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Abstract. We say a closed point x on a curve C is sporadic if there are only finitely many points
on C of degree at most deg(x). In the case where C is the modular curve X1(N), most known
examples of sporadic points come from elliptic curves with complex multiplication (CM). We seek
to understand all sporadic points on X1(N) corresponding to Q-curves, which are elliptic curves
isogenous to their Galois conjugates. This class contains not only all CM elliptic curves, but also
any elliptic curve Q-isogenous to one with a rational j-invariant, among others. In this paper, we
show that all non-CM Q-curves giving rise to a sporadic point of odd degree lie in the Q-isogeny
class of the elliptic curve with j-invariant −140625/8. In addition, we show that a stronger version
of this finiteness result would imply Serre’s Uniformity Conjecture.

1. Introduction

Let E be an elliptic curve defined over a number field F . By the Mordell-Weil Theorem, the set
of points on E with coordinates in F is a finitely generated abelian group. That is, there exists a
finite abelian group E(F )tors and nonnegative integer r such that

E(F ) ∼= E(F )tors × Zr.

A standard classification problem is to describe the groups that arise as E(F )tors as E ranges over
all number fields F of a fixed degree d. In general, there are only finitely many possible torsion
subgroups that appear—a consequence of Merel’s Uniform Boundedness Theorem [49]—and the
list of groups is known explicitly for degrees 1 ≤ d ≤ 3; see [47, 34, 41, 35, 20]. For example, the
possible torsion subgroups of elliptic curves over Q are given by the following theorem:

Theorem 1.1 (Mazur, [47]). If E/Q is an elliptic curve, then E(Q)tors is isomorphic to one of
the following:

Z/mZ, with 1 ≤ m ≤ 10 or m = 12,

Z/2Z× Z/2mZ, with 1 ≤ m ≤ 4.

Moreover, for each group T that arises, there are infinitely many non-isomorphic elliptic curves
E/Q such that E(Q)tors

∼= T .

The classification of torsion subgroups of elliptic curves over cubic fields presents a new phenom-
enon. For the first time, there are certain groups which arise for only finitely many isomorphism
classes of elliptic curves.

Theorem 1.2 (Najman [51], Derickx, Etropolski, van Hoeij, Morrow, Zureick-Brown [20]). The
elliptic curve 162.c3 over Q(ζ9)+ with j-invariant −140625/8 is the unique elliptic curve over a
cubic field with a point of order 21.

Phrased another way, this means the elliptic curve 162.c3 corresponds to a sporadic point of de-
gree 3 on the modular curve X1(21). Recall X1(N) is an algebraic curve over Q whose non-cuspidal
points parametrize isomorphism classes of pairs of an elliptic curve together with a distinguished
point of order N . We say a point x on a curve defined over a number field is sporadic if there are
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only finitely many points of degree at most deg(x). By definition, such points cannot belong to an
infinite parameterized family of points of the same degree, making them more difficult to detect
using standard tools. Our lack of understanding of sporadic points on the modular curves X1(N)
has made it difficult to extend the classification of torsion subgroups beyond cubic fields.

Inspired by this, we seek to characterize the elliptic curves capable of producing sporadic points
on X1(N), in search of some sort of framework which might explain their existence. Moreover, this
problem is inextricably linked to Serre’s Uniformity Conjecture on Galois representations of elliptic
curves. We say j is a sporadic j-invariant if there exists a sporadic point x ∈ X1(N) such that
j = j(x). So, for example, by Theorem 1.2, we see that −140625/8 is a sporadic j-invariant, as is
any j-invariant associated to an elliptic curve with complex multiplication (CM) by [8, Theorem
7.1]. Work of the first author in collaboration with Ejder, Liu, Odumodu, Viray [8] shows that
there are only finitely many sporadic1 j-invariants in Q, assuming the following conjecture; such a
result is known unconditionally for points of odd degree [9].

Conjecture 1 (Uniformity Conjecture). There exists a constant such that for all non-CM elliptic
curves E/Q, the mod p Galois representation of E is surjective for all p > C.

Conjecture 1 originated with a question of Serre [55], but has since been formally conjectured by
both Zywina [62] and Sutherland [60]. A wealth of computational evidence and partial theoretical
progress which supports an affirmative answer. See for example [4, 5, 3, 62, 60, 43, 44].

While Serre’s Uniformity Conjecture implies that there are only finitely many sporadic j-invariants
in Q, showing that the same holds true for all sporadic j-invariants associated to non-CM Q-curves
would actually imply Serre’s Uniformity Conjecture. Recall a Q-curve is any elliptic curve isoge-
nous (over Q) to its Galois conjugates. This is a property enjoyed by CM elliptic curves and elliptic
curves with rational j-invariant, though the collection of all Q-curves properly contains these sets.

Theorem 1.3. Suppose there exist only finitely many isogeny classes containing non-CM Q-curves
(up to isomorphism over Q) that give rise to a sporadic point on X1(p2) for some prime p. Then
Serre’s Uniformity Conjecture holds.

This motivates the study torsion points within isogeny classes of Q-curves, which we initiate in the
present work. In particular, we pose the following question, which extends those raised in [8].

Question 1. Do all non-CM Q-curves giving rise to sporadic points on any modular curve X1(N)
belong to only finitely many Q-isogney classes, even as we allow N to range over all positive
integers?

In our main result, we answer Question 1 for sporadic points of odd degree, showing that the
elliptic curve 162.c3 actually plays a much larger role in explaining sporadic points on the modular
curves X1(N) than what is apparent from Theorem 1.2. Not only does this elliptic curve give a
non-cuspidal sporadic point of least possible degree, but it is also isogenous to any other non-CM
Q-curve corresponding to a sporadic point of odd degree on X1(N) for any positive integer N . Since
any sporadic point on X1(N) must have degree less than its Q-gonality,2 this is a consequence of
the following more general result.

Theorem 1.4. Let x ∈ X1(N) be a point of odd degree corresponding to a non-CM Q-curve
E. If deg(x) < gonQ(X1(N)), then E is Q-isogenous to an elliptic curve with the j-invariant
−140625/8. In particular, any non-CM Q-curve giving rise to a sporadic point of odd degree on
X1(N) is isogenous (over Q) to the elliptic curve 162.c3.

1In fact, [8] shows there are only finitely many isolated j-invariants in Q. The set of all isolated points strictly
contains the set of all sporadic points, so the claim about sporadic j-invariants is immediate.

2Recall the k-gonality of a curve C over a number field k is the least degree of a non-constant rational map
f : C → P1

k. Hilbert’s irreducibility theorem [56, Ch.9] implies f−1(P1(k)) contains infinitely many degree d points.

2

https://www.lmfdb.org/EllipticCurve/Q/162/c/3
https://www.lmfdb.org/EllipticCurve/Q/162/c/3


The proof builds on recent work of Cremona and the second author [15] (which in turn builds on
work of Elkies [24]). A crucial result at the foundation of our approach is that any non-CM Q-curve
defined over a number field of odd degree is isogenous to an elliptic curve with rational j-invariant
[15, Theorem 2.7], making it possible to use information about the Galois representations of elliptic
curves over Q to deduce results for the original Q-curve. For example, in Theorem 1.1 of [15], this
isogeny connection is used to show that there exists a point of odd degree on X1(N) corresponding
to a non-CM Q-curve only if Supp(N) ⊆ {2, 3, 5, 7, 11, 13, 17, 37}. Paired with results of [8], we
immediately see that there will be only finitely many Q-curves with j-invariant in an extension of
bounded degree giving rise to a sporadic point of odd degree on any modular curve of the form
X1(N).3 Thus the strength of Theorem 1.4 is in showing that these sporadic j-invariants lie in
finitely many isogeny classes, even if we remove the bound on the degree of Q(j).

In the case where N is a power of a single prime, bounds on the Q-gonality of X1(N) due to
Derickx and van Hoeij [22] are strong enough to imply that there are no sporadic points of odd
degree corresponding to non-CM Q-curves. This is in direct contrast to the CM case.

Theorem 1.5. Let p be a prime number and k a positive integer. If x = [E,P ] ∈ X1(pk) is a
point of odd degree corresponding to a Q-curve with deg(x) < gonQ(X1(pk)), then E has complex
multiplication. Moreover, for any prime p ≡ 3 (mod 4) and k sufficiently large, there exist sporadic
CM points of odd degree on X1(pk).

Our proof shows that there are infinitely many CM j-invariants producing sporadic points on X1(pk)
of odd degree, and that they necessarily belong to infinitely many distinct Q-isogeny classes; see
Remark 5.4. This shows that the “non-CM” assumption in Theorem 1.4 is necessary if one wishes
to characterize a set of Q-curves producing sporadic points of odd degree which belong to only
finitely many isogeny classes.

Even though we have established that all non-CM Q-curves corresponding to a sporadic point
on X1(N) of odd degree lie in a single Q-isogeny class, it remains to determine whether there can
be infinitely sporadic j-invariants within that isogeny class. Our final question is the following:

Question 2. Does there exist a non-CM Q-isogeny class containing infinitely many sporadic j-
invariants?

In Proposition 8.1, we show that the answer is yes if there exists a sporadic point of sufficiently
low degree associated to a curve in the Q-isogeny class. However, as the only known examples of
points satisfying this degree condition correspond to CM elliptic curves, it is not clear whether one
should expect the existence of such a point.

1.1. Related Work. While sporadic points on more general modular curves are certainly of inter-
est as they pertain to the classification of Galois representations of elliptic curves (see, for example
[3]) or the modularity of elliptic curves (see, for example, [25, 21, 11]), for this summary we will
restrict our attention to modular curves X1(N) and X0(N) (which parametrizes elliptic curves with
a cyclic N -isogeny). The first examples of sporadic points on modular curves of this form arise
as points in X0(N)(Q) in cases where this curve has genus greater than 0. Key contributions to
this classification were made by Mazur [48] and Kenku [36, 38, 37, 39], but see Table 4 in [46] for
a more complete list of references. The classification of quadratic and cubic points on modular
curves X0(N) is the topic of several recent works, and many new examples of sporadic points have
been discovered; see, for example [52, 12]. For modular curves X1(N), the least possible degree
of a non-cuspidal sporadic point is 3, and, as mentioned above, there is a unique elliptic curve

3Indeed, there exists a uniform bound on the level of the m-adic Galois representation associated to all non-CM
elliptic curves over number fields of fixed degree [8, Prop. 6.1]. Since any curve by definition can have only finitely
many sporadic points, the claim follows from Proposition 5.8 and Theorem 4.3 of [8].
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producing such a point which was first discovered by the second author [51]. Others can be found
in tables associated to work of Derickx and van Hoeij [22]; note that any point in degree less than
the Q-gonality of the curve will be sporadic, provided the associated Jacobian has rank 0 over Q.
Sporadic points associated to elliptic curves with rational j-invariant were the topic of [8] and [9],
and those corresponding to elliptic curves with supersingular reduction were studied in [59].

For a complete summary of what is known concerning sporadic CM points on modular curves,
see work of Clark, Genao, Pollack, and Saia [14].

1.2. Outline. We summarize relevant background information on Galois representations and isoge-
nies of elliptic curves in §2, along with some basic information concerning modular curves. Section 3
contains the proof of Theorem 1.3. Our approach to Theorem 1.4 relies on first establishing certain
divisibility conditions for the existence of a rational torsion point on a non-CM Q-curve defined
over a number field of odd degree (see Proposition 4.1) which are obtained by studying torsion
points within isogeny classes of elliptic curves. Theorem 1.5 is a relatively quick consequence of
these divisibility conditions and is proved in §5. To complete the proof of Theorem 1.4, we first
show that there exists a point of odd degree on X1(N) associated to a non-CM Q-curve only for N
of a certain form, as in Proposition 6.1. In Section 7, we show that any odd degree point x ∈ X1(N)
with deg(x) < gonQ(X1(N)) associated to a non-CM Q-curve would force a low degree point on
one of finitely many modular curves; see sections 7.1 or 7.2. In cases where these low degree points
would arise on modular curves of the form X1(N), their existence can generally be ruled out by
prior work. However, other cases require an analysis of certain modular curves which parametrize
elliptic curves with unusual entanglement between their 2a- and 3k-torsion point fields. Explicit
computations of the rational points on these entanglement modular curves appear in section 7.3,
completing the proof of Theorem 1.4. Partial progress towards Question 2 appears in §8.

We note that all code for Magma computations relevant to sections 7.2 and 7.3 is publicly
available at https://web.math.pmf.unizg.hr/~fnajman/code_QC.zip.
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2. Background and Notation

2.1. Conventions. For a number field k and algebraic closure k, we let Galk := Gal(k/k) denote
the absolute Galois group of F . If n ∈ Z+, we use Supp(n) to denote the set of all prime numbers
dividing n. If n = pa11 p

a2
2 · · · parr for distinct primes pi, then ordpi(n) := ai.

If C is a curve defined over a number field k and x ∈ C is a closed point, then k(x) denotes the
residue field of x. By the degree of x we mean the degree of k(x) over k.

If E is an elliptic curve defined over a number field k and P ∈ E(k), then k(P ) denotes the field
extension of k generated by the x- and y-coordinates of P . By m-isogeny of elliptic curves, we
mean a cyclic isogeny of degree m. Specific elliptic curves are referred to by their LMFDB label.

For subgroups of GL2(Zp), we generally use the notation of Sutherland and Zywina in [61],
though in a few cases for the prime p = 2 we use that of Rouse and Zureick-Brown [54] for ease of
reference.
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2.2. Galois Representations of Elliptic Curves. For an elliptic curve E defined over a number
field k, the absolute Galois group Galk acts naturally on the set of all torsion points of E, denoted
E(k)tors. This action is encoded in the adelic Galois representation associated to E:

ρE : Galk → Aut(E(k)tors) ∼= GL2(Ẑ).

Through the isomorphism GL2(Ẑ) ∼=
∏
p prime GL2(Zp) and natural projection, we obtain the m-adic

representation associated to E for any integer m, denoted

ρE,m∞ : Galk →
∏

p prime,p|m

GL2(Zp).

This representation describes the action of Galk on all points of E of order n with Supp(n) ⊆
Supp(m). Via reduction mod n, we recover the mod n Galois representation associated to E

ρE,n : Galk → GL2(Z/nZ),

which gives the action of Galk on E[n], the set of points on E of order dividing n. If m and n are
relatively prime, we may combining reduction mod n in some components with projection in others
to define

ρE,n·m∞ : Galk → GL2(Z/nZ)×GL2(Zm).

Here, Zm :=
∏
p∈Supp(m) Zp.

If E does not have complex multiplication, then Serre’s Open Image Theorem [55] states that

the image of ρE , denoted im ρE , is open (and thus of finite index) in GL2(Ẑ). In particular, the
image of the p-adic Galois representation associated to a non-CM elliptic curve E is of finite index
in GL2(Zp). The following proposition summarizes a few of the known constraints on this index in
the case of elliptic curves over Q.

Proposition 2.1. For any non-CM elliptic curve E/Q,

ord2([GL2(Z2) : im ρE/Q,2∞ ]) ≤ 6.

If E/Q is a non-CM elliptic curve with a rational cyclic p-isogeny for some odd prime p, then we
have the following:

(1) If p ≥ 7, then ordp([GL2(Zp) : im ρE/Q,p∞ ]) = 0.
(2) If p = 5, then ord5([GL2(Z5) : im ρE/Q,5∞ ]) = 0 unless E/Q has either a rational cyclic

25-isogeny or two independent 5-isogenies. In the latter cases, we have ord5([GL2(Z5) :
im ρE/Q,5∞ ]) = 1.

(3) If p = 3, then ord3([GL2(Z3) : im ρE/Q,3∞ ]) ≤ 2.

Proof. For p = 5 or p > 7, this follows from work of Greenberg (see Theorems 1 and 2, along with
Remark 4.2.1 in [31]). The case of p = 7 is addressed in work of Greenberg, Rubin, Silverberg,
Stoll [30]. For p = 3, the result follows from Corollary 1.10 in [33]. The case of p = 2 is given by
Corollary 1.3 in work of Rouse and Zureick-Brown [54]. �

A further implication of Serre’s Open Image Theorem is the existence of a positive integer N
such that im ρE = π−1(im ρE,N ), where π denotes the natural reduction map. The smallest such
N is called the level of the adelic Galois representation. In a similar way, for any positive integer
m, we defined the level of the m-adic representation to be the least positive integer N such that
im ρE,m∞ = π−1(im ρE,N ).
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2.3. Isogenies of Elliptic Curves. For an elliptic curve E defined over a number field k, we say
the subgroup C of E is k-rational if σ(C) = C for all σ ∈ Galk. That is, for all P ∈ C, we have
σ(P ) ∈ C (though σ need not fix P itself). There is a one-to-one correspondence between finite
subgroups C of E and isomorphism classes of isogenies ϕ : E → E′ given by associating C with the
unique isogeny having ker(ϕ) = C, and ϕ is defined over k if and only if C is k-rational. See §III.4
of [58] for details. For any two non-CM elliptic curves E, E′ isogenous over Q, there exists a cyclic
isogeny ϕ : E → E′ which is unique up to sign [15, Lemma A.1], so we may generally assume our
isogenies are cyclic.

In the case of elliptic curves over Q, we have a complete classification of the possible rational
cyclic subgroups that can occur.

Theorem 2.2 (Mazur [48], Kenku [36, 38, 37, 39, 40], and others; see Section 9 of [46]). If
E/Q is an elliptic curve possessing a Q-rational cyclic subgroup of order N , then N ≤ 19 or
N ∈ {21, 25, 27, 37, 43, 67, 163}.

This classification can also be used to characterize certain rational isogenies for non-CM elliptic
curves E/Q under base extension to number fields of odd degree. If a non-CM elliptic curve E/k
has a k-rational cyclic isogeny of degree n, then so will any E′/k with j(E′) = j(E). Thus the
following result can be used to deduce isogeny information for any non-CM elliptic curve with
j-invariant in Q.

Proposition 2.3 (Cremona, Najman [15]). Let E/Q be an elliptic curve without CM, and let p be
an odd prime such that E has no p-isogenies defined over Q. Then all p-isogenies of E are defined
over number fields of even degree, unless j(E) = 2268945/128, in which case E acquires 7-isogenies
over the cubic field generated by a root of x3 − 5x− 5.

Finally, we note that any Q-curve defined over a number field k of odd degree is isogenous over
k to an elliptic curve with rational j-invariant, as a consequence of the following key result.

Theorem 2.4 (Cremona, Najman [15]). Let E be a non-CM Q-curve defined over a number field k.
If Q(j(E)) has no quadratic subfields, then E is isogenous over k to an elliptic curve with rational
j-invariant.

2.4. Modular Curves. Points on the affine curve Y1(N) correspond to equivalence classes of
elliptic curves E/C with a distinguished point P of order N . We consider two pairs [E,P ] and
[E′, P ′] to be equivalent if there exists an isomorphism ϕ : E → E′ such that ϕ(P ) = P ′. By adding
a finite number of points to Y1(N)—called cusps—we obtain the smooth projective curve X1(N).
In fact, X1(N) can be given the structure of an algebraic curve over Q, and we view it as such
unless otherwise noted. See [23, Section 7.7] or [19] for details.

If x = [E,P ] ∈ X1(N) is a non-cuspidal point, we say a Weierstrass equation over a number
field k is a model for E/k if it has j-invariant equal to j(E), and we use P to denote the image of
the point associated to x under the implied isomorphism. For any model of E/k having P ∈ E(k),
the residue field Q(x) is contained in k. Conversely, there exists a model of E/Q(x) such that
P ∈ E(Q(x)). See [19, p. 274, Proposition VI.3.2]. It is often useful to have a more concrete way
of describing the residue field, as given in the following lemma.

Lemma 2.5. Let E be an elliptic curve and let P ∈ E be a point of order N . Then the residue
field of the closed point x = [E,P ] ∈ X1(N) is given by

Q(x) = Q(j(E), h(P )),

where h : E → E/Aut(E) ∼= P1 is a Weber function for E.

Proof. Since X1(N) parametrizes elliptic curves up to isomorphism, we may choose a model of E
defined over F := Q(j(E)). It is clear that F (h(P ))) ⊆ F (P ), and this field does not depend on
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the choice of model for E/F : for any other E′/F with j(E′) = j(E) and isomorphism ψ : E → E′,
we have F (h(P )) = F (h(ψ(P ))) by [57, p. 107]. Thus F (h(P )) ⊆ Q(x).

To show equality holds, it suffices to construct a model of E over F (h(P ))) such that P becomes
rational. Indeed, for any σ ∈ GalF (h(P )),

σ(P ) = ζP

for some ζ ∈ Aut(E) = µ2, µ4 or µ6. This defines a character χ, and P is rational on the twist

Eχ
−1

over F (h(P )). �

Remark 2.6. If E is given by an equation of the form y2 = 4x3− c2x− c3, then for P = (x, y) ∈ E
and ∆ = c3

2 − 27c2
3 we may take h to be

h(P ) =


c2c3
∆ x j(E) 6= 0, 1728,
c22
∆x

2 j(E) = 1728,
c3
∆x

3 j(E) = 0.

If ψ : E → E′ is an isomorphism, then one can check that hE = hE′ ◦ ψ; see [57, p. 107]. Thus
if E does not have CM, the residue field of [E,P ] ∈ X1(N) is generated over Q(j(E)) by the
x-coordinate of P .

Lemma 2.5 also gives a concrete way of computing the degree of a point on X1(N) from a
particular model of E/Q(j(E)). The following lemma allows us to relate the degree of this point
to that of its image on other modular curves.

Proposition 2.7. For positive integers a and b, there is a natural Q-rational map f : X1(ab) →
X1(a) defined by sending [E,P ] to [E, bP ]. Moreover

deg(f) = cf · b2
∏
p|b, p-a

(
1− 1

p2

)
,

where cf = 1/2 if a ≤ 2 and ab > 2 and cf = 1 otherwise.

Proof. By the moduli interpretation, the map is Q-rational, and the degree calculation follows from
[23, p.66]. �

In a similar way, the modular curve X0(N) is a smooth projective curve over Q whose non-
cuspidal points parametrize pairs [E,C] where E is an elliptic curve and C ⊂ E is a cyclic subgroup
of order N . As noted above, the group C defines a unique isogeny ϕ : E → E′ with ker(ϕ) = C, so
we may alternatively notate [E,C] with the triple [E,E′, ϕ]. The following lemma gives a useful
description of the residue field of a non-cuspidal point on X0(N).

Lemma 2.8. Let ϕ : E → E′ be a cyclic isogeny of non-CM elliptic curves of degree n. Then

Q(ϕ) = Q(j(E), j(E′))

is the residue field of the induced point [E, ker(ϕ)] ∈ X0(n).

Proof. This follows directly from [15, Corollary A.5]. See also [13, Proposition 3.3]. �

3. Proof of Theorem 1.3

In this section, we connect the existence of sporadic points X1(p2) to Serre’s Uniformity Con-
jecture, as discussed in the introduction. Let X(p) be the compactification of the modular curve
which parametrizes isomorphism classes of pairs (E, (P,Q)), where E is an elliptic curve and (P,Q)
is and Fp-basis of E[p]. This is a smooth projective curve defined over Q whose base change to
Q(ζp) has p− 1 connected components.
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Theorem 3.1. Suppose either that there exists finitely many primes p such that X(p) has a sporadic
point corresponding to a non-CM elliptic curve with j-invariant in Q or that all non-CM Q-curves
corresponding to sporadic points on X1(p2) lie in finitely many isogeny classes, as p varies through
all primes. Then there exists a bound C such that for every non-CM elliptic curve E/Q, the mod
p representation ρE,p attached to E is surjective for all p > C.

Proof. We will prove this theorem by showing that for any p large enough, a non-CM elliptic
curve E/Q with non-surjective ρE,p will induce both a sporadic point on X(p), corresponding to
E, and a sporadic point corresponding to a non-CM Q-curve, isogenous to E, on X1(p2).Since
only finitely many rational j-invariants can lie in a single Q-isogeny class,4 these non-CM Q-curves
would necessarily lie in infinitely many geometric isogeny classes. Recall the result of Abramovich
[1, Theorem 0.1], which says that the C-gonality dC(XΓ) of a modular curve XΓ corresponding to
a congruence subgroup Γ satisfies

7
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DΓ ≤ dC(XΓ),

where DΓ is the index of Γ in PSL2(Z). We have that DΓ(p) = p(p2−1)
2 and DΓ1(p2) = p2(p2−1)

2 .
Recall that any point of degree < dC(XΓ)/2 is sporadic on XΓ (see [26, Proposition 2]).

Suppose now that E/Q is an elliptic curve without CM, p > 37 a prime and that ρE,p is not
surjective. By known results about images of Galois (see e.g. [62, Theorem 1.11]) we know that
im ρE,p is contained in C+

ns(p), the normalizer of the non-split Cartan subgroup. Since #C+
ns(p) =

2(p2 − 1), it follows that [Q(E[p]) : Q]|2(p2 − 1), and hence E (together with a basis for E[p])
induces a Q(E[p])-rational point on X(p). By Abramovich’s bound (see also Remark 7.4. in [14]),
it follows that this point is necessarily sporadic for sufficiently large p.

Furthermore, as E has two independent Q(E[p])-rational p-isogenies, it is Q(E[p])-isogenous to
an elliptic curve E′ which has a Q(E[p])-rational p2-isogeny f and a point of order p lying in the
kernel of f defined over Q(E[p]). In particular, we have

im ρE′/Q(E[p]),p2 ⊆
{(

1 + pt ∗
0 1 + pk

)}
.

Taking the fixed field K ′ of the subgroup{(
1 ∗
0 1 + pk

)}
,

we obtain that K ′ is of degree ≤ 2p(p2 − 1) and that E′ (which is a Q-curve) has a K ′-rational
point of order p2. By Abramovich’s bound, we again get that this point is sporadic for sufficiently
large p. �

Remark 3.2. There are infinitely many CM Q-curves (up to isomorphism over Q) that give rise
to a sporadic point on X1(p2) for some prime p, and they lie in infinitely many distinct isogeny
classes. To see this, let E/Q be an elliptic curve with complex multiplication by the maximal order
in an imaginary quadratic field K. For simplicity, we may assume j(E) 6= 0, 1728. Then for any
prime p ≥ 5 that is split in K and x ∈ X1(p2), we have by Theorem 6.2 in [6] that

deg(x) = hK · ϕ(p2),

where hK denotes the class number of K. For any prime sufficiently large,

hK <
7

3200
p(p+ 1),

4This follows from Lemma 2.8 and the fact that there are only finitely many elliptic curves over Q in a Q-rational
isogeny class. The latter is originally due to Shafarevich; see, for example, Corollary IX.6.2 in [58].
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and so

deg(x) <
7

3200
p(p+ 1)ϕ(p2) =

7

1600
[PSL2(Z) : Γ1(p2)] <

1

2
gonQ(X1(p2)),

where the last inequality follows from by Theorem 0.1 of [1]. Thus x is sporadic by [26, Prop. 2].
Moreover, since the endomorphism algebra K = End(E)⊗Q is an isogeny invariant, it follows that
the CM j-invariants corresponding to sporadic points on the curves X1(p2) lie in infinitely many
distinct Q-isogeny classes.

4. Divisibility Conditions

In this section, we prove that there are certain divisibility conditions which must be satisfied
in order for a Q-curve to possess a point of prime-power order defined over a number field of odd
degree. As we have seen, any Q-curve E defined over a number field F of odd degree is isogenous to
an elliptic curve E′ with rational j-invariant by Theorem 2.4. After establishing some preliminary
results concerning the Galois representations of isogenous elliptic curves (§4.1), we prove that the
existence of a point of order pk in E(F ) implies [F : Q] is divisible by a power of p controlled by the
index of the image of the p-adic Galois representation of an elliptic curve over Q with j-invariant
j(E′) (see Lemma 4.6). In §4.3, these results are taken together to prove the following:

Proposition 4.1. Let E be a non-CM Q-curve defined over a number field F of odd degree. Then
E is F -isogenous to an elliptic curve E′ with j(E′) ∈ Q. If E(F ) has a point of order pk for some
prime number p and k ∈ Z+, then p ∈ {2, 3, 5, 7, 11, 13} and the following divisibility conditions
hold:

(1) If p = 13, then 3 · 132k−2 | [F : Q].
(2) If p = 11, then 5 · 112k−2 | [F : Q].
(3) If p = 7 and j(E′) 6= 33 · 5 · 75/27, then 72k−2 | [F : Q].

(4) If p = 7 and j(E′) = 33 · 5 · 75/27, then 3 · 7max(0,2k−3) | [F : Q].

(5) If p = 5, then 5max(0,2k−3) | [F : Q].

(6) If p = 3, then 3max(0,2k−4) | [F : Q].
(7) If p = 2, then k ≤ 4.

4.1. Torsion in Isogeny Classes. In this section, we study the implications for rational torsion
points on an elliptic curve for the Galois representation of an isogenous curve. Though Lemma 4.2
and its corollary are similar to results already in the literature (see, for example, [53, Proposition
1.4] and [18, Lemma 2.5]), the assumptions are slightly different so we include complete proofs.
Note that Proposition 4.4 is not used in the proof of our main result, but we include it here as this
more refined result may be of independent interest.

Lemma 4.2. Let E1/F be an elliptic curve with a point P ∈ E1(F ) of prime order p and let
ϕ : E1 → E2 be an isogeny defined over F . Then either E2(F ) has a point of order p or for some
basis of E2[p]

ρE2,p(σ) =

(
χp(σ) y

0 1

)
, for all σ ∈ GalF .

Proof. Note we may assume ϕ is cyclic. With respect to the basis {P,Q} for E1[p],

ρE1,p(σ) =

(
1 b
0 χp(σ)

)
for all σ ∈ GalF .

If ϕ(P ) has order p, we are done, so suppose not. Then ϕ(Q) must have order p, and we have

σ(ϕ(Q)) = ϕ(σ(Q)) = ϕ(bP + χp(σ)Q) = χp(σ)ϕ(Q).
9



Thus if E2[p] = {ϕ(Q), R}, we see

ρE2,p(σ) =

(
χp(σ) b

0 1

)
for all σ ∈ GalF . �

Corollary 4.3. Let E be an elliptic curve defined over a number field F which is isogenous over
F to an elliptic curve E′. If P ∈ E(F ) is a point of prime order p, then:

(1) E′ has a point of order p over F (ζp).
(2) E′ has a rational point of order p over an extension of F of degree dividing p.

Proof. Let ϕ : E → E′ be an isogeny, where E, E′, and ϕ are defined over F . By Lemma A.1 in
[15], we may assume ϕ is cyclic. If E′(F ) has a point of order p, we are done, so suppose not. Then
in particular, ϕ(P ) = O. By Lemma 4.2 there is a basis of E′[p] such that

im ρE′,p =

{(
χp(GalF ) ∗

0 1

)}
,

where χp is the mod p cyclotomic character and ∗ is nonzero. Part (1) follows immediately. As
shown in the proof of [15, Proposition 4.1], E′ attains a rational point of order p over an extension
of degree p, proving part 2. �

Proposition 4.4. Suppose E1/F is an elliptic curve with a point P ∈ E1(F ) of order N and {P,Q}
is a basis for E1[N ], and let ϕ : E1 → E2 be an m-isogeny with m | N and kerϕ = 〈(N/m)P 〉.
Then with respect to the basis {ϕ(Q), R}, where R ∈ E[N ] satisfies mR = ϕ(P ),

ρE2,N (σ) =

(
χN (σ) y
z 1

)
, where y ≡ 0 (mod N/m), z ≡ 0 (mod m).

Proof. Let σ ∈ GalF . Let P be a point of order N in E1(F ), and fix a basis {P,Q} for E1[N ]
and {ϕ(Q), R} for E2[N ]. As ϕ(P ) is a point of order N/m independent with mϕ(Q) in E2[N/m]
we can choose R such that mR = ϕ(P ) and which will necessarily be independent to ϕ(Q). With
respect to these bases, we have

ρE1,N (σ) =

(
1 b
0 d

)
and ρE2,N (σ) =

(
x y
z w

)
.

Since

(mR)σ = ϕ(P )σ = ϕ(P σ) = ϕ(P ) = mR,

we can conclude that y ≡ 0 (mod N/m).
We have

ϕ(Q)σ = ϕ(Qσ) = ϕ(bP + dQ) = bϕ(P ) + dϕ(Q) = bmR+ dϕ(Q),

so we conclude that x = d and z ≡ 0 (mod m). Since

d = det ρE1,N (σ) = χN (σ) = det ρE2,N (σ) = xw − yz = dw − yz,

and yz ≡ 0 (mod N), we conclude that w = 1. �

4.2. General Divisibility Conditions.

Lemma 4.5. Let p be a prime number, and let E/F be a non-CM elliptic curve isogenous over F
to an elliptic curve E′/Q. Then

[GL2(Zp) : im ρE/F,p∞ ] = [GL2(Zp) : im ρE′/Q,p∞ ] · [F ∩Q(E′[p∞]) : Q].
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Proof. Over F , the images of ρE,p∞ and ρE′,p∞ have the same index in GL2(Zp) since the curves
are isogenous, i.e.,

[GL2(Zp) : im ρE/F,p∞ ] = [GL2(Zp) : im ρE′/F,p∞ ].

See, for example, §2.1 of [31]. The claim will follow from the fact that

[GL2(Zp) : im ρE′/F,p∞ ] = [GL2(Zp) : im ρE′/Q,p∞ ] · [F ∩Q(E′[p∞]) : Q].

Indeed, by Galois theory (see, for example, Proposition 7.14 in [50]),

im ρE′/F,p∞ ∼= Gal(F (E′[p∞])/F ) ∼= Gal(Q(E′[p∞])/F ∩Q(E′[p∞])).

Thus we may view im ρE′/F,p∞ as a subgroup of im ρE′/Q,p∞ of index [F ∩Q(E′[p∞]) : Q]. �

Lemma 4.6. Let E/F be a non-CM elliptic curve with a point P ∈ E(F ) of order pk, where p is a
prime number. If E is F -isogenous to an elliptic curve E′ with j(E′) ∈ Q, then [F : Q] is divisible
by {

pmax(0,2k−2−d) if p is odd

pmax(0,2k−2−d−1) if p = 2,

where d = ordp([GL2(Zp) : im ρE′′/Q,p∞ ]) for any elliptic curve E′′/Q with j(E′′) = j(E′).

Proof. Let E/F be a non-CM elliptic curve with P ∈ E(F ) of order pk, and suppose ϕ : E → E′

is an F -rational isogeny. Replacing F with at worst a quadratic extension L/F , we may view ϕ as
an L-isogeny from E to an elliptic curve E′′/Q with j(E′′) = j(E′). Since E has a rational point
of order pk over L, we have Gal(L(E[pk])/L) is contained in the group of matrices in GL2(Z/pk/Z)
of the form {(

1 ∗
0 ∗

)}
.

Thus # Gal(L(E[pk])/L) | pk · ϕ(pk) = p2k−1(p− 1), and it follows that

ordp([GL2(Z/pkZ) : im ρE/L,pk ]) ≥ 2k − 2.

Thus p2k−2 | [GL2(Zp) : im ρE′′/Q,p∞ ] · [L ∩ Q(E′′[p∞]) : Q] by Lemma 4.5. If d = ordp([GL2(Zp) :
im ρE′′/Q,p∞ ]), then since L is at most a quadratic extension of F , it follows that

pmax(0,2k−2−d) | [F : Q]

if p is odd and

pmax(0,2k−2−d−1) | [F : Q]

if p = 2. �

4.3. Proof of Proposition 4.1. Suppose E/F is a non-CM Q-curve, where [F : Q] is odd, and
suppose E(F ) contains a point of order pk. Then p ∈ {2, 3, 5, 7, 11, 13, 17, 37} by Theorem 1.1 in
[15], and by Theorem 2.4, there exists a rational isogeny ϕ : E → E′ such that j(E′) ∈ Q. By
Lemma 4.6, we have that [F : Q] is divisible by{

pmax(0,2k−2−d) if p is odd

pmax(0,2k−2−d−1) if p = 2,

where d = ordp([GL2(Zp) : im ρE′′/Q,p∞ ]) for any elliptic curve E′′/Q with j(E′′) = j(E′). Since E′′

and E′ are isomorphic over an extension L/F of degree at most 2, we may also view ϕ : E → E′′

as an isogeny over L.
Since E has a p-isogeny defined over F , so does E′ by Proposition 3.2 of [15]. If p is odd, then

since F has odd degree, it follows by Proposition 3.3 in [15] that E′′ has a rational cyclic p-isogeny
11



over Q or else p = 7 and j(E′) = 33 · 5 · 75/27. Thus unless j(E′) = 33 · 5 · 75/27 and p = 7, an
upper bound for d is given by Proposition 2.1. In particular, we note that k ≤ 4 if p = 2.

If j(E′) = 33 · 5 · 75/27, then # im ρE′′/Q,7 = 18 or 36. By [9, Lemma 21], the 7-adic Galois
representation of E′′/Q has level 7, and so together these imply

ord7([GL2(Z7) : im ρE′′/Q,7∞ ]) = 1,

ord3([GL2(Z7) : im ρE′′/Q,7∞ ]) = 0.

Since E has a rational point of order 7k over L, as in the proof of Lemma 4.6 we have # Gal(L(E[7k])/L) |
72k−1 · 6, and so

ord7([GL2(Z/7kZ) : im ρE/L,7k ]) ≥ 2k − 2,

ord3([GL2(Z/7kZ) : im ρE/L,7k ]) ≥ 1.

By Lemma 4.5, we have 3·72k−2 | [GL2(Z7) : im ρE′′/Q,7∞ ]·[L∩Q(E′′[7∞]) : Q], and the computations

above on the index of im ρE′′/Q,7∞ in GL2(Z7) imply 3 · 7max(0,2k−3) | [L ∩Q(E′′[13∞]) : Q]. Thus

3 · 7max(0,2k−3) | [F : Q].

as desired.
Now, suppose p ≥ 11. Since E(L) has a point of order p, by Corollary 4.3 the curve E′′ gains a

point of order p over an extension L′/L of degree dividing p. As ord2([L : Q]) ≤ 1, the classification
of mod p images of elliptic curves over Q with a rational cyclic p-isogeny (see, for example, Tables
1 and 2 in [28], which is complete for elliptic curves with a p-isogeny by [63]) implies

5 | [F : Q] if p = 11,

3 | [F : Q] if p = 13,

and that we reach a contradiction if p = 17 or 37.

5. Proof of Theorem 1.5

In this section, we prove Theorem 1.5. The first part of the theorem, which implies that there
are no sporadic points of odd degree on X1(pk) corresponding to non-CM Q-curves, is proven in
§5.1. We show that the divisibility conditions established in Section 4 are sufficient to prove the
degree of such a point is greater than or equal to the Q-gonality of X1(pk), using bounds implied by
work of Derickx and van Hoeij [22]. On the other hand, it can be deduced from work of Bourdon
and Pollack [10] that there are infinitely many CM points of odd degree on these curves; see §5.2.

5.1. Non-CM Sporadic Points of Odd Degree.

Theorem 5.1. Let p be a prime number. If x = [E,P ] ∈ X1(pk) is a point of odd degree corre-
sponding to a non-CM Q-curve, then deg(x) ≥ gonQ(X1(pk)). In particular, x is not sporadic.

Proof. Let x = [E,P ] ∈ X1(pk) be a point of odd degree corresponding to a non-CM Q-curve.
By Proposition 4.1, we know p ∈ {2, 3, 5, 7, 11, 13}. We will consider each case separately. Claims
about the Q-gonality of X1(N) follow from Table 1 in work of Derickx and van Hoeij [22].

• Suppose p = 13. Then 3 · 132k−2 | [Q(x) : Q] by Proposition 4.1. Since gonQ(X1(13)) = 2,

it follows that gonQ(X1(13k)) is at most

2 · deg(X1(13k)→ X1(13)) = 2 · (13k−1)2 = 2 · 132k−2,

and deg(x) > gonQ(X1(13k)).
12



• Suppose p = 11. Then 5 · 112k−2 | [Q(x) : Q] by Proposition 4.1. Since gonQ(X1(11)) = 2,

it follows that gonQ(X1(11k)) is at most

2 · deg(X1(11k)→ X1(11)) = 2 · (11k−1)2 = 2 · 112k−2,

and deg(x) > gonQ(X1(11k)).

• Suppose p = 7. Since X1(7) is genus 0, we may assume k ≥ 2. Then 72k−2 | [Q(x) : Q]
or 3 · 72k−3 | [Q(x) : Q] by Proposition 4.1. Since gonQ(X1(72)) ≤ 21, it follows that

gonQ(X1(7k)) is at most

21 · deg(X1(7k)→ X1(72)) = 21 · (7k−2)2 = 3 · 72k−3,

and deg(x) ≥ gonQ(X1(7k)).

• Suppose p = 5. Since X1(5) is genus 0, we may assume k ≥ 2. Then 52k−3 | [Q(x) : Q] by
Proposition 4.1. Since gonQ(X1(25)) = 5, it follows that gonQ(X1(5k)) is at most

5 · deg(X1(5k)→ X1(25)) = 5 · (5k−2)2 = 52k−3,

and deg(x) ≥ gonQ(X1(5k)).

• Suppose p = 3. Since X1(3) and X1(9) are genus 0, we will assume k ≥ 3. Then 32k−4 |
[Q(x) : Q] by Proposition 4.1. Since gonQ(X1(27)) = 6, it follows that gonQ(X1(3k)) is at
most

6 · deg(X1(3k)→ X1(27)) = 6 · (3k−3)2 = 2 · 32k−5 < 3 · 32k−5 = 32k−4,

and deg(x) > gonQ(X1(3k)).

• Suppose p = 2. Then k ≤ 4 by Proposition 4.1. If k ≤ 3, then X1(2k) is genus 0. As
gonQ(X1(16)) = 2 and no non-cuspidal rational points by [45], again the claim follows. �

5.2. Existence of Sporadic CM Points of Odd Degree.

Proposition 5.2. For any p ≡ 3 (mod 4), there exist sporadic CM points of odd degree on X1(pk)
for k sufficiently large.

Remark 5.3. We note that by work of Aoki [2, Cor. 9.4], there is no CM point of odd degree on
X1(pk) if p is a prime with p ≡ 1 (mod 4).

Proof. For a prime p ≡ 3 (mod 4) and n ∈ Z+ we define δ as follows:

δ :=


b3n/2c − 1, p > 3,

0, p = 3 and n = 1,

b3n/2c − 2, p = 3 and n ≥ 2.

By [10, Thm 2.6] there exists a CM point x ∈ X1(pn) of odd degree

deg(x) = hQ(
√
−p) ·

p− 1

2
pδ,

where hQ(
√
−p) denotes the class number of Q(

√
−p). For n sufficiently large, we will have

hQ(
√
−p) <

7

1600
p2n−b3n/2c.

In particular, this forces n > 1 if p = 3. Thus by Theorem 0.1 of [1],

deg(x) <
7

1600
[PSL2(Z) : Γ1(pn)] ≤ 1

2
gonQ(X1(pn)),

and x is sporadic by [26, Prop. 2]. �
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Remark 5.4. Suppose p ≡ 3 (mod 4) is prime. By [2, Cor. 9.4], a CM elliptic curve with a point
of order pn over an odd degree number field has CM by an order in Q(

√
−p). Thus for distinct

primes p ≡ 3 (mod 4) the sporadic points of Proposition 5.2 necessarily come from CM elliptic
curves that are not isomorphic over Q. Said another way, if Iodd is the set of all sporadic points of
odd degree on all curves X1(N) for N ∈ Z+, then j(Iodd) contains infinitely many CM j-invariants.
Moreover, since the endomorphism algebra End(E) ⊗ Q is an isogeny invariant, these CM elliptic
curves lie in infinitely many distinct Q-isogeny classes.

6. Beyond Powers of a Single Prime

In fact, studying points of odd degree on X1(pk) associated to non-CM Q-curves is not far from
the case of such points of odd degree on X1(n). Since any such Q-curve E is isogenous to an
elliptic curve E′ with rational j-invariant, it follows that E′ corresponds to a point of odd degree
on X0(p) for any odd prime p dividing n. As shown in [15, Proposition 3.3], this generally implies
that E′ must in fact correspond to a point in X0(p)(Q). Thus the support of n is constrained by
the possible rational isogenies of elliptic curves over Q, as in Theorem 2.2. This can be used to
prove the following result, which generalizes [9, Theorem 3].

Proposition 6.1. Let x = [E,P ] ∈ X1(N) be a point of odd degree, where E is a non-CM Q-curve.
Then N = 2apk for p ∈ {3, 5, 7, 11, 13} unless E is in the isogeny class of an elliptic curve over Q
with a rational cyclic 21-isogeny. If k > 0, then we obtain the following bounds on a:

(1) If p = 3, then a ≤ 2.
(2) If p = 5, then a ≤ 1.
(3) If p = 7, then a ≤ 2.
(4) If p = 11, then a ≤ 1.
(5) If p = 13, then a ≤ 1.

After establishing a preliminary lemma in §6.1, we prove Proposition 6.1 in §6.2. From the proof
of Proposition 6.1, we also deduce the following:

Corollary 6.2. Let x ∈ X1(4 · pk) be a point of odd degree associated to a non-CM Q-curve E,
where k > 0. Then:

(1) If p = 3 and E is not isogenous to E′ with j(E′) ∈ {32 · 233/26,−33 · 113/22}, then E is
Q-isogenous to an elliptic curve E′′/Q with a rational cyclic 6-isogeny or with a rational
cyclic 3-isogeny and full 2-torsion (but no 4-isogeny) in a cubic extension.

(2) If p = 7 and E is not isogenous to E′ with j(E′) ∈ {−33 · 13 · 4793/214, 33 · 13/22}, then E
is Q-isogenous to an elliptic curve E′′/Q with a rational cyclic 7-isogeny and full 2-torsion
(but no 4-isogeny) in a cubic extension.

6.1. A Preliminary Result.

Lemma 6.3. Let E and E′ be non-CM elliptic curves which are F -isogenous and suppose that E
has a pn-isogeny over F . Then E′ has either 2 independent F -isogenies of degrees pn−t and pt for
some t, or E′ has a pa-isogeny over F , where a ≥ min{n, 1 + n

2 }.

Proof. Let f : E → E′ be a cyclic F -isogeny (which is unique up to sign). If deg f is coprime to p,
then E′ has a pn-isogeny defined over F and we are done. If deg f = pt · b where (b, p) = 1, then
there exists a curve E0 which is b-isogenous to E′ and its p-adic representation will be the same as
that of E′, so will have the same degrees of p-power isogenies as E′. Hence we can suppose without
loss of generality that deg f = pt, as otherwise we work with E0 instead of E′.

Let f1 : E → E1 be the pn-isogeny that E has by our assumptions. If ker f1 ∩ ker f = {O}, then

f1 ◦ f̂ is a pt+n-isogeny over F and we are done. If ker f1 ⊇ ker f then f1 factors as f1 = f2 ◦ f ,
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where f2 : E′ → E1 is a pn−t-isogeny over F which is independent with the pt-isogeny f̂ : E′ → E.
If ker f ⊇ ker f1, then we have t ≥ n and the isogeny pt-isogeny f̂ : E′ → E again completes this
case.

Suppose finally that ker f1 ∩ ker f 6= {O} and that neither of ker f1 and ker f is contained in the
other (this implies n, t ≥ 2). Then there exists an elliptic curve E2 and a pm-isogeny f2 : E → E2

defined over F such that both f and f1 factor through f2; we choose E2 and m such that m is
the largest integer satisfying this condition. Let f = f3 ◦ f2 and f1 = f4 ◦ f2. Now we see that
f̂ : E′ → E is a pt-isogeny over F and f4 ◦ f̂3 : E′ → E1 is an p(t−m)+(n−m)-isogeny over F . We
have 1 ≤ m < t and m < n, so if m ≥ n

2 , then we have t = (t−m) +m ≥ 1 + n
2 and if m < n

2 , then
(t−m) + (n−m) ≥ 1 + n

2 . �

6.2. Proof of Proposition 6.1. Let F := Q(x), and fix a model of E/F with P ∈ E(F ). By
Proposition 4.1, Supp(N) ⊆ {2, 3, 5, 7, 11, 13}. By Theorem 2.4, there exists an F -rational isogeny
ϕ : E → E′ such that j(E′) ∈ Q. Let p | N be prime. Since E has a p-isogeny defined over
F , so does E′ by Proposition 3.2 of [15]. If p is odd, then since F has odd degree, it follows by
Proposition 3.3 in [15] that any E′′/Q with j(E′′) = j(E′) has a rational cyclic p-isogeny or else
p = 7 and j(E′) = 33 · 5 · 75/27.

For now, suppose j(E′) 6= 33 · 5 · 75/27. If distinct odd primes p, q divide N , then E′′/Q has
a rational cyclic pq-isogeny. By the classification of rational isogenies over Q (see Theorem 2.2),
this cannot happen unless E′′ has a rational cyclic 15- or 21-isogeny. By the theorem statement, it
suffices to consider the case where E′′ has a rational cyclic 15-isogeny. For the sake of contradiction
assume N = 2a3b5c for b, c > 0. By Corollary 4.3, there is an extension F1/F of degree dividing 3
such that E′(F1) has a point of order 3. Similarly, there is an extension F2/F of degree dividing 5
such that E′(F2) has a point of order 5. It follows that E′ has a point of order 15 over F1F2, which
has odd degree over Q. This contradicts Proposition 15 in [9]. If j(E′) = 33 · 5 · 75/27, then E′′ has
no rational isogenies over Q, so it does not gain a p-isogeny, for odd primes p 6= 7, over any odd
degree number field; the first part of the result follows.

Now, suppose b > 0. Suppose first that E′′ has a 2-torsion point over Q, which implies by
Theorem 2.2 that p ≤ 7. Then any subgroup of ρE′′,2∞(GalQ) will be of order which is a power
of 2, from which we conclude that ρE′′,2∞(GalQ) = ρE′′,2∞(GalF ). Thus all the 2-power isogenies
of E′′ which are defined over F are already defined over Q. So, by Lemma 6.3 it follows that if
a ≥ 3, E′′ has either an 8-isogeny or a 4-isogeny which is independent to a 2-isogeny. But now it is
not possible that b > 0, as now it would follow that E′′ has an 8p-isogeny over Q, or is isogenous
over Q to an elliptic curve with an 8p-isogeny over Q. If a = 2, then Lemma 6.3 implies E′′/Q has
either a 4-isogeny or independent 2-isogenies, and thus E′′ is isogenous over Q to an elliptic curve
with a rational cyclic 4p-isogeny. This cannot happen if p = 5, 7.

The case when E′′ has no 2-torsion point over Q remains. Hence E′′ gains a point of order 2 over
a cubic field K. Since ρE′′,2∞(GalK) = ρE′′,2∞(GalF ), if follows that if E′′ has a 2k-isogeny over F
then this same isogeny is defined over K. By Lemma 6.3 if a > 1, then in particular E′′ has either
a K-rational 4-isogeny or full 2-torsion over K. If a ≥ 3, then by Lemma 6.3, E′′ has a 4-isogeny
over K.

If E′′/Q has a cyclic 4-isogeny over K, it follows that E′′ has a point of order 4 over K or over a
quadratic extension of K. By the classification of 2-adic images due to Rouse and Zureick-Brown
[54] (see, in particular, the data file 2primary Ss.txt associated to [27]), this means E′′ corresponds
to a rational point on the modular curve X20. Recall that if j(E′′) 6= 33 · 5 · 75/27, then E′′ also
has a rational cyclic p-isogeny.

(1) If E′′ corresponds to a rational point on the fiber product of X20 and X0(3), then j(E′′) =
32 · 233/26 or −33 · 113/22 by [16, Prop. 6]. An elliptic curve with either j-invariant
gives points on X0(8) of even degree only, so ord2(deg(ϕ)) ≤ 2. Suppose for the sake of
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contradiction that E(F ) has a point of order 8. Then some elliptic curve 2-isogenous to E′′

must correspond to a point of odd degree on X1(4). A Magma computation shows no such
curve exists; see the research website of either author.

(2) The fiber product of X20 and X0(5) has only cusps by [16, Prop. 6k].
(3) If E′′ corresponds to a rational point on the fiber product of X20 and X0(7), then j(E′′) =
−33 · 13 · 4793/214 or 33 · 13/22 by [16, Prop. 6s]. As in the fiber product of X20 and
X0(3), these two elliptic curves give no points of odd degree on X0(8), and no elliptic curve
2-isogenous to E′′ gives a point on X1(4) of odd degree. Thus a ≤ 2. In this case, it is
possible that E′′/Q does not have a rational cyclic 7-isogeny, but then j(E′′) = 33 ·5 ·75/27.
Suppose E′′ is an elliptic curve with j(E′′) = 33 ·5 ·75/27 and let ψE′′(n) be its n-th division
polynomial. We check that ψE′′(4)/ψE′′(2), the polynomial whose roots are x-coordinates
of points of order 4 on E′′ and hence generate the fields over which E′′ has a 4-isogeny, is
an irreducible degree 6 polynomial, so we conclude that E′′ has no 4-isogenies over any odd
degree number field.

(4) If E′′ corresponds to a rational point on X0(11), then j(E′′) = −11 · 1313 or −112 (see, for
example, [46, Table 4]). As before, we may choose a specific elliptic curve over Q with each
j-invariant and use division polynomials to show E′′ does not have a 4-isogeny over any
odd degree number field.

(5) The fiber product of X3 and X0(13) has only cuspidal rational points by [17, Table 8], and
thus so does the fiber product of X20 and X0(13) since X20 covers X3.

Suppose now E′′ has full 2-torsion over K but no 4-isogeny; in particular, as noted above, this
can happen only if a ≤ 2. Then ρE′′,2(GalQ) is cyclic and we see that p 6= 5, 13 by [17, Tables 8 &
11] and p 6= 11 by checking that the curves with 11-isogenies over Q (i.e j(E′′) ∈ {−11 ·1313,−112})
have surjective mod 2 representations. Hence the only remaining possibilities are p = 3, 7. We see
that j(E′′) = 33 · 5 · 75/27 does not appear in this case as for E with this j-invariant im ρE,2 ' S3.

7. Proof of Theorem 1.4

In this section, we prove our main result: If x ∈ X1(N) is a point of odd degree corresponding
to a non-CM Q-curve E and deg(x) < gonQ(X1(N)), then E belongs to the Q-isogeny class of
an elliptic curve with j-invariant −140625/8. By Proposition 6.1 and Theorem 1.5, it suffices to
address the case where N = 2pb or 4pb for an odd prime p. If p > 3, the general strategy is to show
that the existence of such a low degree point would force a point on X1(2p) or X1(4p) which is
known not to exist. (See §7.1.) This is inspired by the approach of [8] and [9], with the distinction
being that the point on X1(2p) or X1(4p) is associated to an elliptic curve in the Q-isogeny class
of E rather than E itself. The prime p = 3, addressed in §7.2, requires a different approach.
There, we show such a low degree point on X1(2 · 3k) or X1(4 · 3k) would force the existence of
an elliptic curve over Q with unexpected entanglement between its 2- and 27-torsion point fields.
These elliptic curves correspond to rational points on one of 10 possible curves, all of which have
genus at least 2. In §7.3, we determine the elliptic curves which correspond to rational points on
each of these 10 curves and show that none are Q-isogenous to a non-CM elliptic curve producing
a point of odd degree on X1(N) with deg(x) < gonQ(X1(N)).

7.1. Points on X1(2apk) for p > 3. In this section, we show if p > 3 is prime, there are no
sporadic points of odd degree on X1(2pk) associated to non-CM Q-curves. We also show that there
are no sporadic points of odd degree X1(4 · 7k) associated to a non-CM Q-curve E.

Lemma 7.1. Let p be prime. Suppose E/F is a non-CM elliptic curve with [E,C] ∈ X0(p)(Q(j(E))).

If Q ∈ E(F ) is a point of order p, then there is a subfield of F of degree dividing p−1
2 · [Q(j(E)) : Q]

that is the residue field of a point on X1(p) associated to either E or E/C.
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Proof. If 〈Q〉 = C, the result follows by [7, Thm. 5.5], so suppose not. Let ϕ : E → E′ := E/C,
viewed as an isogeny of elliptic curves over F . Then ϕ(Q) ∈ E′(F ) is a point of order p, and since
ϕ̂(ϕ(Q)) = [p]Q = O this point generates ker(ϕ̂). Since [E′, ker(ϕ̂)] ∈ X0(p)(Q(j(E)), the residue

field of [E′, ϕ(Q)] ∈ X1(p) has degree dividing p−1
2 · [Q(j(E)) : Q] by [7, Thm. 5.5] and is contained

in F , as desired. �

Proposition 7.2. Suppose x ∈ X1(2pk) is a point of odd degree corresponding to a non-CM Q-
curve, where p ≥ 5 is prime. Then deg(x) ≥ gonQ(X1(2pk)). In particular, x is not sporadic.

Proof. Let F := Q(x), and let E/F be the non-CM Q-curve associated to x with an F -rational
point of order 2pk. Suppose deg(x) < gonQ(X1(2pk)). Since X1(2) and X1(10) have genus 0, we
may always assume k ≥ 1 and that k ≥ 2 if p = 5. By Theorem 2.4, there exists an F -rational
isogeny ϕ : E → E′ such that j(E′) ∈ Q. In this case, it follows from Proposition 2.3 that there
exists a cyclic subgroup C of E′ such that [E′, C] ∈ X0(p)(Q) or else p = 7 and j(E′) = 33 ·5 ·75/27.

For now, suppose that if p = 7 then j(E′) 6= 33 · 5 · 75/27. From Proposition 4.1, we have
p ∈ {5, 7, 11, 13} and d0 | [F : Q] where

d0 =


52k−3 if p = 5,

72k−2 if p = 7,

5 · 112k−2 if p = 11,

3 · 132k−2 if p = 13.

Since we have assumed deg(x) < gonQ(X1(2pk)) and deg(x) is odd, it must be that [F : Q] = d0.
Indeed, by Proposition 2.7 and the Q-gonality bounds on X1(14), X1(22), X1(26) and X1(50) from
Table 1 in [22], we see that gonQ(X1(2pk)) ≤ 3d0. In fact, if p = 11, it follows that gonQ(X1(2 ·
11k)) ≤ 4 · 112k−2 < d0, so the claim follows already in this case.

Suppose for the sake of contradiction that [F : Q] = d0, and let ϕ : E → E′ be the F -rational
isogeny defined above. It follows from Corollary 4.3 that E′ has a point Q of order p over a field
extension F ′/F of degree dividing p. By composing ϕ with the F -rational isogeny E′ → E′/C
induced by [E′, C] ∈ X0(p)(Q) and replacing E′ with E′/C if necessary, we may assume by Lemma
7.1 that the residue field of [E′, Q] ∈ X1(p) has degree dividing (p− 1)/2 and is contained in F ′.

Since E′ also has a 2-isogeny over F (because E does), together these imply E′ has a point P of
order 2p over F ′, a field of degree dividing pd0. Let y := [E′, P ] ∈ X1(2p), and let y1 := [E′, 2P ] =
[E′, Q] ∈ X1(p) and y2 := [E′, pP ] ∈ X1(2) be the induced points. Since Proposition 4.1 applies
in particular to any non-CM elliptic curve with rational j-invariant, we see that 3 - [F ′ : Q(y1)].
Thus Q(y) = Q(y1)Q(y2) = Q(y1). Since y1 has odd degree dividing both pd0 and (p− 1)/2, then
Proposition 4.1 shows

deg(y1) =

{
1 if p = 5, 7

3 if p = 13.

Since Q(y) = Q(y1), we have an elliptic curve with rational j-invariant possessing a point of
order 2p over a field of the degree indicated above. If p = 13, this contradicts Gužvić [32]. If p = 7,
this contradicts Mazur [47]. If p = 5, then in particular this implies any elliptic curve E′′/Q with
j(E′′) = j(E′) has a rational cyclic 2-isogeny. Thus E′′ cannot have a rational cyclic 25-isogeny
or two independent 5-isogenies, and Proposition 2.1 shows that ord5([GL2(Z5) : im ρE′′/Q,5∞ ]) = 0.

Then Lemma 4.6 shows in fact 52k−2 | [F : Q], and we have reached a contradiction.

Finally, suppose j(E′) = 33 ·5·75/27 and p = 7. Then by Proposition 4.1, we have 3·7max(0,2k−3) |
[F : Q]. As above, E′ attains a point of order 2 · 7 in an extension F ′/F of degree dividing 7. For a
fixed elliptic curve E′′/Q with j(E′′) = 33 · 5 · 75/27, we may compute the 14-division polynomials
to see that 33 divides the degree of the residue field of any point of odd degree on X1(14) associated
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to E′′. Thus 33 | [F ′ : Q], and together these imply 33 · 7max(0,2k−3) | [F : Q]. As above, we see
gonQ(X1(2 · 7k)) ≤ 2 · 72k−2 < [F : Q], as desired. �

Proposition 7.3. Let x ∈ X1(4 · 7k) be a point of odd degree corresponding to a non-CM Q-curve
E. Then deg(x) ≥ gonQ(X1(4 · 7k)). In particular, x is not sporadic.

Proof. Let x ∈ X1(4 · 7k) be a point of odd degree corresponding to a non-CM Q-curve E. Since
X1(4) has genus 0, we may assume k > 0. Let F := Q(x), and fix a model of E/F with an
F -rational point of order 4 · 7k. By Theorem 2.4, there is an F -rational cyclic isogeny ϕ : E → E′

such that j(E′) ∈ Q. Let E′′/Q be an elliptic curve with j(E′′) = j(E′). For now, suppose
j(E′′) /∈ {−33 · 13 · 4793/214, 33 · 13/22}. By Corollary 6.2, we may assume E′′ has a rational cyclic
7-isogeny and full 2-torsion (but no 4-isogeny) over a cubic extension K. In particular, this means
j(E′) 6= 33 · 5 · 75/27.

Suppose for the sake of contradiction that deg(x) < gonQ(X1(4 · 7k)). By Proposition 4.1, we

know that 72k−2 | [F : Q]. Since E′′ corresponds to a degree 3 point on X1(2) and E′(F ) has a
point of order 2 (since E(F ) does), it follows that 3 | [F : Q]. Together, this gives

3 · 72k−2 | [F : Q].

Since X1(28) has Q-gonality 6 by [22], it follows that gonQ(X1(4 · 7k) ≤ 6 · 72k−2. Thus our

assumption that deg(x) < gonQ(X1(4 · 7k)) and is of odd degree implies

deg(x) = [F : Q] = 3 · 72k−2.

As in the proof of Proposition 6.1, we have ρE′′,2∞(GalK) = ρE′′,2∞(GalF ), and in particular
E′′ has no 4-isogeny over F . Thus E′/F has no 4-isogeny. It follows that ord2(deg(ϕ)) = 1. If
ker(ϕ) = 〈P 〉, we see that ϕ factors over F as

E
ϕ1−→ E0 := E/〈2P 〉 ϕ2−→ E′.

Since 2 - deg(ϕ1), there is a point of order 4 in E0(F ), since E(F ) has such a point. By Corollary
4.3, the curve E′ has a rational point of order 7 in an extension of F ′/F of degree dividing 7. Since
E′/F ′ has a point of order 7 and deg(ϕ̂2) = 2, it follows that E0 has a point of order 7—and hence
a point of order 28—over F ′. That is, there exists a := [E0, Q] ∈ X1(28) of odd degree dividing
3 · 72k−1.

We note that [Q(j(E0)) : Q] = 3, since ϕ̂2 has degree 2 and any point on X0(2) associated to E′

has degree 3. In fact, Q(ϕ̂2) = Q(j(E0)) = K for the cubic extension K defined above. Moreover,
any E1/K with j(E1) = j(E0) will have a rational cyclic 7-isogeny and rational point of order 2,
since E′′ does. Thus E0 corresponds to a point of degree 3 on X1(2), and this is the only possible
degree of a point onX1(2) associated to E0 having odd degree. It follows that a1 := [E0, 7Q] ∈ X1(4)
has degree 3 as well since it has odd degree and its degree over [E0, 14Q] ∈ X1(2) divides 22 by
Proposition 4.6 in [28]. Since there exists [E0, C] ∈ X0(7)(Q(j(E0))), by replacing E0 with E0/C if
necessary we may assume by Lemma 7.1 that a2 := [E0, 4Q] ∈ X1(7) has degree dividing 3· 7−1

2 = 9.
Thus it must have degree 3. Since Q(a1)Q(a2) is contained in Q(a), it must be that Q(a1)Q(a2)
has degree 3. As Q(a) is at most a quadratic extension of this field, it follows that Q(a) has degree
3. But this contradicts Theorem A in [20].

Finally, assume j(E′′) ∈ {−33 · 13 · 4793/214, 33 · 13/22}, and let K0 denote the residue field of
the degree 3 point on X1(2) associated to E′′. As noted above, K0 ⊆ F , and by Corollary 4.3, E′

must have a point of order 7 over F (ζ7). A computation in Magma shows the 7-division polynomial
of E′′ over K0(ζ7) factors as a product of irreducible polynomials of degree 3 and 21, which shows
that any F over which E′ is isogenous to an elliptic curve with a point of order 28 is divisible by
9. Thus by Proposition 4.1, F is divisible by 9 · 72k−2 and the claim follows. �
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7.2. Points on X1(2a · 3k). Let x ∈ X1(2a3k) be a point of odd degree associated to a non-CM
Q-curve E. In this section, we show that deg(x) < gonQ(X1(2a3k)) would imply E is Q-isogenous
to an elliptic curve corresponding to a rational point on one of 10 curves of genus at least 2.

Lemma 7.4. Let E be an elliptic curve over Q, and let p be an odd prime. If p > 3 and E has no
point of order 2 over Q(E[p]), then E has no point of order 2 over Q(E[pk]) for any k ∈ Z+. If
p = 3 and E has no point of order 2 over Q(E[3d+1]), where 3d is the level of ρE,3∞, then E has

no point of order 2 over Q(E[3k]) for any k ∈ Z+.

Proof. We follow the approach of Proposition 6.1 in [8] and Lemma 19 in [9]. For s ∈ Z+, let

Ls := ker(im ρE,2·ps → im ρE,ps),

Ks := ker(im ρE,2·ps → im ρE,2),

K := ker(im ρE,2·p∞ → im ρE,2).

We may view Ls as a subgroup of im ρE,2 and Ks as a subgroup of im ρE,ps . Moreover, by Goursat’s
Lemma (see e.g., [42, pg75] or [29]) we have the following diagram:

im ρE,ps/Ks
// //

∼=
��

im ρE,p/K1

∼=
��

im ρE,2/Ls // // im ρE,2/L1

The order of the kernel of the top map is a power of p, and so the order of the kernel of the bottom
map is as well. Thus [L1 : Ls] is a power of p, and more generally [Ls1 : Ls2 ] is a power of p for all
1 ≤ s1 ≤ s2. If p > 3, it follows that for all s ∈ Z+ we have L1 = Ls and

Q(E[2]) ∩Q(E[ps]) = Q(E[2]) ∩Q(E[p]).

In particular, if E has no point of order 2 over Q(E[p]), then E has no point of order 2 over Q(E[pk])
for any k, as desired. Thus we may henceforth assume p = 3.

Suppose E has no point of order 2 over Q(E[3d+1]). The x-coordinate of any 2-torsion point
generates a degree 3 extension of Q(E[2])∩Q(E[3d+1]) contained in Q(E[2]), from which is follows
that 3 | #Ld+1. Similarly, 3 | #Ld. Since #Li | 6 for all i and [Ld : Ld+1] is a power of 3, it follows
that Ld = Ld+1. Again by Goursat’s Lemma

im ρE,3d+1/Kd+1
// //

∼=
��

im ρE,3d/Kd

∼=
��

im ρE,2/Ld+1 im ρE,2/Ld

By assumption, im ρE,3d+1 = π−1(im ρE,3d), and so this diagram implies

ker(K mod 3d+1 → K mod 3d) = I + M2(3dZ/3d+1Z).

By Proposition 3.5 of [8],

ker(K → K mod 3d) = I + 3dM2(Z3),

and so im ρE,2·3∞ = π−1(im ρE,2·3d). This means E has no point of order 2 over Q(E[3k]) for any

k ∈ Z+. �

Lemma 7.5. Let p be prime and let F be a number field of odd degree. Suppose E/F is a non-
CM elliptic curve with P ∈ E(F ) of order pk, and let ϕ : E → E′ be an F -rational isogeny with
deg(ϕ) = pa and j(E′) ∈ Q. If x = [E,P ] ∈ X1(pk), then for any E′′/Q with j(E′′) = j(E′), we
have

Q(x) ⊆ Q(E′′[p∞]).
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Proof. Let ϕ : E → E′ be the F -rational isogeny as in the lemma statement. By considering the
dual isogeny ϕ̂ : E′ → E, we may view E as the quotient of E′ by some cyclic subgroup C of order
pa. By Lemma 2.8,

F ′ := Q(j(E), j(E′)) = Q(j(E))

is the residue field of [E′, C] ∈ X0(pa). Thus, by replacing E,E′ with elliptic curves over F ′ having
the same j-invariant if necessary (which is permissible since Q(x) is model-independent), we may
view ϕ̂ : E′ → E as a cyclic isogeny of elliptic curves over F ′. It follows that

F ′(E′[p∞]) = F ′(E[p∞]).

Since Q(x) is an extension of F ′ contained in F ′(E[p∞]), we have that Q(x) ⊆ F ′(E′[p∞]). Now,
let E′′ be an elliptic curve over Q with j(E′′) = j(E′). Then there exists a quadratic extension
L/F ′ over which E′ and E′′ become isomorphic. Thus

Q(x) ⊆ L(E′′[p∞]) = L(E′[p∞]).

But since F ′ ⊆ Q(E′′[p∞]), it follows that L(E′′[p∞]) is at most a degree 2 extension of Q(E′′[p∞]).
Since Q(E′′[p∞]) is a Galois extension and [Q(x) : Q] is odd, it must be that Q(x) ⊆ Q(E′′[p∞]). �

Lemma 7.6. Suppose E/Q is an elliptic curve with im ρE,3∞ contained in one of the following
groups:

9H0-9a, 9H0-9b, 9H0-9c

9J0-9a, 9J0-9b, 9J0-9c

Then the mod 2 Galois representation associated to E is surjective.

Proof. First, note that E cannot have a rational point of order 2. The fiber product of 9C0-9a with
X0(2) has no non-CM, non-cuspidal points by [9, proof of Prop. 23], so it remains to check the
fiber product of X0(2) with each of the first 3 groups listed (since the latter 3 all cover 9C0-9a).

Suppose Q(E[2]) is a cyclic cubic extension of Q. Then im ρE,3∞ cannot be contained in 3D0-3a
as an elliptic curve cannot have simultaneously this mod 3 image and a cyclic mod 2 image of order
3 by [17, Tables 8 & 11]. Thus since the first 3 groups cover 3D0-3a, we may assume im ρE,3∞ is
contained in

9J0-9a, 9J0-9b, 9J0-9c.

For each group we compute the fiber product (over X0(1)) of the modular curve parameterizing
elliptic curves E with cyclic im ρE,2 with the modular curve parameterizing elliptic curves with
mod 9 image contained in the respective groups. In all the cases we get genus 2 curves with
Jacobian of rank 0 over Q and an easy computation shows that none of the modular curves have
any non-cuspidal rational points. See the research website of either author for the code used. �

Proposition 7.7. Let x = [E,P ] ∈ X1(2 · 3k) be a point of odd degree, where E is a non-CM
Q-curve. If deg(x) < gonQ(X1(2 · 3k)), then E is Q-isogenous to an elliptic curve corresponding to
a rational point on XHi for 1 ≤ i ≤ 6, where Hi is as defined in the appendix. In particular, since
all curves XHi have genus at least 2, x is not sporadic unless E is Q-isogenous to one of a finite
number of elliptic curves over Q.

Proof. Let F := Q(x), and fix a model of E/F with P ∈ E(F ). We may assume k ≥ 2 since X1(6)
has genus 0. Since X1(18) has Q-gonality 2 by [22], it follows that gonQ(X1(2 · 3k)) is at most

deg(X1(2 · 3k)→ X1(18)) · 2 = 32k−4 · 2.
Since we have assumed deg(x) < gonQ(X1(2 · 3k)) and 32k−4 | [F : Q] by Proposition 4.1, it must

be that [F : Q] = 32k−4. Note in this case Proposition 4.1 also implies F = Q(f(x)), where
f : X1(2 · 3k)→ X1(3k).
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By Theorem 2.4, there exists an F -rational isogeny ϕ : E → E′ such that j(E′) ∈ Q. We may
assume ϕ is cyclic and generated by a point Q of order 3a ·n where 3 - n. If n > 1, then we replace
E with the quotient E/〈3aQ〉. This new curve has a point of order 3k, and also a rational cyclic
2-isogeny (since E has one). Thus, by replacing E by this quotient if necessary, we may assume ϕ
has degree 3a.

Now, let E′′ be an elliptic curve over Q with j(E′′) = j(E′). By Lemma 7.5, we have F ⊆
Q(E′′[3∞]). Also, since E has a rational 2-isogeny over F , so does E′′. That is, there exists a point
P0 ∈ E′′ of order 2 such that the residue field of [E′′, P0] ∈ X1(2) is contained in Q(E′′[3∞]).

It follows from Lemma 4.6 that

3max(0,2k−2−d) | [F : Q]

where d = ord3([GL2(Z3) : im ρE′′/Q,3∞ ]). Since [F : Q] = 32k−4, it must be that d ≥ 2. Thus d = 2
by Proposition 2.1, and E′′ must have a rational cyclic 3-isogeny over Q by Proposition 3.3 in [15].
Thus im ρE′′,3∞ is contained in one of the following by Appendix A of [9] (see also index data in
Table 1 of [61]):

9H0-9a, 9H0-9b, 9H0-9c

9I0-9a, 9I0-9b, 9I0-9c

9J0-9a, 9J0-9b, 9J0-9c

27A0-27a

Since it suffices to identify a single elliptic curve over Q in the Q-isogeny class of E, we are
free to replace E′′ with a different elliptic curve in its Q-isogeny class. In particular, since any
elliptic curve with a rational cyclic isogeny of degree 9 is isogenous to an elliptic curve with two
independent 3-isogenies, we may assume E′′ does not have a rational cyclic 9-isogeny. That is, we
may assume im ρE′′,3∞ is contained in one of the following:

9H0-9a, 9H0-9b, 9H0-9c

9J0-9a, 9J0-9b, 9J0-9c

Note that it is still the case that E′′ has a point P0 of order 2 defined over Q(E′′[3∞]).
First, note that the mod 2 Galois representation associated to E′′ is surjective by Lemma 7.6.

Thus Q(P0) is a cubic extension contained in Q(E′′[3∞]). Since the latter extension is Galois,
it follows that Q(E′′[2]) ⊆ Q(E′′[3∞]). By Lemma 7.4, we have Q(E′′[2]) ⊆ Q(E′′[33]). We use
Magma to search for subgroups of GL2(Z/54Z) which could be the image of the mod 54 Galois
representation associated to E′′, following the method of [9, Prop. 24]. This results in a list of
30 possible subgroups (up to conjugacy), but for each the mod 18 reduction is (conjugate to) a
subgroup of one of the groups Hi for 1 ≤ i ≤ 6; see the appendix for a list of generators for each
Hi. See the research website of either author for the code used. In each case, the genus of XHi is
at least 2. �

Proposition 7.8. Let x ∈ X1(4 · 3k) be a point of odd degree corresponding to a non-CM Q-curve
E. If deg(x) < gonQ(X1(2 · 3k)), then E is Q-isogenous to an elliptic curve corresponding to a
rational point on XHi for 7 ≤ i ≤ 10, where Hi is as defined in the appendix. In particular, since
all curves XHi have genus at least 2, x is not sporadic unless E is Q-isogenous to one of a finite
number of elliptic curves over Q.

Proof. Let x ∈ X1(4 · 3k) be a point of odd degree corresponding to a non-CM Q-curve E,
and suppose deg(x) < gonQ(X1(2 · 3k)). Since X1(4) and X1(12) have genus 0, we may assume

k > 1. Let F := Q(x), and fix a model of E/F with an F -rational point of order 4 · 3k. By
Theorem 2.4, there is an F -rational cyclic isogeny ϕ : E → E′ such that j(E′) ∈ Q. Suppose first
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that j(E′) ∈ {32 · 233/26, −33 · 113/22}. Since these elliptic curves lie in the same isogeny class,
it suffices to consider only one of them, so suppose j(E′) = −33 · 113/22. Let E′′/Q be an elliptic
curve with j(E′′) = j(E′) = −33 · 113/22. We check that 3-adic image (with ±I added) is 3B0-3A;
we do this by showing that jG(t) = j(E′′) has no roots for all minimal subgroups G of 3B0-3A.
Hence

ord3([GL2(Z3) : im ρE′′/Q,3∞ ]) = ord3([GL2(Z/3Z) : im ρE′′/Q,3]) = 0.

Thus by Lemma 4.6,

32k−2 | [F : Q].

Since X1(36) has Q-gonality 8 by [22], it follows that gonQ(X1(4·3k)) ≤ 8·32k−4 < 9·32k−4 = 32k−2,
and we have a contradiction.

Henceforth we may assume j(E′) /∈ {32 · 233/26, −33 · 113/22}, and so by Corollary 6.2, any
E′′/Q with j(E′′) = j(E′) has a rational cyclic 3-isogeny and either (a) a rational point of order 2
or (b) full 2-torsion over a cubic extension but no 4-isogeny over this extension.

First, suppose E′′ has a rational point of order 2. Then as in the third paragraph of the proof of
Proposition 6.1, E′′ has either a rational cyclic 4-isogeny or independent 2-isogenies. In particular,
this means that E′′ cannot correspond to a rational point on X3D0-3a = X0(3, 3), X9B0-9a = X0(9)
by Kenku [40]. In addition, E′′ cannot correspond to a rational point on X9C0-9a since the fiber
product of this curve with X0(2) has no non-cuspidal, non-CM rational points, as in the proof
of Proposition 23 in [9]. Thus we may assume E′′ has 3-adic image 3B0-3a, and we reach a
contradiction as before.

Now we suppose E′′ has full 2-torsion over a cubic extension but no 4-isogeny over this cubic
field. Recall that if E′′ has full 2-torsion over a cubic extension, then its discriminant is a square
and it corresponds to a rational point on X2A0-2a. As shown in Proposition 24 of [9], this implies
E′′ cannot have a 9-isogeny or two independent 3-isogenies. We have already shown E′′ cannot
have 3-adic image 3B0-3a, so it must be that E′′ corresponds to a rational point on the modular
curve X9C0-9a. By Lemma 7.6, we may assume the 3-adic image of E′′ is 9C0-9a.

Since ord3([GL2(Z3) : im ρE′′/Q,3∞ ]) = 1, by Lemma 4.6, we know that 32k−3 | [F : Q]. Since, as

we have already noted, gonQ(X1(4 ·3k)) ≤ 8 ·32k−4, it must be that [F : Q] = 32k−3. Let ϕ : E → E′

as defined above. We may assume ϕ is cyclic and generated by a point Q of order 3a ·n where 3 - n.
The isogeny ϕ factors over F as

E
ϕ1−→ E0 := E/〈3aQ〉 ϕ2−→ E′.

The curve E0 has an F -rational point of order 3k, and also a rational cyclic 2-isogeny (since E has
one). That is, it has an F -rational point P0 of order 2 · 3k. Moreover, by Lemma 4.6, 32k−3 divides
the residue field of x′′ := [E0, P0] ∈ X1(2 · 3k). Since [F : Q] = 32k−3, we may conclude Q(x′′) has
degree exactly 32k−3 and Q(x′′) = F . In addition, F = Q(f(x′′)), where f : X1(2 · 3k)→ X1(3k).

By applying Lemma 7.5 to ϕ2 : E0 → E′, we see that F ⊆ Q(E′′[3∞]). Also, since E′ has a
rational 2-isogeny over F , so does E′′. That is, there exists a point P ′′ ∈ E′′ of order 2 such that the
residue field of [E′′, P ′′] ∈ X1(2) is contained in Q(E′′[3∞]). Since the 3-adic image of E′′ is 9C0-9a,
by Lemma 7.4 we have Q(E′′[2]) ⊆ Q(E′′[33]). A Magma computation following the method of
[9, Prop. 24] shows that there are 4 possible subgroups of GL2(Z/18Z)—up to conjugacy—that
could be the image of the mod 18 Galois representation associated to E′′. These correspond to the
groups H7, H8, H9, or H10 as defined in the appendix. In each case, XHi has genus at least 2. See
the research website of the either author for the code used. �

7.3. Points on modular curves. In this section, we find the rational points on the curves XHi ,
as in Propositions 7.7 and 7.8. Recall each Hi is a subgroup of GL2(Z/18Z), as defined in the
appendix. There are two non-CM j-invariants associated to rational points on these curves (see
Lemma 7.12), and the corresponding elliptic curves lie in a single isogeny class. In Proposition
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7.13, we show there are no points of odd degree on X1(4 · 3k) associated to curves in this isogeny
class, completing the proof of Theorem 1.4.

Lemma 7.9. All the non-cuspidal rational points on the modular curves XHi for i = 1, 2 and 3
correspond to elliptic curves with j = 0.

Proof. Let E be an elliptic curve corresponding to a point on one of the modular curves XHi . There
exists a modular group H of level 6 and genus 1 in which all Hi are of index 3. We compute that
H modulo 3 is 3D0-3a so j(E) = f3(t), and using Table 1 in [61] we compute that

f3(t) =
(t(t+ 6)(t2 − 6t+ 36))3

((t− 3)(t2 + 3t+ 9))3
.

Furthermore, H ∩ SL(2,Z/6Z) modulo 2 is cyclic of order 3, which means that ∆(E) is a square
in Q(

√
−3). Let Ef3(t) be an elliptic curve with j-invariant f3(t). We compute that ∆(Ef3(t))

is a square if and only if (t − 3)(t2 + 3t + 9) is a square. Hence, we need to compute all the
Q(
√
−3)-rational points on the elliptic curve

X : y2 = (t− 3)(t2 + 3t+ 9).

We get

t ∈
{

0, 3,−6, 3± 3
√
−3,
−3± 3

√
−3

2

}
,

from which we get 4 cusps and 8 points for which j(Ef3(t)) = 0. See the research website of either
author for the code used. �

Lemma 7.10. All the rational points on XHi for i = 4, 5 and 6 are cusps.

Proof. First we notice that the intersection of the groups Hi for i = 4, 5 and 6 with {A ∈
GL2(Z/18Z) : detA = ±1} are conjugate, which implies that the corresponding modular curves
are isomorphic over Q(ζ9)+. Hence it is enough to find all the Q(ζ9)+-rational points on one of the
curves and show that all of them are cusps.

Using Zywina’s algorithm we compute a model of X := XH4 to be

X : y2 = x5 + 9x4 + 29x3 + 42x2 + 27x+ 6.

Let w be a root of x3− 6x2 + 9x− 3; it generates the extension Q(ζ9)+. To compute X(Q(ζ9)+)
we note that AutQ(ζ9)+ X ' D6, and find an automorphism a such that X/a ' E, where

E : y2 = x3 + (8w2 − 37w + 33)x2 + (22w2 − 126w + 155)x+ (44w2 − 248w + 300).

We have E(Q(ζ9)+) ' Z/2Z × Z/6Z and compute #X(Q(ζ9)+) = 6. The curve X has 6 cusps,
of which 3 are rational. Since all the cusps of X are necessarily defined over some subfield of
Q(ζ9), it follows that the non-rational cusps form one orbit of Q(ζ9)+-rational cusps. Hence all
6 Q(ζ9)+-rational points of X are cusps. See the research website of either author for the code
used. �

Lemma 7.11. The modular curves XH7 has no rational points.

Proof. Using Zywina’s algorithm we find that the non-hyperelliptic genus 4 modular X := XH7 is
given by the equations

−yz + xw = 0 and x3 − 6x2y + 3xy2 + y3 − 9z3 + 27zw2 − 9w3 = 0

in P3. We find that X has 6 automorphisms over Q, and the quotient by one of them is the genus
2 hyperelliptic curve

C : y2 + (x3 + x2 + 1)y = 8x6 − 23x5 + 47x4 − 65x3 + 58x2 − 27x+ 8,
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with Jacobian of rank 0 over Q. Standard techniques easily show that C and hence also X has no
Q-rational points. See the research website of either author for the code used. �

Lemma 7.12. The only rational points on the modular curves XHi for i = 8, 9 and 10 correspond
to elliptic curves with j = 1792 and 406749952

Proof. First we notice that the intersection of the groups Hi for i = 8, 9 and 10 with {A ∈
GL2(Z/18Z) : detA = ±1} are conjugate, which implies that the corresponding modular curves
are isomorphic over Q(ζ9)+. Hence it is enough to find all the Q(ζ9)+-rational points on one of
the curves X and the j-invariants to which these points correspond. Using Box’s modification of
Zywina’s algorithm we obtain a model for X := XH8

X : y2 = x6 − 8x5 + 30x4 − 70x3 + 105x2 − 90x+ 33.

Since the groups Hi are of index 72, the j-map is of degree 72, which is too large to compute
directly. Hence we compute it by using the fact that Hi modulo 9 is 9C0-9a, and the j-map f ′ (of
degree 12) from the modular curve X ′ corresponding to 9C0-9a of genus 0 to X0(1) is known by
[61]. We compute the Hauptmodul h of the function field of X ′ and compute the map f : X → X ′

such that f(x, y) = h(q), which implies that g = f ′ ◦ f is the j-map g : X → X0(1).
Let w be a root of x3− 6x2 + 9x− 3; it generates the extension Q(ζ9)+. To compute X(Q(ζ9)+)

we note that AutQ(ζ9)+ X ' D6, and find an automorphism a such that X/a ' E, where

E : y2 = x3 + (5w2 − 25w + 30)x2 + (20w2 − 108w + 124)/3.

We have E(Q(ζ9)+) ' Z/21Z and compute #X(Q(ζ9)+) = 12. We get that 6 of the points are
cusps, and there are 3 points corresponding to each of the j-invariants 1792 and 406749952. See
the research website of either author for the code used. �

Proposition 7.13. There does not exist a Q-curve E corresponding to a point of odd degree on
X1(4 · 3k) for k ≥ 1 which is isogenous to an elliptic curve E′ with j(E′) ∈ {1792, 406749952}.

Proof. We will prove the result by showing that there does not exist a number field F of odd degree
and a Q-curve E which is F -isogenous to an elliptic curve E′ with j(E′) ∈ {1792, 406749952} and
such that E(F ) has a point of order 12. Since these elliptic curves are in the same isogeny class, it
suffices to consider only one of them.

Suppose E is a Q-curve defined over a number field F of odd degree with a point P ∈ E(F ) of
order 12. Then by Theorem 2.4, there exists a F -rational isogeny ϕ : E → E′ with j(E′) ∈ Q, and we
may assume ϕ is cyclic with ker(ϕ) = 〈Q〉. Suppose for the sake of contradiction that j(E′) = 1792.
Since any point on X0(4) associated to E′ has even degree, it must be that deg(ϕ) = 2 · d for some
odd integer d. Thus the image of 3P on E0 := E/〈2Q〉 has order 4, and by Corollary 4.3 there
exists an extension F ′/F of degree dividing 3 such that E0(F ′) has a point of order 3. In particular,
E0 has a point of order 12 defined over a number field of odd degree, where E0 is an elliptic curve
2-isogenous to E′. However, a computation in Magma shows that each elliptic curve 2-isogenous
to E′ corresponds to points on X1(12) of even degree, contradiction. �

8. Sporadic j-invariants in a fixed isogeny class

Since non-CM Q-curves giving rise to sporadic points of odd degree on X1(N) belong to finitely
many isogeny classes, it is natural to wonder whether there can be infinitely many distinct sporadic
j-invariants within a fixed isogeny class. The following result shows that the answer is yes, provided
the degree of the sporadic point is low enough. It is worth pointing out that no known examples of
non-CM sporadic points satisfy this bound, so a new idea is needed to provide a definitive answer.
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Proposition 8.1. Suppose that there is a non-CM point x = [E,P ] ∈ X1(N) with

deg(x) <
7

1600
[PSL2(Z) : Γ1(N)].

Then there exists infinitely many sporadic points x′ = [E′, P ′] on the curves X1(dN) (with d vary-
ing), such that E′ is isogenous to E and that all the j(E′) are pairwise distinct. Moreover, if deg(x)
is odd, we can obtain infinitely many sporadic points x′ = [E′, P ′] on the curves X1(dN) such that
deg(x′) is odd and such that E′ is isogenous to E and that all the j(E′) are pairwise distinct.

Proof. Note in particular that N must be greater than 2, and let p be a prime divisor of N . Starting
with a sporadic point x = [E,P ] ∈ X1(N), we will construct a sporadic point x′ = [E′, P ′] ∈ X1(pN)
such that

deg(x′) ≤ p2 deg(x) = deg(X1(pN)→ X1(N)) deg(x) <
7

1600
[PSL2(Z) : Γ1(pN)],

which will show that x′ is sporadic. Let F be the residue field of x, let k = vp(N) and P0 = (N/pk)P .
We have

im ρE/F,p ⊆
{(

1 ∗
0 χp(GalF )

)}
.

Let S be the set of subgroups of E[p] of order p that are distinct from 〈pk−1P0〉. We have #S = p
and GalF (and hence im ρE/F,p) acts on S. The group im ρE/F,p is isomorphic to a subgroup of
AGL1(Fp) and by [15, Lemma 3.5] it acts on S either transitively or with a fixed point. If this

action has a fixed point, E has an isogeny of degree p with kernel different from 〈pk−1P0〉 over
F . If the action is transitive, the stabilizer of a group is of index p in GalF and hence E has an
isogeny of degree p with kernel different from 〈pk−1P0〉 over F ′, an extension of F of degree p. To
conclude, there exists an isogeny ψ : E → E′ defined over F ′ where F ′ is either F or a degree p
extension, such that (kerψ)∩ 〈P0〉 = {O}. Note that j(E) 6= j(E′) by the assumption that E does
not have CM. Hence ψ(P0) ∈ E′(F ′) is a point of order pk. Furthermore ψ(P0) is in the kernel of

the cyclic isogeny ϕ ◦ ψ̂ of order pk+1 where ϕ is the isogeny of E such that kerϕ is generated by
P0. It follows that

im ρE′/F ′,pk+1 ⊆
{(

1 + pkt ∗
0 ∗

)}
.

The fixed field of the associated isogeny character is an extension F ′′/F ′ of degree 1 or p, and
GalF ′′ fixes a point P ′′ of order pk+1. As E′(F ′′) has at least the same prime-to-p torsion as E(F ),
we conclude that E′(F ′′) has a point of order pN and hence corresponds to a point x′ on X1(pN)
of degree dividing p2 deg(x), as desired. Note that if deg(x) is odd, we may take p to be odd by
Theorem 1.5 and then deg(x′) is also odd.

It remains to show that repeating this procedure will give in each step a j-invariant that hasn’t
been already obtained previously. Denote by Ei the elliptic curve that has been obtained in the
ith step corresponding to a sporadic point on X1(piN). The graph whose vertex set consists of
non-CM j-invariants of elliptic curves connected by an isogeny of degree a power of p and whose
edges are between p-isogenous j-invariants is a tree, as the existence of a cycle would imply an
endomorphism with nontrivial cyclic kernel and hence complex multiplication on some (and thus
all) curves in the isogeny class. So all that one needs to show is that j(Ei−1) 6= j(Ei+1). To see
this, note that in our construction a multiple of the point of order pk on Ei that we obtained will
generate the kernel of the isogeny to Ei−1, but not to Ei+1, from which the claim follows. �

Appendix

We define the following subgroups of GL2(Z/18Z):
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H1 :=
〈(

2 7
15 16

)
,
(

7 11
12 11

)
,
(

13 2
9 17

)
,
(

1 8
15 5

)〉
H2 :=

〈(
2 9
7 10

)
,
(

14 3
7 10

)
,
(

17 15
3 14

)〉
H3 :=

〈(
7 2
15 11

)
,
(

1 6
6 13

)
,
(

13 3
9 4

)
,
(

2 3
15 5

)〉
H4 :=

〈(
17 7
0 1

)
,
(

7 7
15 16

)
,
(

1 9
12 17

)〉
H5 :=

〈(
17 9
9 8

)
,
(

1 1
15 10

)
,
(

5 5
12 7

)〉
H6 :=

〈(
14 17
3 5

)
,
(

13 1
12 5

)
,
(

11 8
15 7

)
,
(

17 1
12 1

)〉
H7 :=

〈(
11 16
6 17

)
,
(

13 3
9 14

)〉
H8 :=

〈(
5 2
12 11

)
,
(

17 5
15 16

)〉
H9 :=

〈(
11 1
3 4

)
,
(

7 15
9 14

)〉
H10 :=

〈(
16 1
3 11

)
,
(

5 15
9 16

)〉
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27. Enrique González-Jiménez and Álvaro Lozano-Robledo, On the minimal degree of definition of p-primary torsion
subgroups of elliptic curves, Math. Res. Lett. 24 (2017), no. 4, 1067–1096. 6.2
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49. Löıc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996),
no. 1-3, 437–449. 1

50. J.S. Milne, Fields and galois theory, available at: https://www.jmilne.org/math/CourseNotes/FT.pdf. 4.2
51. F. Najman, Torsion of rational elliptic curves over cubic fields and sporadic points on X1(n), Math. Res. Lett.

23 (2016), no. 1, 245–272. 1.2, 1.1
52. Ekin Ozman and Samir Siksek, Quadratic points on modular curves, Math. Comp. 88 (2019), no. 319, 2461–2484.

MR 3957901 1.1
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