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Abstract. Harron and Snowden [8] counted the number of elliptic curves over Q up to
height X with torsion group G for each possible torsion group G over Q. In this paper we
generalize their result to all number �elds and all level structures G such that the correspond-
ing modular curve XG is a weighted projective line P(w0, w1) and the morphism XG → X(1)
satis�es a certain condition. In particular, this includes all modular curves X1(m,n) with
coarse moduli space of genus 0. We prove our results by de�ning a size function on P(w0, w1)
following unpublished work of Deng [5], and working out how to count the number of points
on P(w0, w1) up to size X.

1. Introduction

Let E be an elliptic curve over a number �eld K. The Mordell�Weil theorem says that
E(K) is isomorphic to Zr × E(K)tor for some r ≥ 0, where E(K)tor is the (�nite) torsion
subgroup of E(K). It is a natural question which groups appear as E(K)tor, and moreover
how often each one of these groups appears. Harron and Snowden [8] studied this question
and answered it in the case K = Q. The aim of this paper is to study the same problem, but
to both allow K to be any number �eld and to answer the more general question how often a
prescribed G-level structure appears.

To make this question more precise, let n be a positive integer, let G be a subgroup of
GL2(Z/nZ), and let K be a number �eld. We say that an elliptic curve E over K admits a
G-level structure if there exists a (Z/nZ)-basis of E[n](K̄) such that the Galois representation

ρE,n : Gal(K̄/K)→ GL2(Z/nZ)

de�ned by this basis has image contained in G. We write

EG,K = {elliptic curves over K admitting a G-level structure}/∼=.

We will de�ne a size function SK from the set of isomorphism classes of elliptic curves
over K to R>0; see De�nition 7.1. We de�ne a function NG,K : R>0 → Z≥0 by

NG,K(X) = #{E ∈ EG,K | SK(E)12 ≤ X}.
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Let XG be the moduli stack of generalized elliptic curves with G-level structure. This is a
one-dimensional proper smooth geometrically connected algebraic stack over the �xed �eld of

the action of G on Q(ζn) given by (g, ζn) 7→ ζdet g
n . We consider cases where XG is a weighted

projective line P(w0, w1) over KG. By Lemma 4.1, we can then attach a positive integer e to
the canonical morphism XG → X(1). We can now state our main result (which is also stated
in a slightly di�erent form in Theorem 7.6).

Theorem 1.1. Let n be a positive integer, and let G be a subgroup of GL2(Z/nZ). Let KG be

the �xed �eld of the action of G on Q(ζn) given by (g, ζn) 7→ ζdet g
n . Assume that the stack XG

over KG is isomorphic to P(w)KG
, where w = (w0, w1) is a pair of positive integers, and let

e be as in Lemma 4.1. Furthermore, assume e = 1 or w = (1, 1) holds. Then for every �nite
extension K of KG, we have

NG,K(X) � X1/d(G,K) as X →∞,

where

d(G,K) =
12e

w0 + w1
.

As all modular curves XG = X1(m,n) with coarse moduli space of genus 0 satisfy the
assumptions of Theorem 1.1, our result generalizes [8, Theorem 1.2], where this statement
was proved in the case where K = Q and where G is one of the 15 groups corresponding to
the torsion groups from Mazur's theorem.

A recent result of Pizzo, Pomerance and Voight [10] is NG,Q(X) ∼ X1/2 for G such that
XG = X0(3). Moreover, they determined the constant in front of the leading term of the
function NG,Q(X) as well as the �rst two lower-order terms. This result falls outside of the
reach of our results, as X0(3) is not a weighted projective line.

Similarly, Pomerance and Schaefer [11] proved that NG,Q(X) ∼ X1/3 for G such that
XG = X0(4), and determined the constants in front of the leading term and the �rst lower-

order term. Our result implies NG,K � X1/3 for all number �elds K; in the case K = Q, this
follows from the sharper results of [11].

Cullinan, Kenney and Voight [3, Theorem 1.3.3] proved a sharper version of Theorem 1.1
in the special case where XG is a projective line (i.e. isomorphic to P1 = P(1, 1)) and K = Q.
More precisely, they give an asymptotic expression for NG,Q(X) containing an e�ectively
computable leading coe�cient and an error term.

Boggess and Sankar [2] determined the growth rate of the number of elliptic curves over Q
with a cyclic n-isogeny for n ∈ {2, 3, 4, 5, 6, 8, 9, 12, 16, 18}. Out of these, only the cases n = 2
and n = 4 (for which a more precise result was already proved in [8, 11]) correspond to
weighted projective lines and are therefore generalized to number �elds by Theorem 1.1.

Remark 1.2. The 12-th power is included for easier comparison with the height function in
[8]; see Remark 7.2.

Remark 1.3. Our result gives a more conceptual interpretation of d(G,K); cf. [8, �1.2].
Namely, we show that d(G,K) can be expressed in terms of the pair of positive integers
(w0, w1) for which XG is isomorphic to the weighted projective line with weights (w0, w1),
and e, an invariant (similar to the degree) of the morphism XG → X(1).

We also remark that our result shows how in certain cases one can count points in the image
of a morphism of stacks, partially answering a question in [8, Remark 1.5].
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2. Weighted projective spaces

De�nition 2.1. Given an (n + 1)-tuple w = (w0, . . . , wn) of positive integers, the weighted
projective space with weights w is the algebraic stack

P(w) = [Gm\An+1
6=0 ]

over Z, where An+1
6=0 is the complement of the zero section in An+1 and Gm acts on An+1

6=0 by

(λ, (x0, . . . , xn)) 7−→ (λw0x0, . . . , λ
wnxn).

For every ring R, there is a groupoid of R-points of P(w). We will mostly be interested in
the set of isomorphism classes of this groupoid, which we call the set of R-points of P(w) and
denote by P(w)(R). Given a �eld L, the set P(w)(L) can be described as

P(w)(L) = L×\(Ln+1 \ {0}),

where L× acts on Ln+1 \ {0} by

(λ, (x0, . . . , xn)) 7−→ (λw0x0, . . . , λ
wnxn).

The image in P(w)(L) of an element x ∈ Ln+1 \ {0} will be denoted by [x].

Example 2.2. If w = (m) with m a positive integer, then P(m) is canonically isomorphic to
the classifying stack of the group scheme µm. If L is a �eld, then we have

P(m)(L) = (L×)m\L×.

3. Size functions

Let w be an (n + 1)-tuple as above, let K be a number �eld, and let OK be its ring of
integers. On the set P(w)(K), we de�ne a size function similarly to Deng [5]; we do not
restrict to weighted projective spaces that are �well-formed� in the sense of [5].

De�nition 3.1. For x ∈ Kn+1, the scaling ideal of x, denoted by Iw(x), is the intersection
of all fractional ideals a of OK satisfying x ∈ aw0 × · · · × awn . Similarly, for an (n + 1)-
tuple (b0, . . . , bn) of fractional ideals of OK , the scaling ideal of (b0, . . . , bn), denoted by
Iw(b0, . . . , bn), is the intersection of all fractional ideals a of OK satisfying bi ⊆ awi for all i.

Remark 3.2. For all x ∈ Kn+1 \ {0}, the fractional ideal Iw(x) is non-zero and satis�es

Iw(x)−1 = {a ∈ K | awixi ∈ OK for i = 0, . . . , n}.

Similarly, for every (n + 1)-tuple (b0, . . . , bn) of fractional ideals of OK , not all zero, the
fractional ideal Iw(b0, . . . , bn) is non-zero and satis�es

Iw(b0, . . . , bn)−1 = {a ∈ K | awibi ⊆ OK for i = 0, . . . , n}.

De�nition 3.3. Let ΩK,∞ denote the set of Archimedean places of K, and for each v ∈ ΩK,∞,
let | |v : K → R≥0 be the corresponding normalized absolute value. The Archimedean size on
Kn+1 \ {0} is the function

Hw,∞ : Kn+1 \ {0} −→ R>0

x 7−→
∏

v∈ΩK,∞

max
0≤i≤n

|xi|1/wi
v .
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De�nition 3.4. The size function on P(w)(K) is the function

Sw,K : P(w)(K) −→ R>0

[x] 7−→ N(Iw(x))−1Hw,∞(x).

It is straightforward to check that Sw,K([x]) does not depend on the choice of the represen-
tative x.

Example 3.5. If w = (m) with m a positive integer and x ∈ Z \ {0} is m-th power free, then
we have

S(m),Q([x]) = |x|1/m.

Remark 3.6. If L/K is an extension of number �elds, we have

S(1,...,1),L(x) = S(1,...,1),K(x)[L:K],

but for general weights w such a relation does not hold. For example, if w = (m) with m ≥ 2
and x ∈ Z \ {0} is m-th power free, then

S(m),Q([x]) = |x|1/m,

but

S(m),Q(x1/m)([x]) = S(m),Q(x1/m)([1]) = 1.

Theorem 3.7. Let n be a non-negative integer, let w = (w0, . . . , wn) be an (n + 1)-tuple
of positive integers, and let K be a number �eld. Let r1, r2, dK , hK , RK , µK and ζK be
the number of real places, number of non-real complex places, discriminant, class number,
regulator, number of roots of unity and Dedekind ζ-function of K, respectively. We write

|w| = w0 + w1 + · · ·+ wn,

µwK =
µK

gcd{w0, w1, . . . , wn, µK}
and

CwK =
hKRK

µwKζK(|w|)

(
2r1(2π)r2√
|dK |

)n+1

|w|r1+r2−1.

Then we have

#{x ∈ P(w)(K) | Sw,K(x) ≤ T} ∼ CwKT |w|.

Proof. This was proved by Deng [5, Theorem (A)] in the case where P(w) is well-formed, i.e.
each n elements from w are coprime. However, the proof works in general with only minor
changes: in the paragraph before [5, Proposition 4.2], the statement that the group of roots
of unity acts e�ectively has to be replaced by the statement that all orbits of points with
all coordinates non-zero contain µwK points, and the factor w (denoting the number of roots
of unity) in [5, Proposition 4.2, Proposition 4.5, Corollary 4.6 and Theorem (A)] has to be
replaced by µwK . �

In the remainder of this article, we will only consider weighted projective lines, i.e. one-
dimensional weighted projective spaces where the weight is given by a pair (w0, w1).
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4. Morphisms between weighted projective lines

Let u = (u0, u1), w = (w0, w1) be two pairs of positive integers. In this section, we classify
the morphisms of stacks from P(w) to P(u) over a �eld. These morphisms form a groupoid,
but for simplicity we will only be interested in the set of isomorphism classes of this groupoid,
or in other words the set of morphisms from P(w) to P(u).

We begin by proving two facts about morphisms P(w) → P(u) showing that they satisfy
similar properties as morphisms P1 → P1.

Lemma 4.1. Let u = (u0, u1), w = (w0, w1) be two pairs of positive integers. We consider
R = K[x0, x1] as a graded K-algebra where x0 and x1 are homogeneous of degrees w0 and w1,
respectively. Let Pu,w(K) be the set of pairs (f0, f1) ∈ R×R with the following properties:

(1) There exists e ∈ Z≥0 for which f0 and f1 are homogeneous of degrees eu0 and eu1,
respectively.

(2) The homogeneous ideal
√

(f0, f1) ⊆ R contains (x0, x1).

Let K× act on Pu,w(K) by c(f0, f1) = (cu0f0, c
u1f1). Then there is a natural bijection from

K×\Pu,w(K) to the set of morphisms P(w)→ P(u) sending the class of (f0, f1) ∈ Pu,w(K) to
the morphism induced by the ring homomorphism

K[y0, y1] −→ K[x0, x1]

y0 7−→ f0

y1 7−→ f1.

Proof. We apply Lemma A.3 to the following data over K:

• X = A2
6=0 with coordinates x = (x0, x1),

• Y = A2
6=0 with coordinates y = (y0, y1),

• G = Gm with coordinate g,
• H = Gm with coordinate h,
• a : G×X → X is the weight w action, given on points by a(g, x) = (gw0x0, g

w1x1),
• b : H × Y → Y is the weight u action, given on points by b(h, y) = (hu0y0, h

u1y1).

(Note that the lemma applies because the Picard group of X is trivial.) We �rst determine
the morphisms h : G × X → H satisfying the �cocycle condition� (7) from Lemma A.3. A
morphism h : G × X → H is given by a monomial of the form h(g, x) = λge with λ ∈ K×
and e ∈ Z, and h satis�es (7) if and only if λ = 1, i.e. h is of the form h(g, x) = ge. We now
determine the possible pairs (f, h) for a given such h. Every morphism f : X → Y is given
by a pair (f0, f1) ∈ R × R, and such a pair determines a morphism X → Y if and only if√

(f0, f1) contains (x0, x1). It is straightforward to check that condition (8) from Lemma A.3
translates to the condition that fj is homogeneous of degree euj for j = 0, 1. In particular,
morphisms f : X → Y such that (f, h) de�nes a morphism [G\X] → [H\Y ] only exist if
e ≥ 0; moreover, e and therefore h are uniquely determined by f . Finally, the group H(X) is
canonically isomorphic to K×, and if (f, h) is a pair as above where f is de�ned by (f0, f1),
and c ∈ H(X), then we have c(f, h) = (f ′, h) where f ′ is de�ned by (cu0f0, c

u1f1). The lemma
therefore follows from Lemma A.3. �

Remark 4.2. One can show that a morphism P(u) → P(w) is representable if and only if the
integer e from Lemma 4.1 satis�es

gcd(w0, e) = gcd(w1, e) = 1.
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Lemma 4.3. Let K be a �eld, let u, w be two pairs of positive integers, and let φ : P(w)K →
P(u)K be a non-constant representable morphism. Then φ is �nite.

Proof. By Lemma 4.1, the morphism φ is de�ned by a pair of homogeneous polynomials
f0, f1 ∈ K[x0, x1] with

√
(f0, f1) ⊇ (x0, x1). Since φ is non-constant, the polynomials f0

and f1 are non-constant, and hence we actually have
√

(f0, f1) = (x0, x1). We consider the
graded K-algebra R = K[x0, x1] and its graded subalgebra S = K[f0, f1], and we write
R+ = Rx0 + Rx1 and S+ = Sf0 + Sf1 for their homogeneous maximal ideals. Furthermore,
we put I = Rf0 + Rf1 = RS+. Then we have R+ ⊇ I and Rm+ ⊆ I for m su�ciently large.
Hence the graded ring R/I is a quotient of R/Rm+ and is therefore �nite-dimensional as a
K-vector space. Choose homogeneous elements g1, . . . , gr ∈ R such that their images in R/I
are a K-basis of R/I. In particular, the gi generate R/I = R/RS+ over S, so we have

R = RS+ + Sg1 + · · ·+ Sgr.

Hence the Z≥0-graded S-module M = R/(Sg1 + · · · + Sgr) satis�es S+M = M . It follows
from a variant of Nakayama's lemma (see for example Eisenbud [6, Exercise 4.6]) that M = 0
and hence R = Sg1 + · · ·+Sgr. We conclude that K[x0, x1] is �nitely generated as a K[f0, f1]-
module. Thus we have a commutative diagram

(A2
6=0)K

%% **

(f0,f1)

��

T //

��

P(w)K

φ

��

(A2
6=0)K // P(u)K

in which the square (where T is by de�nition the �bre product, which is a scheme by the
representability of φ) is Cartesian and the leftmost morphism is �nite. The last two conditions
imply that the morphism T → (A2

6=0)K , and therefore φ, is �nite. �

Corollary 4.4. With the notation of Lemma 4.3, let V ⊆ P(w)K be a dense open substack.
Then P(w)K is the integral closure of P(u)K in V .

Proof. By Lemma 4.3, the morphism φ is �nite and in particular integral. Furthermore, P(w)K
is normal because K[x0, x1] is integrally closed. This proves the claim. �

5. Some results on scaling ideals

Let K be a number �eld. We prove two elementary results about scaling ideals.

Lemma 5.1. Let w = (w0, w1) be a pair of positive integers. We consider K[x0, x1] as a
graded K-algebra by assigning weight wi to xi. Let f ∈ K[x0, x1] be homogeneous of degree d.
Let a(f) be the fractional ideal generated by the coe�cients of f . Then for all z ∈ K2, we
have

f(z) ∈ a(f)Iw(z)d.

Proof. We abbreviate

m = Iw(z),
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so we have z0 ∈ mw0 and z1 ∈ mw1 . We write

f =
∑
k0,k1

ak0,k1x
k0
0 x

k1
1

where the sum ranges over all pairs (k0, k1) of non-negative integers such that k0w0+k1w1 = d,
and ak0,k1 ∈ K. We now compute

f(z0, z1) =
∑
k0,k1

ak0,k1z
k0
0 zk11

∈
∑
k0,k1

ak0,k1(mw0)k0(mw1)k1

=
∑
k0,k1

ak0,k1m
d

= a(f)md,

which proves the claim. �

Lemma 5.2. Let z ∈ K, and let

h = xd + c1x
d−1 + · · ·+ cd ∈ K[x]

be a monic polynomial such that h(z) = 0. Suppose b1, . . . , bd are fractional ideals of K such
that ci ∈ bi for all i. Then we have

z ∈ I(1,...,d)(b1, . . . , bd).

Proof. If all the bi are zero, then z vanishes and the claim is trivial. Now assume not all of
the bi are zero. We write

a = I(1,...,d)(b1, . . . , bd)
−1 = {a ∈ K | ab1, a

2b2, . . . , a
dbd ⊆ OK}.

Then for all a ∈ a we have

0 = adh(z) = (az)d + (ac1)(az)d−1 + · · ·+ (adcd).

By assumption, each aici lies in a
ibi and hence in OK . This shows that az is integral over OK .

Thus we have az ⊆ OK and hence z ∈ a−1. �

6. Behaviour of size functions under morphisms

Let K be a number �eld. Let w = (w0, w1) and u = (u0, u1) be two pairs of positive
integers, and let φ : P(w)K → P(u)K be a non-constant morphism. Our goal in this section
will be to study how the size of a point in P(w)(K) relates to the size of its image under φ.

By Lemma 4.1, the morphism φ is de�ned by a pair of non-constant homogeneous polyno-
mials f0, f1 ∈ K[x0, x1] of degrees eu0 and eu1, respectively, for some positive integer e. For
i ∈ {0, 1}, let ai be the fractional ideal generated by the coe�cients of fi.

Lemma 6.1. For all z ∈ K2, we have

Iu(f(z)) ⊆ Iu(a0, a1)Iw(z)e.



8 PETER BRUIN AND FILIP NAJMAN

Proof. We abbreviate

m = Iw(z).

Since fi is homogeneous of degree eui, Lemma 5.1 gives

fi(z) ∈ aim
eui .

It follows that

Iu(f(z)) ⊆ Iu(a0m
eu0 , a1m

eu1) = Iu(a0, a1)me,

which proves the claim. �

For i ∈ {0, 1}, we write the rational number wi/e in reduced form as

wi
e

=
νi
δi

with νi, δi coprime positive integers.
By integrality of K[x0, x1] over K[f0, f1], there are integers di > 0 and polynomials gi,j ∈

K[y0, y1] (for i = 0, 1 and j = 1, . . . , di) satisfying

(1) xdii + gi,1(f0, f1)xdi−1
i + · · ·+ gi,di(f0, f1) = 0 in K[x0, x1].

After taking homogeneous components of degree diwi, we may and do assume that each
gi,j(f0, f1) is homogeneous of degree jw1. After dividing by a power of xi if necessary, we may
and do also assume gi,di 6= 0. We write

gi,j =
∑

k0,k1≥0
e(k0u0+k1u1)=jwi

γi,j,(k0,k1)y
k0
0 y

k1
1 with γi,j,(k0,k1) ∈ K.

In particular, if gi,j 6= 0, then e divides jwi, so j is a multiple of the denominator of wi/e;
in other words, there is a positive integer l with j = lδi. Since we have ensured that gi,di is
non-zero, we obtain in particular a positive integer mi with

di = miδi,

and all j for which gi,j does not vanish are of the form j = lδi with 1 ≤ l ≤ mi. We can
therefore rewrite (1) as

(2) xmiδi
i +

mi∑
l=1

gi,lδi(f0, f1)x
(mi−l)δi
i = 0 in K[x0, x1]

and note that

gi,lδi =
∑

k0,k1≥0
k0u0+k1u1=lνi

γi,lδj ,(k0,k1)y
k0
0 y

k1
1 .

For i ∈ {0, 1} and 1 ≤ l ≤ mi, we write ci,l for the fractional ideal generated by the coe�cients
of gi,lδi , i.e.

ci,l = (γi,lδi,(k0,k1) | k0, k1 ≥ 0, k0u0 + k1u1 = lνi).

For i ∈ {0, 1}, we write
di = I(1,...,mi)(ci,, . . . , ci,mi).

Lemma 6.2. For all z ∈ K2 and i ∈ {0, 1}, we have

zδii ∈ diIu(f(z))νi .
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Proof. For i = 0, 1 and l = 0, . . . ,mi, we write

ci,l = gi,lδi(f(z)) ∈ K.

Substituting (x0, x1) = (z0, z1) in (2), we obtain

(zδii )mi +

mi∑
l=1

ci,l(z
δi
i )mi−l = 0 for i = 0, 1.

We abbreviate

m = Iu(f(z)).

Since gi,lδj is homogeneous of degree lνi, Lemma 5.1 gives

ci,l ∈ ci,lm
lνi .

Applying Lemma 5.2, we obtain

zδii ∈ I(1,...,mi)(ci,1m
νi , . . . , ci,mim

miνi) for i = 0, 1.

The ideal on the right-hand side equals I(1,...,mi)(ci,1, . . . , ci,mi)m
νi = dim

νi . �

Corollary 6.3. For all (z0, z1) ∈ K2 and i ∈ {0, 1}, we have

I(ν0,ν1)(z
δ0
0 , z

δ1
1 ) ⊆ I(ν0,ν1)(d0, d1)Iu(f(z)).

Theorem 6.4. Let K be a number �eld, let u, w be two pairs of positive integers, and let
φ : P(w)K → P(u)K be a non-constant morphism. Let e be as in Lemma 4.1, and for i = 0, 1
write wi/e = νi/δi with νi, δi coprime positive integers. Then for all z ∈ P(w)(K), we have

Su(φ(z))� Sw(z)e

and

Su(φ(z))� S(ν0,ν1)(z
δ0
0 , z

δ1
1 ),

where the implied constants depend only on K, u, w and φ.

Proof. We apply Lemma 4.1, which gives us homogeneous polynomials f0, f1 ∈ K[x0, x1] such
that φ is de�ned by (f0, f1). For every Archimedean place v of K, the set P(w)(Kv) of points
of P(w) over the completion Kv of K at v is in a natural way a compact topological space.
We consider the function

qv : P(w)(Kv) −→ R>0

z 7−→ max0≤i≤1 |fi(z)|1/uiv

max0≤i≤1 |zi|e/wi
v

.

Using the de�nitions of the size functions and the qv, we compute

Su(φ(z))

Sw(z)e
=

N(Iu(f(z)))−1Hu,∞(f(z))

N(Iw(z))−eHw,∞(z)e

= N
(
Iw(z)eIu(f(z))−1

) ∏
v∈ΩK,∞

qv(z)
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and

Su(φ(z))

S(ν0,ν1)(z
δ0
0 , z

δ1
1 )

=
N(Iu(f(z)))−1Hu,∞(f(z))

N(I(ν0,ν1)(z
δ0
0 , z

δ1
1 ))−1H(ν0,ν1),∞(zδ00 , z

δ1
1 )

= N
(
I(ν0,ν1)(z

δ0
0 , z

δ1
1 )Iu(f(z))−1

) ∏
v∈ΩK,∞

qv(z).

Let ai, di (i = 0, 1) be the fractional ideals de�ned earlier. By Lemma 6.1, we have

Iw(z)eIu(f(z))−1 ⊇ Iu(a0, a1)−1,

and hence

N
(
Iw(z)eIu(f(z))−1

)
≤ N(Iu(a0, a1))−1.

By Corollary 6.3, we have

I(ν0,ν1)(z
δ0
0 , z

δ1
1 )Iu(f(z))−1 ⊆ I(ν0,ν1)(d0, d1),

and hence

N
(
I(ν0,ν1)(z

δ0
0 , z

δ1
1 )Iu(f(z))−1

)
≥ N(I(ν0,ν1)(d0, d1)).

Finally, for each v ∈ ΩK,∞, the function qv : P(w)(Kv) → R>0 is bounded by compactness.
From this the theorem follows. �

Corollary 6.5. In the setting of Theorem 6.4, suppose e = 1 or w = (1, 1) holds. Then for
all z ∈ P(w)(K), we have

Su(φ(z)) � Sw(z)e,

where the implied constants depend only on K, u, w and φ.

Proof. First suppose e = 1. Then we have δi = 1 and νi = wi for i ∈ {0, 1}, and hence

Sν0,ν1(zδ00 , z
δ1
1 ) = Sw(z) = Sw(z)e.

Next suppose w = (1, 1). Then we have δi = e and νi = 1 for i ∈ {0, 1}, and hence

S(ν0,ν1)(z
δ0
0 , z

δ1
1 ) = S(1,1)(z

e
0, z

e
1) = S(1,1)(z0, z1)e = Sw(z)e.

In both cases, Theorem 6.4 gives the result. �

Remark 6.6. The conditions �e = 1 or w = (1, 1)� in Corollary 6.5 are similar to the condition
�n = 1 or m = 1� in [8, Proposition 2.1].

Remark 6.7. By Remark 4.2, the assumption e = 1 or w = (1, 1) implies that every morphism
satisfying the conditions of Corollary 6.5 is representable. However, the conclusion of Corol-
lary 6.5 no longer holds when �e = 1 or w = (1, 1)� is weakened to �φ is representable�. For
example, take u = (1, 3) and w = (1, 3), and consider the morphism

φ : P(1, 3) −→ P(1, 3)

(x0, x1) 7−→ (x2
0, x

2
1),

which has e = 2 and is therefore representable. For all primes p, taking x = (p, p2) ∈
P(1, 3)(Q), we get

Sw(x) = S(1,3)(p, p
2) = p,

Su(φ(x)) = S(1,3)(p
2, p4) = S(1,3)(p, p) = p.
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On the other hand, for all primes p, taking x = (1, p) ∈ P(1, 3)(Q), we get

Sw(x) = S(1,3)(1, p) = p1/3,

Su(φ(x)) = S(1,3)(1, p
2) = p2/3.

This shows that the ratio between Su(φ(x)) and any �xed power of Sw(x) is unbounded as x
varies.

7. Points of bounded size on modular curves

Let Y (1) be the moduli stack over Q of elliptic curves. There is an open immersion

ι : Y (1) ↪→ P(4, 6)Q

de�ned as follows: given an elliptic curve E over a Q-scheme S, then Zariski locally on S we
can choose a non-zero di�erential ω and de�ne

ι(E) = (c4(E,ω), c6(E,ω)),

where c4 and c6 are de�ned in the usual way. A di�erent choice of ω gives the same point of
P(4, 6)Q, so ι is well de�ned.

De�nition 7.1. Let K be a number �eld. Using the morphism ι, we de�ne the size function

SK : Y (1)(K) −→ R>0

as the composition

Y (1)(K)
ι(K)−→ P(4, 6)(K)

S(4,6),K−→ R>0.

Remark 7.2. If E is given in short Weierstrass form as

E : y2 = x3 + ax+ b,

then we have
ι(E) = (−48a,−864b)

and hence
SK(E) = S(4,6),K(−48a,−864b) � max{|a|1/4, |b|1/6}.

This shows that if E is an elliptic curve over Q, then the ratio between SQ(E)12 and the height
of E as de�ned in [8] is bounded from above and below by a constant.

Now let n be a positive integer, and let G be a subgroup of GL2(Z/nZ). Let KG be the

sub�eld of the cyclotomic �eld Q(ζn) �xed by G, where G acts on Q(ζn) by (g, ζn) 7→ ζdet g
n .

Let YG be the moduli stack of elliptic curves with G-level structure, viewed as an algebraic
stack over KG. There is a canonical morphism of stacks

πG : YG → Y (1)KG
.

Let K be a �nite extension of KG. We de�ne

EG,K = {elliptic curves admitting a G-level structure over K}/∼=
and

NG,K(X) = #{E ∈ EG,K | SK(E) ≤ X}.

Lemma 7.3. Let n be a positive integer, let G be a subgroup of GL2(Z/nZ), and let w be a
pair of positive integers. The following are equivalent:
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(1) There is a commutative diagram

YG
ιG
//

πG
��

P(w)KG

φ

��

Y (1)KG

ι
// P(4, 6)KG

of algebraic stacks over KG, where ιG is an open immersion and φ is representable.
(2) The integral closure of X(1) = P(4, 6) in the function �eld of YG is isomorphic to

P(w).
(3) The moduli space of generalized elliptic curves with G-level structure is isomorphic to

P(w).

Proof. The equivalence of (2) and (3) follows from the fact that the integral closure from (2) is
canonically isomorphic to the moduli space of generalized elliptic curves with G-level structure
[4, IV, Théorème 6.7(ii)].

The implication (2) =⇒ (1) follows from the fact that the integral closure of X(1) in the
function �eld of YG �ts in a commutative diagram as above.

The implication (1) =⇒ (2) follows from Corollary 4.4 applied to V = ιG(YG). �

Remark 7.4. For a group G satisfying the equivalent conditions of Lemma 7.3, the coarse
moduli space of XG is isomorphic to P1. The converse does not hold; for example, the coarse
moduli space of X0(3) is isomorphic to P1, but X0(3) itself is not a weighted projective line.

Remark 7.5. The equivalent conditions of Lemma 7.3 hold if the gradedKG-algebra of modular
forms for G is generated by two homogeneous elements. Over C, the groups for which this
happens were classi�ed by Bannai, Koike, Munemasa and Sekiguchi [1].

Theorem 7.6. Let n be a positive integer, and let G be a subgroup of GL2(Z/nZ). Let KG be

the �xed �eld of the action of G on Q(ζn) given by (g, ζn) 7→ ζdet g
n . Assume that G satis�es the

equivalent conditions of Lemma 7.3 for a pair (w0, w1) of positive integers, and let e be as in
Lemma 4.1. Furthermore, assume e = 1 or w = (1, 1) holds. Then for every �nite extension
K of KG, we have

NG,K(X) � X1/d(G,K) as X →∞,
where

d(G,K) =
12e

w0 + w1
.

Proof. Using the commutative diagram of Lemma 7.3 and noting that for counting purposes
we may ignore the cusps (cf. [5, Remark 6.2]), we obtain

NG,K(X) � #{z ∈ P(w)(K) | S(4,6)(φ(z))12 ≤ X}.

By Corollary 6.5 (with u = (4, 6)), the quotient S(4,6)(φ(z))/Sw(z)e is bounded. This implies

NG,K(X) � #{z ∈ P(w)(K) | Sw(z) ≤ X1/(12e)}.

Applying Theorem 3.7, we obtain

NG,K(X) � X(w0+w1)/(12e).

This proves the claim. �
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8. Examples

The groups corresponding to the 15 torsion groups from Mazur's theorem satisfy the condi-
tions of Lemma 7.3. In Table 1, we list these groups and a few more satisfying these conditions.

G Γ [SL2(Z) : Γ] (w0, w1) e d

G1(1) Γ(1) = SL2(Z) 1 (4, 6) 1 6/5

G1(2) Γ1(2) = Γ0(2) 3 (2, 4) 1 2

G1(3) Γ1(3) 8 (1, 3) 1 3

G1(4) Γ1(4) 12 (1, 2) 1 4

G1(5) Γ1(5) 24 (1, 1) 1 6

G1(6) Γ1(6) 24 (1, 1) 1 6

G1(7) Γ1(7) 48 (1, 1) 2 12

G1(8) Γ1(8) 48 (1, 1) 2 12

G1(9) Γ1(9) 72 (1, 1) 3 18

G1(10) Γ1(10) 72 (1, 1) 3 18

G1(12) Γ1(12) 96 (1, 1) 4 24

G(2, 2) Γ(2) 6 (2, 2) 1 3

G(2, 4) Γ(2, 4) 24 (1, 1) 1 6

G(2, 6) Γ(2, 6) 48 (1, 1) 2 12

G(2, 8) Γ(2, 8) 96 (1, 1) 4 24

G0(4) Γ0(4) 6 (2, 2) 1 3

G(4, 4) Γ(4) 48 (1, 1) 2 12

G0(8) ∩G1(4) Γ0(8) ∩ Γ1(4) 24 (1, 1) 1 6

G(3, 3) Γ(3) 24 (1, 1) 1 6

G(3, 6) Γ(3, 6) 72 (1, 1) 3 18

G0(9) ∩G1(3) Γ0(9) ∩ Γ1(3) 24 (1, 1) 1 6

G(5, 5) Γ(5) 120 (1, 1) 5 30

Table 1. Some groups satisfying the conditions of Lemma 7.3. The �rst 15
groups are those appearing in Mazur's theorem.

In Table 1 we use the following notation: for positive integers m | n we write

G(m,n) =

{
g ∈ GL2(Z/nZ)

∣∣∣∣ g =

(
∗ ∗
0 1

)
and g ≡

(
∗ 0

0 1

)
(mod m)

}
.

We also put

G1(n) = G(1, n)
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and

G0(n) =

{
g ∈ GL2(Z/nZ)

∣∣∣∣ g =

(
∗ ∗
0 ∗

)}
.

For each group we give its inverse image Γ under the canonical group homomorphism SL2(Z)→
GL2(Z/nZ), the index of Γ in SL2(Z), the weights of the corresponding weighted projective
line, and the values e and d. The �rst 12 groups can also be found in [9, Examples 2.1 and
Example 2.5], and the 12 groups with e = 1 can also be found in [1, Table 1]. By construction,
for all groups G in the table, the determinant G → (Z/nZ)× is surjective, hence the index
[GL2(Z/nZ) : G] equals [SL2(Z) : Γ], and KG equals Q. Furthermore, we note that the
numbers e and d can be expressed as

e =
w0w1

24
[SL2(Z) : Γ],

d =
w0w1

2(w0 + w1)
[SL2(Z) : Γ].

9. Future work

It would be interesting to obtain a result similar to the one we obtain here for moduli
stacks of elliptic curves that are of the form P(2) × P(1, 1). An example of such a moduli
stack is X0(6), so such a result would enable one to count the number of elliptic curves with
a 6-isogeny over any number �eld.

Another direction that seems worth investigating is to count points of a moduli stack of the
form P(w) directly with respect to the pull-back of the size function from X(1), rather than
�rst relating this pull-back to the standard size function on P(w). This will require extending
the work of Deng [5], but is conceptually simpler than the approach we have taken here.

Finally, the size functions on weighted projective stacks that we use in this paper look
similar to the height functions on algebraic stacks de�ned by Ellenberg, Satriano and Zureick-
Brown [7]. The latter work was recently used by Boggess and Sankar [2] to count elliptic curves
over Q with a rational n-isogeny for n ∈ {2, 3, 4, 5, 6, 8, 9}, as mentioned in the introduction.
It seems likely that our size functions are a special case of the height functions of [7], and it
would be interesting to verify this.

Appendix A. Morphisms between quotient stacks

In this appendix we assume some knowledge of stacks. We place ourselves in the following
situation. Let S be a scheme, let G and H be two group schemes over S, let X and Y be two
S-schemes, let a : G×S X → X be an action of G on X, and let b : H ×S Y → Y be an action
of H on Y . We consider the quotient stacks [G\X] and [H\Y ], writing quotients on the left
because a and b are left actions. We seek an explicit description of the groupoid of morphisms
[G\X]→ [H\Y ] of stacks over (the fppf site of) S.

LetmG : G×SG→ G andmH : H×SH → H be the group operations. Let p2 : G×SX → X
be the second projection, and let p2,3 : G ×S G ×S X → G ×S X be the projection onto the
second and third factors. For any X-scheme Q, let p̃2, ã be the canonical morphisms appearing



COUNTING ELLIPTIC CURVES WITH PRESCRIBED LEVEL STRUCTURES OVER NUMBER FIELDS 15

in the pull-back diagrams

p∗2Q
p̃2

//

��

Q

��

G×S X p2
// X,

a∗Q
ã

//

��

Q

��

G×S X a
// X.

Lemma A.1. Let Y be a stack in groupoids over S. Then the groupoid of morphisms [G\X]→
Y is canonically equivalent to the following groupoid. The objects are the pairs (T, j) where

T is an object of YX and j is a descent datum for T , i.e. an isomorphism j : a∗T
∼−→ p∗2T

over G×S X such that the diagram

(mG × idX)∗a∗T ∼
(mG×idX)∗j

//

∼
��

(mG × idX)∗p∗2T ∼
// p∗2,3p

∗
2T

(idG×a)∗a∗T ∼
(idG×a)∗j

// (idG×a)∗p∗2T ∼
// p∗2,3a

∗T

∼ p∗2,3j

OO

is commutative. The morphisms from (T, j) to (T ′, j′) are the isomorphisms ξ : T
∼−→ T ′

over X such that the diagram

a∗T ∼
ι
//

∼a∗ξ
��

p∗2T

∼ p∗2ξ

��

a∗T ′ ∼
ι′
// p∗2T

′

is commutative.

Proof (sketch). This follows from the description of morphisms from the quotient stack [G\X]
to Y given in [12, tag 044U] and the canonical equivalence between the groupoid of morphisms
from the stack represented by X to Y and the �bre category YX . �

Lemma A.2. The groupoid of morphisms [G\X] → [H\Y ] is canonically equivalent to the
following groupoid. The objects are the triples (Q,φ, ι) consisting of an H-torsor Q over X,

an H-equivariant morphism φ : Q→ Y of S-schemes and an isomorphism ι : a∗Q
∼−→ p∗2Q of

H-torsors over G×S X such that the diagrams

(3) a∗Q
ã
//

∼ι

��

Q
φ
// Y

p∗2Q
p̃2
// Q

φ

@@

and

(4) (mG × idX)∗a∗Q ∼
(mG×idX)∗ι

//

∼
��

(mG × idX)∗p∗2Q∼
// p∗2,3p

∗
2Q

(idG×a)∗a∗Q ∼
(idG×a)∗ι

// (idG×a)∗p∗2Q ∼
// p∗2,3a

∗Q

∼ p∗2,3ι

OO
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are commutative. The morphisms (Q,φ, ι)→ (Q′, φ′, ι′) are the isomorphisms τ : Q
∼−→ Q′ of

H-torsors over X such that the diagrams

(5) Q

τ ∼
��

φ
// Y

Q′
φ′

??

and

(6) a∗Q ∼
ι
//

∼a∗τ
��

p∗2Q

∼ p∗2τ

��

a∗Q′ ∼
ι′
// p∗2Q

′

are commutative.

Proof. We apply Lemma A.1 with Y = [H\Y ]. Using the explicit description of [H\Y ] given
in [12, tag 04UV], we view objects of [H\Y ] over X as pairs (Q,φ) consisting of an H-
torsor Q over X and an H-equivariant morphism φ : Q → Y of S-schemes. The morphisms
(Q,φ) → (Q′, φ′) are the isomorphisms τ : Q

∼−→ Q′ of H-torsors over X such that the

diagram (5) is commutative. Similarly, an isomorphism a∗(Q,φ)
∼−→ p∗2(Q,φ) over G ×S X

is an isomorphism ι : a∗Q
∼−→ p∗2Q of H-torsors over G ×S X such that the diagram (3) is

commutative. Such an isomorphism is a descent datum for (Q,φ) if and only if the diagram (4)
is commutative. Finally, the commutativity of the last diagram in Lemma A.1 translates to
the commutativity of (6). �

To state the next corollary, we recall the following. Given a left action of a group Γ on
a set Z, the quotient groupoid Γ \\ Z is the following groupoid: the set of objects is Z, the
morphisms z → z′ are the elements γ ∈ Γ with γz = z′, and composition of morphisms is the
group operation in Γ. The set of isomorphism classes of Γ \\ Z is just the quotient set Γ\Z.

Lemma A.3. In the above situation, assume in addition that all H-torsors on X are trivial.
Let Z be the set of pairs (f : X → Y, h : G×S X → H) of morphisms of S-schemes such that
for all S-schemes T , all x ∈ X(T ) and all g, g′ ∈ G(T ) we have

(7) h(g′g, x) = h(g′, gx)h(g, x)

and

(8) f(a(g, x)) = b(h(g, x), f(x)).

Let the group H(X) act on Z by

(c, (f, h)) 7→ (f ′, h′),

where f ′ and h′ are de�ned on points as follows: for all S-schemes T , all x ∈ X(T ) and all
g ∈ G(T ) we have

f ′(x) = b(c(x), f(x))

and

h′(g, x) = c(a(g, x))−1h(g, x)c(x).
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Then the groupoid of morphisms [G\X] → [H\Y ] is canonically equivalent to the quotient
groupoid H(X) \\Z. In particular, there is a natural bijection between the set of isomorphism
classes of such morphisms and the quotient set H(X)\Z.

Proof. In the groupoid described by Lemma A.2, we take the full subcategory with objects of
the form (H ×S X,φ, ι). In this setting, φ can be written as

φ(h, x) = hf(x)

for a unique morphism f : X → Y , namely f(x) = φ(1, x). Furthermore, we can identify both

p∗2Q and a∗Q with H ×S G ×S X, so ι : H ×S G ×S X
∼−→ H ×S G ×S X corresponds to

multiplication by an element h ∈ H(G ×S X). Finally, an isomorphism τ as in Lemma A.2
corresponds to multiplication by an element c ∈ H(X).

From this one can deduce that the groupoid of morphisms [G\X] → [H\Y ] is canonically
equivalent to the following groupoid. The objects are pairs (f : X → Y, h : G ×S X → H) of
morphisms of S-schemes such that the diagrams

G×S X
a

//

(h,f◦p2)
��

X

f
��

H ×S Y
b

// Y

and

G×S G×S X
mG×idX

//

(idG×a,p2,3)
��

G×S X
h

// H

(G×S X)×S (G×S X)
(h,h)

// H ×S H
mH

;;

are commutative. On T -valued points, the commutativity of these diagrams comes down to
(8) and (7), respectively, so the pairs (f, h) as above are precisely the elements of Z. The
morphisms (f, h)→ (f ′, h′) are morphisms c : X → H of S-schemes such that the diagrams

X

(c,f)
��

f ′
// Y

H × Y
b

;;

and

G×S X
(c◦a,h′)

//

(h,c◦p2)
��

H ×H
mH

��

H ×H mH

// H

are commutative. Therefore the morphisms (f, h) → (f ′, h′) correspond to the elements of
H(Z) sending (f, h) to (f ′, h′) under the given action of H(X) on Z. �

Acknowledgments. We are grateful to Pieter Moree for his e�ort in organizing our collaboration
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