanish at 1. By results of Kato [7], the
Birch–Swinnerton-Dyer conjecture is true for modular Abelian varieties. We
conclude that JΓ(Q) has rank 0.

Let red3 denote the reduction map JΓ(Q) → JΓ(F3). Then red3 is injec-
tive. One computes the numerator of the zeta function of XΓ over F3 to be
1 + 5x+ 12x2 + 17x3 + 22x4 + 51x5 + 108x6 + 135x7 + 81x8. Looking at the
coefficient of x, we obtain #XΓ(F3) = 1 + 5 + 3 = 9; substituting x = 1, we
obtain #JΓ(F3) = 432 = 24 · 33. We deduce that #JΓ(Q) divides 432.

Let A be the subgroup of JΓ(Q) generated by all differences of two rational
cusps. Then A can be written as A2×A3, where A2 and A3 are the 2-primary
and 3-primary subgroups of A, respectively, and it suffices to compute A2

and A3. The above bound on #JΓ(Q) implies that #A2 divides 24 and #A3

divides 33. We claim that there are isomorphisms

(Z/2Z)4 ∼−→ A2, Z/3Z× Z/9Z ∼−→ A3.

We will prove this by computing the images of A2 and A3 under red3.
To compute in JΓ(F3), we use Khuri-Makdisi’s algorithmic framework for

computing in Picard groups of projective curves [8, 9]. For a curve X over
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a field k, with Jacobian J , this gives us a way to represent elements of
J(k) ' Pic0X and algorithms to perform the following operations:

• given two points P,Q ∈ X(k), compute the divisor class [P − Q] ∈
J(k);
• given two elements x, y ∈ J(k), compute −x− y (which also allows

us to perform addition and negation);
• given an element x ∈ J(k), test whether x is the zero element (which

also allows us to test whether two elements are equal);
• given elements x ∈ J(k) and O ∈ X(k), compute the least r ≥ 0

such that x is of the form [D − rO] for some effective divisor D of
degree r.

We used an unpublished implementation of Khuri-Makdisi’s algorithms over
finite fields by the first named author in PARI/GP [11]. For this we need
to determine the space of global sections of a line bundle of sufficiently
high degree. Starting from the equation (2) and using the line bundle
OXΓ

(2((0,∞) + (−1,∞) + (∞, 0) + (∞,−1) + (∞,∞))) of degree 10, we
obtain the basis (1, u, v, uv, u2, v2, uv(u+v)) for the space of global sections.

For every point P ∈ XΓ(F3), we consider the corresponding point [P −
(0, 0)] ∈ JΓ(F3). We define the following elements of JΓ(F3):

x1 = 9[(0,−1)− (0, 0)],

x2 = 9[(0,∞)− (0, 0)],

x3 = 9[(−1, 0)− (0, 0)],

x4 = 9[(−1,−1)− (0, 0)],

y1 = 2[(−1, 0)− (0, 0)],

y2 = 2[(−1,−1)− (0, 0)].

Then the points xi have order 2, the point y1 has order 9, and the point y2

has order 3. We consider the group homomorphisms

λ2 : (Z/2Z)4 −→ red3(A2)

(a1, a2, a3, a4) 7−→
4∑
i=1

aixi.

and
λ3 : Z/9Z× Z/3Z −→ red3(A3)

(b1, b2) 7−→ b1y1 + b2y2.

These fit in the following commutative diagrams:

(Z/2Z)4 A2

red3(A2)

λ2

red3

Z/9Z× Z/3Z A3

red3(A3)

λ3

red3

where the vertical maps A2 → red3(A2) and A3 → red3(A3) are isomor-
phisms. We show that λ2 is injective by evaluating λ2 on each element of
(Z/2Z)4 and testing whether the result is zero. In a similar way, we show
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that λ3 is injective. Comparing orders, we see that λ2 and λ3 are isomor-
phisms. Therefore both A and red3(A) are isomorphic to C2×C2×C6×C18,
and in particular have order 432. Finally, we deduce JΓ(F3) = red3(A) and
JΓ(Q) = A. �

We now determine the image of the set of divisors of degree 3 under the
map φ defined by (1).

Proposition 3.9. The image of (Sym3XΓ)(Q) under φ equals the set of
points in JΓ(Q) represented by effective divisors of degree 3 supported on the
cusps.

Proof. Because XΓ has 9 rational cusps and 3 Galois orbits of cusps with
field of definition Q(ζ3)+, there are

(
9+3−1

3

)
+ 3 = 168 effective divisors

of degree 3 supported on the cusps. The nine Q-rational cusps of XΓ lie
above three rational points of XΓ/H, and also above three rational points of
XΓ/H

′. Furthermore, none of the three Galois orbits of cusps with field of
definition Q(ζ7)+ lies over a single rational point of XΓ/H or XΓ/H

′. This
implies that the 168 effective divisors of degree 3 supported on the cusps
form 164 linear equivalence classes, namely 162 consisting of 1 divisor and
2 consisting of 3 divisors.

For each of the 432 points x ∈ JΓ(F3), we compute the least r ≥ 0 such
that x is of the form [D − rO] for some effective divisor D of degree r on
(XΓ)F3 . This yields exactly 164 points in JΓ(F3) of the form [D − 3O] with
D an effective divisor of degree 3 on (XΓ)F3 . Therefore at most 164 points
in JΓ(Q) have this property, and since we already have 164 points in JΓ(Q)
that are represented by effective divisors of degree 3 supported on the cusps,
we are done. �

Proof of Theorem 1.2. An elliptic curve E over a cubic field K with an em-
bedding of C2 ×C14 defines an effective divisor D of degree 3 on XΓ, which
we can view as a Q-rational point of Sym3XΓ. Then φ(D) is a Q-rational
point of the image of φ in JΓ. By Proposition 3.9 and the fact that D is
evidently not supported on the cusps, D lies in one of the two copies of P1

Q
inside Sym3XΓ that are contracted under φ. It follows that D is the inverse
image of a Q-rational point on one of the two rational curves XΓ/H and
XΓ/H

′ under the maps qH and qH′ , respectively. This implies that K is
normal over Q. It is known that the field of definition of the two elliptic
points of X∗(7) equals Q(ζ3); see for example [5, § 4.4]. Thus D lies above a
non-elliptic point s ∈ X∗(7)(Q), and E is the base change to K of the fibre
at s of the universal elliptic curve over the complement of the cusps and
elliptic points in X∗(7). We conclude that E is defined over Q. �

Remark 3.10. Given an elliptic curve E over a cubic field K with a sub-
group isomorphic to C2×C14, the proof of Theorem 1.2 yields the following
procedure to determine a model of E over Q. Choose a point P of order 7 in
E(K), and write down the unique Weierstrass equation for E such that the
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points P , 2P and 4P lie on the line y = 0 and the points 3P , 5P and 6P lie
on the line y = −x. Then this Weierstrass equation has coefficients in Q.

Example 3.11. Consider the cubic field K = Q(α) of discriminant 312,
where α3 − α2 − 10α + 8 = 0. The elliptic curve E over K defined by the
Weierstrass equation

y2 + xy + y = x3 − x2 + (−3737α2 − 8584α+ 9067)x

+ (203770α2 + 468074α− 494427)

has torsion subgroup isomorphic to C2 × C14, and the point P = (14α2 +
32α − 33, 59α2 + 136α − 144) has order 7. After a change of variables to
bring E in the form described by Remark 3.10 with respect to P , we obtain
a Weierstrass equation with coefficients in Q, namely

y2 + xy = x3 − 22 · 11

32 · 31
x2 +

26 · 7
35 · 312

x+
212

39 · 313
.

In fact, E is the base change of the elliptic curve over Q with Cremona label
1922c1.
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