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Abstract

In this note we improve an algorithm from a recent paper by Bauer
and Bennett for computing a function of Erdös that measures the mini-
mal gap size f(k) in the sequence of integers at least one of whose prime
factors exceeds k. This allows us to compute values of f(k) for larger
k and obtain new values of f(k).
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1 Introduction

For any integer m we let P (m) be the largest prime factor of m with the
convention P (0) = P (±1) = 1. Let Πn,k be the product of k consecutive
integers, starting with n, i.e.

Πn,k = n(n+ 1) · · · (n+ k − 1).

By a theorem of Sylvester (see [15]) Πn,k is divisible by a prime p > k, and
thus, following Erdös [7], we define f(k) to be the least integer with the
property that

P
(
Πn,f(k)

)
> k.

Standard heuristics for the size of gaps between consecutive primes lead one
to expect that order of magnitude of f(k) is (log k)2.

The following table gives known values of f(k):

k f(k) k f(k) k f(k)
1 1 13− 40 6 61− 113 14
2 2 41− 46 7 114 13

3− 4 3 47− 58 8 115− 150 12
5− 12 4 59− 60 9 151− 178 14

The values of f(k) for k ≤ 10 were computed by Utz [16] and extended to
k ≤ 42 by Lehmer [11], to k ≤ 46 by Ecklund and Eggleton [4], to k ≤ 73
by Ecklund, Eggleton and Selfridge [5], [6] and finally to k ≤ 178 by Bauer
and Bennett [1]. Bauer and Bennett in the same paper also disproved an
assertion of Utz that f is monotone.

In this paper we compute the values of f(k) for k ≤ 268. Our results
can be summarized in the following theorem.
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Theorem 1. For 179 ≤ k ≤ 268 the values of f(k) are as follows:

k f(k)
179− 222 14
223− 268 16

Note that Bauer and Bennett, although greatly extending the set of k
such that f(k) is known, by 105 values of k, did not find any values of f(k)
such that f(k) > 14. In Theorem 1 we find the new largest proven value of
f(k), the first after nearly 40 years (the previous being [6]).

2 The algorithm

Lemher [10] searched for two consecutive smooth integers, satisfying P (z(z+
1)) ≤ pt, where pt is the t-th prime. One can write x = 2z + 1, and see
that P (z(z + 1)) ≤ pt iff P (x2 − 1) ≤ pt. Writing x2 − 1 = dy2, where d is
squarefree, this leads to the Pell equation

x2 − dy2 = 1, (1)

where P (dy) ≤ pt. This implies that the solutions x+ y
√
d we are searching

for are powers of the fundamental solution u+ v
√
d, i.e

x+ y
√
d = (u+ v

√
d)n.

By classic results on primitive divisors (see [3]) and the work of Lehmer (see
[9]) if we want P (y) ≤ pt, then

n ≤ max
{
pt + 1

2
, 12
}
.

Thus one needs to consider only finitely many Pell equations and for each
one only some of the first solutions.

After finding all pairs of smooth consecutive integers in this way, one can
search through the results and find larger strings of consecutive integers.

Bauer and Bennett [1] improve on this strategy by the following clever
argument: for fixed m ≤ 3 and t suppose we are searching for all integers n
satisfying

P (Πn,m) ≤ pt. (2)

We can split the indices 0, . . . ,m − 1 into bm4 c + bm+1
4 c disjoint pairs

(i, i + 2), where i ≡ 0, 1 (mod 4). Set t0 = π(m − 1). By the Dirichlet
principle, we can find an index i such that (n+ i)(n+ i+ 2) is divisible by
at most

N =

⌊
t− t0

bm4 c+ bm+1
4 c

⌋
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of the primes from the set

{pt0+1, . . . , pt}. (3)

Now one writes X = n+ i+ 1 and Y = (n+ i)(n+ i+ 2), and gets

X2 −DY 2 = 1,

where D is squarefree and divisible only by some of the first t0 primes and
at most N of the primes from the set (3). Then one proceeds exactly as
Lehmer, with the difference that in this approach P (X) ≤ pt also has to
hold. This lowers the number of Pell equations one needs to consider from
2t − 1 to

M = −1 + 2t0

N∑
j=0

(
t− t0
j

)
,

and equally important, reduces the size of the Pell equations.
The bottleneck of both the algortihms of Lehmer and Bauer and Bennett

is solving the Pell equaiton. The main difficulty in solving the Pell equaiton
is the size of the solutions, as it grows exponentially in respect to the size of
the coefficient d form (1). This means that just writing down the solution
in standard representation takes exponential time. In [12], Luca and the
author used compact representations of the solutions to the Pell equations
to overcome this difficulty and managed to extend Lehmer’s results (see
also [14] for another application of this approach). Note that the algorithm
described in [12] is still the best up to date if one wants to find 2 or 3
consecutive smooth integers.

A compact representation of an algebraic number β ∈ Q(
√
d) is a repre-

sentation of β of the form

β =
k∏

j=1

(
αj

dj

)2k−j

, (4)

where dj ∈ Z, αj = (aj + bj
√
d)/2 ∈ Q(

√
d), aj , bj ∈ Z, j = 1, . . . , k, and k,

α and dj have O(log d) digits. A detailed description of compact representa-
tions and their use can be found in [8]. Using compact representations, the
Pell equation is solved in two steps. First, the regulator of the apropriate
quadratic field is computed, and after that from the regulator a compact
representation is obtained. As, once the regulator is known, one can obtain
a compact representation in polynomial time, by far the harder part of this
process is the computation of the regulator. The fastest unconditional algo-
rithms are still exponential in respect to d and the fastest known algorithm,
Buchmann’s subexponential algorithm (see [2]) depends on the Generalized
Riemann Hypothesis.
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For our purposes, the only algorithm fast enough is Buchmann’s algo-
rithm. We will perform a simple check, using continued fractions, that will
for each case tell us either that the output of Buchmann’s algorithm is un-
conditionally correct or that we can disregard this case. In other words,
although we cannot unconditionally solve the Pell equation in subexponen-
tial time, we can determine unconditionally whether it has a smooth solution
(and find any smooth solutions) in subexponential time. This removes the
dependence of our results on the Generalized Riemann Hypothesis. This
check is explained in detail in [12] in step 6 on page 5, and for this reason
we will not repeat it here.

Using compact representation cuts down the space needed from expo-
nential to polynomial in respect to d and the time needed to solve the Pell
equation from exponential to subexponential.

In essence, our algorithm combines the clever approach of [1] and the
powerful methods for finding smooth solutions of the Pell equations from
[12].

3 Results

We run our algorithm for two pairs of parameters (m, t), these pairs being
(47, 14), and (56, 16). Note thet p47 = 211, p56 = 263 and P (Π318,13) = 163,
P (Π1330,15) = 223, implying

f(k) ≥ 14 for 178 ≤ k ≤ 222 and f(k) ≥ 16 for 224 ≤ k ≤ 268 (5)

By proving that there is no integer n > k for 178 ≤ k ≤ 222 satisfying
P (Πn,14) ≤ k implies f(k) = 14 for 178 ≤ k ≤ 222. In the same way one
proves that f(k) = 16 for 224 ≤ k ≤ 268.

The case (m, t) = (47, 14) makes us solve

M1 = −1 + 26
6∑

j=0

(
41
j

)
= 342948991

Pell equaitons, while the case (m, t) = (56, 16) makes us solve

M2 = −1 + 26
6∑

j=0

(
50
j

)
= 1168680703

Pell equaitons.
We obtain that there do not exist such integers n, thus proving Theorem

1.
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