Finding low degree places on $X_{1}(N)$

Mark van Hoeij
Florida State University

September 19, 2023

Notation

The following correspond to each other:

- A place P on $X_{1}(N) / \mathbb{Q}$.
- A discrete valuation $v_{P}: \mathbb{Q}\left(X_{1}(N)\right) \rightarrow \mathbb{Z} \bigcup\{\infty\}$.
- (if P is not a cusp): An elliptic curve E and a point of exact order N, (both defined over the residue field of P).

Denote the degree of the residue field as $\operatorname{deg}(P)=[\mathbb{Q}(P): \mathbb{Q}]$.
If a function $g \in \mathbb{Q}\left(X_{1}(N)\right)-\mathbb{Q}$ has degree d, then $X_{1}(N)$ has infinitely many places P of degree d.

Low degree place if P is not a cusp and $\mathbb{Q}\left(X_{1}(N)\right)$ has no function of degree $\operatorname{deg}(P)$. (Sporadic torsion is slightly stronger).
E.g. $\operatorname{deg}(P)<$ gonality, the lowest degree in $\mathbb{Q}\left(X_{1}(N)\right)-\mathbb{Q}$.

Degrees of functions and low degree places (van Hoeij, 2012)

N	degrees	N	degrees	N	degrees
$1-10$	1^{+}	29	$9,10,11^{+}$	45	$10,12,14^{+}, 18,20^{+}$
11	2^{+}	30	$5,6^{+}$	46	$14^{+}, 19^{+}$
12	1^{+}	31	$9^{+}, 12^{+}$	47	$20^{+}, 29^{+}$
$13-16$	2^{+}	32	$8,9,10^{+}$	48	$11,12,14^{+}, 16,18^{+}$
17	4^{+}	33	$7^{+}, 10,12^{+}$	49	$14,19,21,22^{+}, 30^{+}$
18	2^{+}	34	$8,9,10^{+}$	50	$10,12,15,16^{+}, 20,22^{+}$
19	5^{+}	35	$8,10^{+}, 12,14^{+}$	51	$15,18^{+}, 24,29^{+}$
20	3^{+}	36	$7,8^{+}$	52	$16^{+}, 21,24^{+}$
21	$3,4^{+}$	37	$6,10,12^{+}, 18^{+}$	53	$22,25^{+}, 37^{+}$
22	4^{+}	38	$10,12^{+}$	54	$13,15^{+}, 18,20^{+}$
23	7^{+}	39	$8-10,12^{+}, 14,16^{+}$	55	$18,23^{+}, 30,34^{+}$
24	4^{+}	40	$8^{+}, 12,14^{+}$	56	$18^{+}, 24,26,28^{+}$
25	$5,6,7,8^{+}$	41	$14,17^{+}, 22^{+}$	57	$12,16,18,19,21,22,24^{+}, 30,36^{+}$
26	6^{+}	42	$8^{+}, 12^{+}$	58	$12,14,16,20^{+}, 31^{+}$
27	6^{+}	43	$12,14,15,17^{+}, 24^{+}$	59	$31^{+}, 46^{+}$
28	$5,6^{+}$	44	$11^{+}, 15^{+}$	60	$13,15^{+}, 24,26^{+}$

Website www.math.fsu.edu/~hoeij/files/X1N (2012)

```
N = 21, found 1 diamond-orbit.
N = 21, degv = 3, degj = 1, j = -140625/8, [x^3-3*x^2+3 = 0, y+x^2-2*x-1 = 0]
N = 25, found 2 diamond-orbits.
N = 25, degv = 6, degj = 3, [x^3-x^2+1 = 0, y^2+(x^2-2*x-1)*y+x = 0]
N = 25, degv = 7, [x^7+x^ 6-x^5-x^4+x^2+x-1 = 0, y-x^2-x = 0]
N = 28, found 1 diamond-orbit.
N = 28, degv = 5, [x^5-x^4-2*x^ 3-x^2+2*x+2 = 0, y-x^3+1 = 0]
N = 29, found 3 diamond-orbits.
N = 29, degv = 9, [x^9-8*x^8+23*x^7-26*x^6+2*x^5+17*x^4-11*x^3+2*x^2+1 = 0,
    y-x^8+6*x^7-11*x^6+4*x^5+6*x^4-6*x^3+3*x^2 = 0]
N = 29, degv = 10, degj = 5, [x^10+2*x^8-6*x^7+6*x^6-6*x^5+9*x^4-5*x^3-2*x^2+3*x-1 = 0,
    163*y+328*x^9+188*x^8+724*x^7-1557*x^6+1006*x^5-1129*x^4+2124*x^3-192*x^2-1263*x+437 = 0]
N = 29, degv = 10, [x^10-3*x^ 9 + 8*x^ 7-5*x^ 6-6*x^ }5+5*x^4-2*x^2+1 = 0,
    29*y-2*x^9-x^8+11*x^7+8*x^6-49*x^5+77*x^ 3-35*x^2-46*x+13 = 0]
N = 30, found 2 diamond-orbits.
N = 30, degv = 5, [x^5+x^4-3*x^3+3*x+1 = 0, y-2*x^4-x^3+6*x^2-4*x-4 = 0]
N = 30, degv = 5, [x^5+x^4-7*x^3+x^2+12*x+3 = 0, 53*y-3*x^4-7*x^3-6*x^2-11*x+73 = 0]
N = 31, found 5 diamond-orbits.
N = 31, degv = 9, degj = 3, [x^9-2*x^8+x^6-x^5+14*x^4-28*x^3+19*x^2-2*x-1 = 0,
    119*y-9*x^8+28*x^7-16*x^6-46*x^5+11*x^4-125*x^3+440*x^2-386*x-150 = 0]
N = 31, degv = 10, degj = 1, j = 0, [x^10-4*x^ 9+3*x^8+6*x^7-2*x^6-8*x^5-8*x^4+11*x^3+6*x^2-5*x+1 = 0,
    215*y-109*x^9+266*x^8+207*x^7-801*x^6-606*x^5+304*x^4+1470*x^3+410*x^2-1000*x-71 = 0]
N = 31, degv = 11, [x^11-x^10+2*x^8+x^6-7*x^5+x^4+4*x^3-x^2+2*x-1 = 0,
    2033*y-1036*x^10+31*x^9+503*x^8-2108*x^7-1676*x^6-2654*x^5+5898*x^4+4556*x^3-2817*x^2-2307*x-3370 = 0]
N = 31, degv = 11, [x^11-2*x^10-6*x^ 9+8*x^8+9*x^7-x^6-6*x^5-13*x^4-x^3+7*x^2+4*x+1 = 0,
    43*y+61*x^10-144*x^9-319*x^8+596*x^7+370*x^6-131*x^5-311*x^4-690*x^3+123*x^2+291*x+89 = 0]
N = 31, degv = 11, [x^11-8*x^10+23*x^9-25*x^8+8*x^ 6+14*x^ 5-10*x^4-8*x^3+10*x^2-5*x+1 = 0,
    329*y-114*x^10+879*x^9-2255*x^8+1444*x^7+2063*x^6-1120*x^5-3115*x^4+524*x^3+2397*x^2-576*x-653 =
```

I found almost 4000 diamond-orbits for $N \leq 60$. Before this website and arXiv (2012) very few examples were known (Najman, $N=21$).

An application: testing Theorems

If you have a conjecture or Theorem about places on $X_{1}(N)$, test it with examples from my website.

Co-authors of "Sporadic Cubic Torsion" used website to find counter examples to:

Wang (2019), Theorem 1.2,
Wang (2020), Theorem 0.3.

Degrees of functions and low degree places (added in 2014)

N	degrees	N	degrees
61	$20,24,26,27,30,31,33^{+}, 49^{+}$	71	$44,45,47^{+}, 66^{+}$
62	$22^{+}, 36^{+}$	72	$22,24^{+}, 32,36,40^{+}$
63	$18,20^{+}, 36,39,41^{+}$	73	$24,30,36,42,46,48^{+}, 70^{+}$
64	$24^{+}, 32,36,38^{+}$	74	$18,20,29-31,34^{+}, 51^{+}$
65	$20,24,26,28,30^{+}, 42,48^{+}$	75	$25,31-33,35-37,39^{+}, 40,45,50,55,60^{+}$
66	$16,19^{+}, 30,32,35^{+}$	76	$30,35^{+}, 45,48,50,52,53,54,56^{+}$
67	$22,30,33,37,39,43^{+}, 58^{+}$	77	$40,48^{+}, 60,68,72^{+}$
68	$26^{+}, 36,40,42^{+}$	78	$24,25,27,28,30^{+}, 42,48,49,51^{+}$
69	$28,29,32,34,36^{+}, 44,54^{+}$	79	$26,42,51,54,57-59,61^{+}, 82^{+}$
70	$20,24,26^{+}, 36,40,42^{+}$	80	$20,24,28,32,35^{+}, 48,54,56^{+}$

Entry $N=71$: The notation 66^{+}indicates that $X_{1}(71)$ has functions of degree d for any $d \geq 66$. To prove that, I'll explain how to quickly find functions of degrees $66, \ldots, 2 \times 66-1$.

After that l'll explain how places of degrees 44, 45, 47-65 were found. (For $N>60$ the website only lists one example for each N, d)

Cusps and modular units

Cusps of $X_{1}(N)=$ poles of $j: X_{1}(N) \rightarrow \mathbb{P}^{1}$.
The \mathbb{Q}-conjugacy classes of the cusps are denoted $C_{0}, \ldots, C_{\lfloor N / 2\rfloor}$.
The residue field of C_{i} is a subfield of $\mathbb{Q}\left(\zeta_{N}\right)$ of degree $\operatorname{gcd}(i, N)$ (divide by 2 and round up if $i=0$ or $i=N / 2$).

For example, $\operatorname{deg}\left(C_{1}\right)=1$ for any N.
Cusp-sums $\sum n_{i} C_{i}$ with $\sum n_{i} \cdot \operatorname{deg}\left(C_{i}\right)=0$ represents element of

$$
J_{1}(N)(\mathbb{Q})_{\text {cusp }} \subseteq J_{1}(N)(\mathbb{Q})_{\text {tors }} \subseteq J_{1}(N)(\mathbb{Q})
$$

Important for proofs: If $N \leq 55$ and $N \neq 37,43,53,54$ then all three are equal.

We quickly find $J_{1}(N)(\mathbb{Q})_{\text {cusp }}$ by computing all modular units (functions with support $\subseteq\{$ cusps $\}$).

Cusps and modular units

The paper Gonality of the modular curve $X_{1}(N)$ (joint with Maarten Derickx) gives a conjectured basis of modular units.
Marco Streng proved the conjecture in Generators of the group of modular units for $\Gamma_{1}(N)$ over the rationals.

A Divisor Formula and a Bound on the \mathbb{Q}-gonality of the Modular Curve $X_{1}(N)$ (joint with Hanson Smith) gives explicit divisors.

Let $L=\operatorname{SPAN}\left(\operatorname{div}\left(F_{2}\right), \ldots, \operatorname{div}\left(F_{\lfloor N / 2\rfloor}\right)\right)$.
(cusp_divisors_program on my website computes this) Identify L with a submodule of \mathbb{Z}^{n} with $n=1+\lfloor N / 2\rfloor$.

Example $N=71$. Repeatedly running $\operatorname{LLL}(L)$
\rightsquigarrow elements $v=\left(n_{0}, n_{1}, \ldots, n_{\lfloor N / 2\rfloor}\right) \in L$
\rightsquigarrow modular units g_{v} of degree $|v|:=\sum \max \left(0, n_{i}\right) \cdot \operatorname{deg}\left(C_{i}\right)$
\rightsquigarrow functions of degree $66,67,68,69,70, \ldots$
After that: only interested in places of degree <66.

Recall: divisors(modular units) are stored in $L \subset \mathbb{Z}^{n}$.
We repeatedly apply the LLL algorithm to L. Each LLL run uses another randomly chosen metric on \mathbb{Z}^{n} (so that we don't find the same vectors over and over again).

To prove that $X_{1}(71)$ has a function of every degree ≥ 66, find v 's in L with $|v|=\operatorname{deg}\left(g_{v}\right)=66,67, \ldots 2 \times 66-1$.

Idea: Modify LLL code to store $|v|$ for every vector encountered (not just the output vectors).

Quickly proves that $X_{1}(71)$ has modular units of any degree ≥ 66.
Next: find and store places of degree <66.

Finding low degree places

Each $v=\left(n_{0}, n_{1}, \ldots\right) \in L$ encodes a modular unit g_{v} of degree $|v|$. If $|v|$ is in the desired range, use linear algebra to find $g_{v}=\prod F_{j}^{m_{j}}$ where $F_{2}, \ldots, F_{\lfloor N / 2\rfloor+1}=$ basis(modular units).

If $r \in \mathbb{Q}$, consider the roots of $g_{v}-r$.

- If $r=0$ then all roots are cusps.
- If r is random, then $\operatorname{roots}\left(g_{v}-r\right)$ is likely a place of degree d (not a low-degree place).

Let C_{i} be a cusp for which $n_{i}=0$, i.e. $C_{i} \notin \operatorname{support}\left(g_{v}\right)$.
Formulas in paper with Hanson Smith \rightsquigarrow dominant term of $F_{j}\left(C_{i}\right)$ \rightsquigarrow fast computation for $r:=g_{v}\left(C_{i}\right)$.

Having C_{i} as root lowers the degree of the remaining roots:

$$
\operatorname{roots}\left(g_{v}-r\right)-\left\{C_{i}\right\} \text { has only places of degree }<d
$$

Often $r= \pm 1$. (Can improve "often" to "always" if you want).

Boosting "often" to "always"

If C_{i} is a cusp, then we can define $L_{i}:=\left\{v \in L \mid g_{v}\left(C_{i}\right)= \pm 1\right\}$.
Could also define $L_{i, i}\left(g_{v} \pm 1\right.$ has at least a double root at $\left.C_{i}\right)$, etc.
For any $v \in L_{i}$ (find such v with modified LLL), the corresponding modular unit g_{v} has value ± 1, so $g_{v}-1$ or $g_{v}+1$ already has a forced root.
\rightsquigarrow lowers the potential degrees of the remaining roots
\rightsquigarrow high probability of finding low degree places, if they exist.
Could also try more than one forced root (search $L_{i} \bigcap L_{j}$) and/or a forced double root (search $L_{i, i}$), etc.

Even without such improvements, the roots $(g \pm 1)$-method is very effective; experiments with a more rigorous approach (Riemann-Roch computations) did not yield anything new.

Computing roots efficiently (only needed for large N)

Write $\mathbb{Q}\left(X_{1}(N)\right) \cong \mathbb{Q}(x)[y] /\left(F_{N}\right)$ where F_{N} is a defining equation.
To find roots $(g-1)$, compute the norm $N(g-1) \in \mathbb{Q}(x)$.
If we know all poles of $g-1$ (and some roots), then we can write $N(g-1)=A B / C$ with $A, B, C \in \mathbb{Q}[x]$, and B, C known. The x-coordinates of the remaining roots of g are roots of A.

Idea: No need to spell out g in terms of coordinates x, y. It suffices to evaluate g at points over finite fields. Then $A \bmod p$ is recovered by polynomial interpolation, and A is recovered with rational number reconstruction.

If $g=\prod F_{i}^{m_{i}}$, can rapidly evaluate each factor F_{i} at a point with the recurrence for division polynomials.

Defining equations, division polynomials

The following correspond

- A non-cuspidal place of $X_{1}(N)$.
- (Elliptic curve, point of order N) up to equivalence.
- (j, X) where X is a coordinate of an order- N point on E_{j}.
- Tate coordinates (b, c).
- Sutherland coordinates (x, y).
$E_{j}=$ an equation of an elliptic curve with j-invariant j.
$X=$ coordinate of a point on E_{j} of order $N \rightsquigarrow$ an equation F_{N}.
For any $N \geq 2, F_{N}$ is
- a defining equation for $X_{1}(N)$
- a division polynomial (they satisfy recurrence relations)
- (after a small modification) a modular unit on $X_{1}\left(N^{\prime}\right)$, for any $N^{\prime} \neq N$.

Defining equations, division polynomials

F_{N} is a defining equation for $X_{1}(N)$ for $N \geq 2$.
Problem: F_{N} is very large in (j, X) coordinates.
Solution: Switch to Sutherland coordinates (x, y) if $N \geq 10$, or Tate coordinates (b, c) if $N \geq 4$.

Let $k, N \geq 2$. If $k \neq N$ then:

- $F_{k}=0$ (encodes: exact order k)
- $F_{N}=0$ (encodes: exact order N)
are mutually contradictory.
This implies: Every root of F_{k} in $X_{1}(N)$ is a cusp.
A minor modification (poles) turns F_{k} into a modular unit. Basis(modular units) $=\left\{F_{2}, \ldots, F_{\lfloor N / 2\rfloor+1}\right\}$.

Recurrence relations (converted to (x, y)-coordinates, website) \rightsquigarrow fast algorithm to evaluate F_{k}, or to construct $F_{k} \in \mathbb{Q}[x, y]$.

More rigorous search of low degree places

For $N=31$. Found 5 diamond-orbits of low degree places, with degrees $9,10,11,11,11$. Are there more?

Say P is such a place.
$P-\operatorname{deg}(P) \cdot C_{1} \rightsquigarrow$ an element of $J_{1}(31)(\mathbb{Q})=J_{1}(31)_{\text {cusps }}$.
The latter is computed explicitly (implementation on my website) and is isomorphic to $\mathbb{Z} /(10) \times \mathbb{Z} /(1772833370)$.

Trying every element (a Riemann-Roch computation for each case) provably produces all low-degree places.

An improvement

Take for instance $N=31$ and $d=11$. Found three diamond orbits for N, d with the roots $(g \pm 1)$-method. Are there more?
$J_{1}(31)(\mathbb{Q}) \hookrightarrow J_{1}(31)\left(\mathbb{F}_{2}\right)$
$X_{1}(31)\left(\mathbb{F}_{2}\right)$ has 15 places of degree 1 ,
0 of degree 2, 3, or 4,
3 of degree 5,
15 of degree 6 ,
15 of degree 7,
30 of degree 8,
50 of degree 9 ,
94 of degree 10 , and
210 of degree 11.
Taking sums produces ≈ 250, 000 divisors of degree 11 .
Take one per diamond-orbit and check if it lifts to $J_{1}(31)(\mathbb{Q})$.
\rightsquigarrow far fewer cases than previous slide.

Additional improvements

Idea from gonality paper with Maarten Derickx:
If $D=D_{1}+C_{i}=D_{2}+C_{j}$ then D "dominates" both D_{1} and D_{2}.
If we increase degree (D) then
\Longrightarrow it dominates more divisors D_{i}
\Longrightarrow we need fewer Riemann Roch computations.
If we increase degree (D) too much:
$\Longrightarrow \operatorname{dim}(R R$ Space) increases (bad, how to pick right element?)

After some work: Number of Riemann Roch computations \ll number of divisors that need to be covered.

A complication $N=37$

$J_{1}(37)(\mathbb{Q}) \cong J_{1}(37)(\mathbb{Q})_{\text {cusps }} \oplus \mathbb{Z}$.
If D is a divisor, let index (D) be its image in \mathbb{Z}.
Let P_{6} be the degree 6 place on $X_{1}(37)$ from arXiv 2012. index $\left(P_{6}\right) \neq 0\left(P_{6}\right.$ is not cuspidal).
Assume index $\left(P_{6}\right)=1$.
$\operatorname{LLL}\left(\left\{v \in L \mid g_{v}\left(P_{6}\right)= \pm 1\right\}\right) \rightsquigarrow$ places, index -1 (probabilistic).
Like before, could do a rigorous search for any fixed index $i \in \mathbb{Z}$.
Would like to cover every $N \leq 40$. However, problem at $N=37$: To provably find all low-degree places P, need to bound index (P).
(Website has low-degree places with index $-1,0$, and 1).

Unrelated conjecture, but related to modular functions??

Gauss Hypergeometric Function ${ }_{2} F_{1}(a, b ; c \mid x)$.
Goal: for which $a, b, c \in \mathbb{Q}$ does there exist algebraic functions f, r with $f \neq x$, and with $r \cdot{ }_{2} F_{1}(a, b ; c \mid f)$ and ${ }_{2} F_{1}(a, b ; c \mid x)$ having same minimal differential equation.

Found some non-trivial examples where \exists such r, f. For other cases, how to prove such r, f do not exist?

Idea: if $f \in \mathbb{Q}((x))$ has infinitely many primes in denominators, then f is not algebraic over $\mathbb{Q}(x)$.

For prime p to NOT appear in the denominator, a certain congruence needs to hold.

Testing(congruence) \rightsquigarrow a number of conjectures.

A conjecture and a question for the audience

Let $n \geq 3$ and let

$$
Y(x)={ }_{2} F_{1}\left(\frac{1}{4}-\frac{1}{2 n}, \frac{1}{4}+\frac{1}{2 n} ; 1 \mid x\right)^{2} \cdot \frac{3 n^{2}+4}{8 n^{2}} \sqrt{1-x}
$$

Let c_{p} be the coefficient of x^{p} in the series of $1 / Y(x)$ at $x=0$.
Then for all but finitely many primes p

$$
c_{p} \equiv 1 \bmod p \quad \Longleftrightarrow \quad p \equiv \pm 1 \bmod n
$$

For $n=3,4,6$ this can be proved in multiple ways. Those ${ }_{2} F_{1}$ functions are related to modular functions (inverse of j-invariant).

Are other cases $n=5,7,8, \ldots$ related to modular functions?
Need a strategy to prove that the congruence $c_{p} \equiv 1 \bmod p$ holds only for specific primes $(p \equiv \pm 1 \bmod n)$. Where to start?

