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Notation

The following correspond to each other:

A place P on X1(N)/Q.

A discrete valuation vP : Q(X1(N))→ Z
⋃
{∞}.

(if P is not a cusp): An elliptic curve E and a point of exact
order N, (both defined over the residue field of P).

Denote the degree of the residue field as deg(P) = [Q(P) : Q].

If a function g ∈ Q(X1(N))−Q has degree d , then X1(N) has
infinitely many places P of degree d .

Low degree place if P is not a cusp and Q(X1(N)) has no function
of degree deg(P). ( Sporadic torsion is slightly stronger).

E.g. deg(P) < gonality, the lowest degree in Q(X1(N))−Q.
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Degrees of functions and low degree places (van Hoeij, 2012)

N degrees N degrees N degrees

1–10 1+ 29 9,10, 11+ 45 10,12,14+, 18, 20+

11 2+ 30 5, 6+ 46 14+, 19+

12 1+ 31 9+, 12+ 47 20+, 29+

13–16 2+ 32 8, 9, 10+ 48 11,12,14+, 16, 18+

17 4+ 33 7+, 10, 12+ 49 14,19, 21, 22+, 30+

18 2+ 34 8,9, 10+ 50 10,12, 15, 16+, 20, 22+

19 5+ 35 8,10+, 12, 14+ 51 15,18+, 24, 29+

20 3+ 36 7, 8+ 52 16+, 21, 24+

21 3, 4+ 37 6,10,12+, 18+ 53 22,25+, 37+

22 4+ 38 10, 12+ 54 13,15+, 18, 20+

23 7+ 39 8–10,12+,14,16+ 55 18,23+, 30, 34+

24 4+ 40 8+, 12, 14+ 56 18+, 24, 26, 28+

25 5,6,7, 8+ 41 14,17+, 22+ 57 12,16,18,19,21,22,24+,30,36+

26 6+ 42 8+, 12+ 58 12,14,16,20+, 31+

27 6+ 43 12,14,15,17+,24+ 59 31+, 46+

28 5, 6+ 44 11+, 15+ 60 13,15+, 24, 26+
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Website www.math.fsu.edu/~hoeij/files/X1N (2012)
N = 21, found 1 diamond-orbit.

N = 21, degv = 3, degj = 1, j = -140625/8, [x^3-3*x^2+3 = 0, y+x^2-2*x-1 = 0]

N = 25, found 2 diamond-orbits.

N = 25, degv = 6, degj = 3, [x^3-x^2+1 = 0, y^2+(x^2-2*x-1)*y+x = 0]

N = 25, degv = 7, [x^7+x^6-x^5-x^4+x^2+x-1 = 0, y-x^2-x = 0]

N = 28, found 1 diamond-orbit.

N = 28, degv = 5, [x^5-x^4-2*x^3-x^2+2*x+2 = 0, y-x^3+1 = 0]

N = 29, found 3 diamond-orbits.

N = 29, degv = 9, [x^9-8*x^8+23*x^7-26*x^6+2*x^5+17*x^4-11*x^3+2*x^2+1 = 0,

y-x^8+6*x^7-11*x^6+4*x^5+6*x^4-6*x^3+3*x^2 = 0]

N = 29, degv = 10, degj = 5, [x^10+2*x^8-6*x^7+6*x^6-6*x^5+9*x^4-5*x^3-2*x^2+3*x-1 = 0,

163*y+328*x^9+188*x^8+724*x^7-1557*x^6+1006*x^5-1129*x^4+2124*x^3-192*x^2-1263*x+437 = 0]

N = 29, degv = 10, [x^10-3*x^9+8*x^7-5*x^6-6*x^5+5*x^4-2*x^2+1 = 0,

29*y-2*x^9-x^8+11*x^7+8*x^6-49*x^5+77*x^3-35*x^2-46*x+13 = 0]

N = 30, found 2 diamond-orbits.

N = 30, degv = 5, [x^5+x^4-3*x^3+3*x+1 = 0, y-2*x^4-x^3+6*x^2-4*x-4 = 0]

N = 30, degv = 5, [x^5+x^4-7*x^3+x^2+12*x+3 = 0, 53*y-3*x^4-7*x^3-6*x^2-11*x+73 = 0]

N = 31, found 5 diamond-orbits.

N = 31, degv = 9, degj = 3, [x^9-2*x^8+x^6-x^5+14*x^4-28*x^3+19*x^2-2*x-1 = 0,

119*y-9*x^8+28*x^7-16*x^6-46*x^5+11*x^4-125*x^3+440*x^2-386*x-150 = 0]

N = 31, degv = 10, degj = 1, j = 0, [x^10-4*x^9+3*x^8+6*x^7-2*x^6-8*x^5-8*x^4+11*x^3+6*x^2-5*x+1 = 0,

215*y-109*x^9+266*x^8+207*x^7-801*x^6-606*x^5+304*x^4+1470*x^3+410*x^2-1000*x-71 = 0]

N = 31, degv = 11, [x^11-x^10+2*x^8+x^6-7*x^5+x^4+4*x^3-x^2+2*x-1 = 0,

2033*y-1036*x^10+31*x^9+503*x^8-2108*x^7-1676*x^6-2654*x^5+5898*x^4+4556*x^3-2817*x^2-2307*x-3370 = 0]

N = 31, degv = 11, [x^11-2*x^10-6*x^9+8*x^8+9*x^7-x^6-6*x^5-13*x^4-x^3+7*x^2+4*x+1 = 0,

43*y+61*x^10-144*x^9-319*x^8+596*x^7+370*x^6-131*x^5-311*x^4-690*x^3+123*x^2+291*x+89 = 0]

N = 31, degv = 11, [x^11-8*x^10+23*x^9-25*x^8+8*x^6+14*x^5-10*x^4-8*x^3+10*x^2-5*x+1 = 0,

329*y-114*x^10+879*x^9-2255*x^8+1444*x^7+2063*x^6-1120*x^5-3115*x^4+524*x^3+2397*x^2-576*x-653 = 0]

I found almost 4000 diamond-orbits for N ≤ 60. Before this website and

arXiv (2012) very few examples were known (Najman, N = 21).
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An application: testing Theorems

If you have a conjecture or Theorem about places on X1(N),
test it with examples from my website.

Co-authors of “Sporadic Cubic Torsion” used website to find
counter examples to:

Wang (2019), Theorem 1.2,
Wang (2020), Theorem 0.3.
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Degrees of functions and low degree places (added in 2014)
N degrees N degrees

61 20,24,26,27,30,31,33+, 49+ 71 44,45,47+, 66+

62 22+, 36+ 72 22,24+, 32, 36, 40+

63 18,20+, 36, 39, 41+ 73 24,30,36,42,46,48+, 70+

64 24+, 32, 36, 38+ 74 18,20,29–31,34+, 51+

65 20,24,26,28,30+, 42, 48+ 75 25,31–33,35–37,39+,40,45,50,55,60+

66 16,19+, 30, 32, 35+ 76 30,35+, 45, 48, 50, 52, 53, 54, 56+

67 22,30,33,37,39,43+, 58+ 77 40,48+, 60, 68, 72+

68 26+, 36, 40, 42+ 78 24,25,27,28,30+, 42, 48, 49, 51+

69 28,29,32,34,36+, 44, 54+ 79 26,42,51,54,57–59,61+, 82+

70 20,24,26+, 36, 40, 42+ 80 20,24,28,32,35+, 48, 54, 56+

Entry N = 71: The notation 66+ indicates that X1(71) has
functions of degree d for any d ≥ 66. To prove that, I’ll explain
how to quickly find functions of degrees 66, . . . , 2× 66− 1.

After that I’ll explain how places of degrees 44, 45, 47–65 were found.
(For N > 60 the website only lists one example for each N, d)
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Cusps and modular units

Cusps of X1(N) = poles of j : X1(N)→ P1.

The Q-conjugacy classes of the cusps are denoted C0, . . . ,CbN/2c.

The residue field of Ci is a subfield of Q(ζN) of degree gcd(i ,N)
(divide by 2 and round up if i = 0 or i = N/2).

For example, deg(C1) = 1 for any N.

Cusp-sums
∑

niCi with
∑

ni · deg(Ci ) = 0 represents element of

J1(N)(Q)cusp ⊆ J1(N)(Q)tors ⊆ J1(N)(Q)

Important for proofs: If N ≤ 55 and N 6= 37, 43, 53, 54 then all
three are equal.

We quickly find J1(N)(Q)cusp by computing all modular units
(functions with support ⊆ {cusps}).
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Cusps and modular units

The paper Gonality of the modular curve X1(N) (joint with
Maarten Derickx) gives a conjectured basis of modular units.

Marco Streng proved the conjecture in Generators of the group of
modular units for Γ1(N) over the rationals.

A Divisor Formula and a Bound on the Q-gonality of the Modular
Curve X1(N) (joint with Hanson Smith) gives explicit divisors.

Let L = SPAN(div(F2), . . . ,div(FbN/2c)).

(cusp_divisors_program on my website computes this)

Identify L with a submodule of Zn with n = 1 + bN/2c.

Example N = 71. Repeatedly running LLL(L)
 elements v = (n0, n1, . . . , nbN/2c) ∈ L
 modular units gv of degree |v | :=

∑
max(0, ni ) · deg(Ci )

 functions of degree 66, 67, 68, 69, 70, . . .

After that: only interested in places of degree < 66.
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Running LLL

Recall: divisors(modular units) are stored in L ⊂ Zn.

We repeatedly apply the LLL algorithm to L. Each LLL run uses
another randomly chosen metric on Zn (so that we don’t find the
same vectors over and over again).

To prove that X1(71) has a function of every degree ≥ 66, find v ’s
in L with |v | = deg(gv ) = 66, 67, . . . 2× 66− 1.

Idea: Modify LLL code to store |v | for every vector encountered
(not just the output vectors).

Quickly proves that X1(71) has modular units of any degree ≥ 66.

Next: find and store places of degree < 66.
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Finding low degree places

Each v = (n0, n1, . . .) ∈ L encodes a modular unit gv of degree |v |.
If |v | is in the desired range, use linear algebra to find gv =

∏
F
mj

j

where F2, . . . ,FbN/2c+1 = basis(modular units).

If r ∈ Q, consider the roots of gv − r .

If r = 0 then all roots are cusps.
If r is random, then roots(gv − r) is likely a place of degree d
(not a low-degree place).

Let Ci be a cusp for which ni = 0, i.e. Ci 6∈ support(gv ).

Formulas in paper with Hanson Smith  dominant term of Fj(Ci )
 fast computation for r := gv (Ci ).

Having Ci as root lowers the degree of the remaining roots:

roots(gv − r)− {Ci} has only places of degree < d .

Often r = ±1. (Can improve “often” to “always” if you want).
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Boosting “often” to “always”

If Ci is a cusp, then we can define Li := {v ∈ L | gv (Ci ) = ±1}.

Could also define Li ,i (gv ± 1 has at least a double root at Ci ), etc.

For any v ∈ Li (find such v with modified LLL), the corresponding
modular unit gv has value ±1, so gv − 1 or gv + 1 already has a
forced root.

 lowers the potential degrees of the remaining roots
 high probability of finding low degree places, if they exist.

Could also try more than one forced root (search Li
⋂
Lj) and/or a

forced double root (search Li ,i ), etc.

Even without such improvements, the roots(g ± 1)-method is very
effective; experiments with a more rigorous approach
(Riemann-Roch computations) did not yield anything new.
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Computing roots efficiently (only needed for large N)

Write Q(X1(N)) ∼= Q(x)[y ]/(FN) where FN is a defining equation.

To find roots(g − 1), compute the norm N(g − 1) ∈ Q(x).

If we know all poles of g − 1 (and some roots), then we can write
N(g − 1) = AB/C with A,B,C ∈ Q[x ], and B,C known.
The x-coordinates of the remaining roots of g are roots of A.

Idea: No need to spell out g in terms of coordinates x , y . It
suffices to evaluate g at points over finite fields. Then A mod p is
recovered by polynomial interpolation, and A is recovered with
rational number reconstruction.

If g =
∏

Fmi
i , can rapidly evaluate each factor Fi at a point with

the recurrence for division polynomials.
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Defining equations, division polynomials

The following correspond

A non-cuspidal place of X1(N).

(Elliptic curve, point of order N) up to equivalence.

(j ,X ) where X is a coordinate of an order-N point on Ej .

Tate coordinates (b, c).

Sutherland coordinates (x , y).

Ej = an equation of an elliptic curve with j-invariant j .

X = coordinate of a point on Ej of order N  an equation FN .

For any N ≥ 2, FN is

a defining equation for X1(N)

a division polynomial (they satisfy recurrence relations)

(after a small modification) a modular unit on X1(N ′),
for any N ′ 6= N.
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Defining equations, division polynomials

FN is a defining equation for X1(N) for N ≥ 2.

Problem: FN is very large in (j ,X ) coordinates.

Solution: Switch to Sutherland coordinates (x , y) if N ≥ 10,
or Tate coordinates (b, c) if N ≥ 4.

Let k,N ≥ 2. If k 6= N then:

Fk = 0 (encodes: exact order k)

FN = 0 (encodes: exact order N)

are mutually contradictory.

This implies: Every root of Fk in X1(N) is a cusp.
A minor modification (poles) turns Fk into a modular unit.
Basis(modular units) = {F2, . . . ,FbN/2c+1}.

Recurrence relations (converted to (x , y)-coordinates, website)
 fast algorithm to evaluate Fk , or to construct Fk ∈ Q[x , y ].
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More rigorous search of low degree places

For N = 31. Found 5 diamond-orbits of low degree places, with
degrees 9, 10, 11, 11, 11. Are there more?

Say P is such a place.

P − deg(P) · C1  an element of J1(31)(Q) = J1(31)cusps.

The latter is computed explicitly (implementation on my website)
and is isomorphic to Z/(10)× Z/(1772833370).

Trying every element (a Riemann-Roch computation for each case)
provably produces all low-degree places.
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An improvement

Take for instance N = 31 and d = 11. Found three diamond orbits
for N, d with the roots(g ± 1)-method. Are there more?

J1(31)(Q) ↪→ J1(31)(F2)

X1(31)(F2) has 15 places of degree 1,
0 of degree 2, 3, or 4,
3 of degree 5,
15 of degree 6,
15 of degree 7,
30 of degree 8,
50 of degree 9,
94 of degree 10, and
210 of degree 11.

Taking sums produces ≈ 250, 000 divisors of degree 11.
Take one per diamond-orbit and check if it lifts to J1(31)(Q).
 far fewer cases than previous slide.
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Additional improvements

Idea from gonality paper with Maarten Derickx:

If D = D1 + Ci = D2 + Cj then D “dominates” both D1 and D2.

If we increase degree(D) then
=⇒ it dominates more divisors Di

=⇒ we need fewer Riemann Roch computations.

If we increase degree(D) too much:
=⇒ dim(RR Space) increases (bad, how to pick right element?)

After some work: Number of Riemann Roch computations �
number of divisors that need to be covered.
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A complication N = 37

J1(37)(Q) ∼= J1(37)(Q)cusps ⊕ Z.

If D is a divisor, let index(D) be its image in Z.

Let P6 be the degree 6 place on X1(37) from arXiv 2012.
index(P6) 6= 0 (P6 is not cuspidal).
Assume index(P6) = 1.

LLL({v ∈ L | gv (P6) = ±1})  places, index −1 (probabilistic).
Like before, could do a rigorous search for any fixed index i ∈ Z.

Would like to cover every N ≤ 40. However, problem at N = 37:
To provably find all low-degree places P, need to bound index(P).

(Website has low-degree places with index -1, 0, and 1).
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Unrelated conjecture, but related to modular functions??

Gauss Hypergeometric Function 2F1(a, b ; c | x).

Goal: for which a, b, c ∈ Q does there exist algebraic functions f , r
with f 6= x , and with r · 2F1(a, b ; c | f ) and 2F1(a, b ; c | x) having
same minimal differential equation.

Found some non-trivial examples where ∃ such r , f .
For other cases, how to prove such r , f do not exist?

Idea: if f ∈ Q((x)) has infinitely many primes in denominators,
then f is not algebraic over Q(x).

For prime p to NOT appear in the denominator, a certain
congruence needs to hold.

Testing(congruence)  a number of conjectures.
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A conjecture and a question for the audience

Let n ≥ 3 and let

Y (x) = 2F1(
1

4
− 1

2n
,

1

4
+

1

2n
; 1 | x)2 · 3n2 + 4

8n2
√

1− x .

Let cp be the coefficient of xp in the series of 1/Y (x) at x = 0.

Then for all but finitely many primes p

cp ≡ 1 mod p ⇐⇒ p ≡ ±1 mod n.

For n = 3, 4, 6 this can be proved in multiple ways. Those 2F1
functions are related to modular functions (inverse of j-invariant).

Are other cases n = 5, 7, 8, . . . related to modular functions?

Need a strategy to prove that the congruence cp ≡ 1 mod p
holds only for specific primes (p ≡ ±1 mod n). Where to start?
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