Finding low degree places on $X_1(N)$

Mark van Hoeij Florida State University

September 19, 2023

Notation

The following correspond to each other:

- A place P on $X_1(N)/\mathbb{Q}$.
- A discrete valuation $v_P : \mathbb{Q}(X_1(N)) \to \mathbb{Z} \bigcup \{\infty\}.$
- (if *P* is not a cusp): An elliptic curve *E* and a point of exact order *N*, (both defined over the residue field of *P*).

Denote the degree of the residue field as $deg(P) = [\mathbb{Q}(P) : \mathbb{Q}].$

If a function $g \in \mathbb{Q}(X_1(N)) - \mathbb{Q}$ has degree d, then $X_1(N)$ has infinitely many places P of degree d.

Low degree place if P is not a cusp and $\mathbb{Q}(X_1(N))$ has no function of degree deg(P). (Sporadic torsion is slightly stronger).

E.g. $\deg(P) < \text{gonality}$, the lowest degree in $\mathbb{Q}(X_1(N)) - \mathbb{Q}$.

Degrees of functions and low degree places (van Hoeij, 2012)

N	degrees	N	degrees	Ν	degrees
1–10	1+	29	9,10, 11+	45	10,12,14 ⁺ , 18, 20 ⁺
11	2+	30	5, 6 ⁺	46	14 ⁺ , 19 ⁺
12	1+	31	9 ⁺ , 12 ⁺	47	20 ⁺ , 29 ⁺
13–16	2+	32	8, <i>9</i> , 10 ⁺	48	11,12,14 ⁺ , 16, 18 ⁺
17	4+	33	7 ⁺ , 10, 12 ⁺	49	14,19, 21, 22 ⁺ , 30 ⁺
18	2+	34	<i>8,9</i> , 10 ⁺	50	10,12, 15, 16 ⁺ , 20, 22 ⁺
19	5+	35	<i>8,10</i> ⁺ , 12, 14 ⁺	51	<i>15,18</i> ⁺ , 24, 29 ⁺
20	3+	36	7, 8+	52	16 ⁺ , 21, 24 ⁺
21	<i>3</i> , 4 ⁺	37	6,10,12 ⁺ , 18 ⁺	53	22,25 ⁺ , 37 ⁺
22	4+	38	10, 12+	54	13,15 ⁺ , 18, 20 ⁺
23	7+	39	8-10,12 ⁺ ,14,16 ⁺	55	18,23 ⁺ , 30, 34 ⁺
24	4+	40	<i>s</i> ⁺ , 12, 14 ⁺	56	18 ⁺ , 24, 26, 28 ⁺
25	5, <i>6,7</i> , 8 ⁺	41	14,17 ⁺ , 22 ⁺	57	12,16,18,19,21,22,24 ⁺ ,30,36 ⁺
26	6+	42	<i>s</i> ⁺ , 12 ⁺	58	12,14,16,20 ⁺ , 31 ⁺
27	6+	43	12,14,15,17 ⁺ ,24 ⁺	59	<i>31</i> ⁺ , 46 ⁺
28	5, 6 ⁺	44	11 ⁺ , 15 ⁺	60	<i>13,15</i> ⁺ , 24, 26 ⁺

Website www.math.fsu.edu/~hoeij/files/X1N (2012)

```
N = 21. found 1 diamond-orbit.
N = 21, degv = 3, degj = 1, j = -140625/8, [x^3-3*x^2+3 = 0, y+x^2-2*x-1 = 0]
N = 25, found 2 diamond-orbits.
N = 25, degy = 6, degi = 3, [x^3-x^2+1 = 0, y^2+(x^2-2*x-1)*y+x = 0]
N = 25, degv = 7, [x^7+x^6-x^5-x^4+x^2+x-1 = 0, y-x^2-x = 0]
N = 28, found 1 diamond-orbit.
N = 28, degv = 5, [x^5-x^4-2*x^3-x^2+2*x+2 = 0, v-x^3+1 = 0]
N = 29, found 3 diamond-orbits.
N = 29, degv = 9, [x^9-8*x^8+23*x^7-26*x^6+2*x^5+17*x^4-11*x^3+2*x^2+1 = 0],
        y = x^8 + 6 + x^7 - 11 + x^6 + 4 + x^5 + 6 + x^4 - 6 + x^3 + 3 + x^2 = 0
N = 29, degy = 10, degi = 5, [x^{10+2}x^8-6*x^7+6*x^6-6*x^5+9*x^4-5*x^3-2*x^2+3*x-1] = 0,
        163*y+328*x^9+188*x^8+724*x^7-1557*x^6+1006*x^5-1129*x^4+2124*x^3-192*x^2-1263*x+437 = 0
N = 29, degv = 10, [x^{10-3}x^{9+8}x^{7-5}x^{6-6}x^{5+5}x^{4-2}x^{2+1} = 0,
        29*v-2*x^9-x^8+11*x^7+8*x^6-49*x^5+77*x^3-35*x^2-46*x+13 = 0]
N = 30, found 2 diamond-orbits.
N = 30, degv = 5, [x^5+x^4-3*x^3+3*x+1 = 0, v-2*x^4-x^3+6*x^2-4*x-4 = 0]
N = 30, degy = 5, [x^5+x^4-7*x^3+x^2+12*x+3 = 0, 53*y-3*x^4-7*x^3-6*x^2-11*x+73 = 0]
N = 31. found 5 diamond-orbits.
N = 31, degv = 9, degj = 3, [x^9-2*x^8+x^6-x^5+14*x^4-28*x^3+19*x^2-2*x-1 = 0,
        119*y-9*x^8+28*x^7-16*x^6-46*x^5+11*x^4-125*x^3+440*x^2-386*x-150 = 0
\mathbb{N} = 31, \ \text{degv} = 10, \ \text{degj} = 1, \ \text{j} = 0, \ [x^{1}0 - 4*x^{9} + 3*x^{8} + 6*x^{7} - 2*x^{6} - 8*x^{5} - 8*x^{4} + 11*x^{3} + 6*x^{2} - 5*x^{4} = 0,
        215*y-109*x^9+266*x^8+207*x^7-801*x^6-606*x^5+304*x^4+1470*x^3+410*x^2-1000*x-71 = 0]
N = 31, degv = 11, [x^{11}-x^{10}+2xx^{8}+x^{6}-7xx^{5}+x^{4}+4xx^{3}-x^{2}+2xx^{-1} = 0,
  2033*v - 1036*x^{10+31}*x^{9+503}*x^{8-2108}*x^{7-1676}*x^{6-2654}*x^{5+5898}*x^{4+4556}*x^{3-2817}*x^{2-2307}*x^{-3370} = 0
N = 31, \text{ degy} = 11, \quad \left[x^{11-2*x^{10-6*x^{9}+8*x^{8}+9*x^{7}-x^{6}-6*x^{5}-13*x^{4}-x^{3}+7*x^{2}+4*x+1}\right] = 0,
        43*y+61*x^{10}-144*x^9-319*x^8+596*x^7+370*x^6-131*x^5-311*x^4-690*x^3+123*x^2+291*x+89 = 0
N = 31, \text{ degy} = 11, \quad \left[x^{11-8}x^{10+23}x^{9-25}x^{8+8}x^{6+14}x^{5-10}x^{4-8}x^{3+10}x^{2-5}x^{+1}\right] = 0.
        329*v-114*x^10+879*x^9-2255*x^8+1444*x^7+2063*x^6-1120*x^5-3115*x^4+524*x^3+2397*x^2-576*x-653 =
I found almost 4000 diamond-orbits for N < 60. Before this website and
```

arXiv (2012) very few examples were known (Najman, N = 21).

4 / 20

If you have a conjecture or Theorem about places on $X_1(N)$, test it with examples from my website.

Co-authors of "Sporadic Cubic Torsion" used website to find counter examples to:

Wang (2019), Theorem 1.2, Wang (2020), Theorem 0.3.

Degrees of functions and low degree places (added in 2014)

N	degrees	N	degrees
61	20,24,26,27,30,31,33 ⁺ , 49 ⁺	71	<i>44,45,47</i> ⁺ , 66 ⁺
62	22 ⁺ , 36 ⁺	72	22,24 ⁺ , 32, 36, 40 ⁺
63	18,20 ⁺ , 36, 39, 41 ⁺	73	24,30,36,42,46,48 ⁺ , 70 ⁺
64	24 ⁺ , 32, 36, 38 ⁺	74	18,20,29–31,34 ⁺ , 51 ⁺
65	20,24,26,28,30 ⁺ , 42, 48 ⁺	75	25,31-33,35-37,39 ⁺ ,40,45,50,55,60 ⁺
66	16,19 ⁺ , 30, 32, 35 ⁺	76	<i>30,35</i> ⁺ , 45, 48, 50, 52, 53, 54, 56 ⁺
67	22,30,33,37,39,43 ⁺ , 58 ⁺	77	<i>40,48</i> ⁺ , 60, 68, 72 ⁺
68	26 ⁺ , 36, 40, 42 ⁺	78	24,25,27,28,30 ⁺ , 42, 48, 49, 51 ⁺
69	28,29,32,34,36 ⁺ , 44, 54 ⁺	79	26,42,51,54,57-59,61+, 82+
70	20,24,26 ⁺ , 36, 40, 42 ⁺	80	20,24,28,32,35 ⁺ , 48, 54, 56 ⁺

Entry N = 71: The notation 66^+ indicates that $X_1(71)$ has functions of degree d for any $d \ge 66$. To prove that, I'll explain how to quickly find functions of degrees $66, \ldots, 2 \times 66 - 1$.

After that I'll explain how places of degrees 44, 45, 47–65 were found. (For N > 60 the website only lists one example for each N, d)

Cusps and modular units

Cusps of $X_1(N) = \text{poles of } j : X_1(N) \to \mathbb{P}^1$.

The Q-conjugacy classes of the cusps are denoted $C_0, \ldots, C_{|N/2|}$.

The residue field of C_i is a subfield of $\mathbb{Q}(\zeta_N)$ of degree gcd(i, N) (divide by 2 and round up if i = 0 or i = N/2).

For example, $deg(C_1) = 1$ for any N.

Cusp-sums $\sum n_i C_i$ with $\sum n_i \cdot \deg(C_i) = 0$ represents element of

$$J_1(N)(\mathbb{Q})_{\mathrm{cusp}} \subseteq J_1(N)(\mathbb{Q})_{\mathrm{tors}} \subseteq J_1(N)(\mathbb{Q})$$

Important for proofs: If $N \le 55$ and $N \ne 37, 43, 53, 54$ then all three are equal.

We quickly find $J_1(N)(\mathbb{Q})_{cusp}$ by computing all modular units (functions with support $\subseteq \{cusps\}$).

Cusps and modular units

The paper Gonality of the modular curve $X_1(N)$ (joint with *Maarten Derickx*) gives a conjectured basis of modular units.

Marco Streng proved the conjecture in Generators of the group of modular units for $\Gamma_1(N)$ over the rationals.

A Divisor Formula and a Bound on the Q-gonality of the Modular Curve $X_1(N)$ (joint with Hanson Smith) gives explicit divisors.

Let
$$L = \text{SPAN}(\operatorname{div}(F_2), \ldots, \operatorname{div}(F_{\lfloor N/2 \rfloor})).$$

(cusp_divisors_program on my website computes this) Identify L with a submodule of \mathbb{Z}^n with $n = 1 + \lfloor N/2 \rfloor$.

Example N = 71. Repeatedly running LLL(L) \rightsquigarrow elements $v = (n_0, n_1, \dots, n_{\lfloor N/2 \rfloor}) \in L$ \rightsquigarrow modular units g_v of degree $|v| := \sum \max(0, n_i) \cdot \deg(C_i)$ \rightsquigarrow functions of degree 66, 67, 68, 69, 70, ...

After that: only interested in places of degree < 66.

Recall: divisors(modular units) are stored in $L \subset \mathbb{Z}^n$.

We repeatedly apply the LLL algorithm to L. Each LLL run uses another randomly chosen metric on \mathbb{Z}^n (so that we don't find the same vectors over and over again).

To prove that $X_1(71)$ has a function of every degree ≥ 66 , find v's in L with $|v| = \deg(g_v) = 66, 67, \ldots 2 \times 66 - 1$.

Idea: Modify LLL code to store |v| for every vector encountered (not just the output vectors).

Quickly proves that $X_1(71)$ has modular units of any degree ≥ 66 .

Next: find and store places of degree < 66.

Finding low degree places

Each $v = (n_0, n_1, ...) \in L$ encodes a modular unit g_v of degree |v|. If |v| is in the desired range, use linear algebra to find $g_v = \prod F_j^{m_j}$ where $F_2, ..., F_{|N/2|+1} = \text{basis(modular units)}$.

If $r \in \mathbb{Q}$, consider the roots of $g_v - r$.

- If r = 0 then all roots are cusps.
- If r is random, then $roots(g_v r)$ is likely a place of degree d (not a low-degree place).

Let C_i be a cusp for which $n_i = 0$, i.e. $C_i \notin \text{support}(g_v)$.

Formulas in paper with Hanson Smith \rightsquigarrow dominant term of $F_j(C_i)$ \rightsquigarrow fast computation for $r := g_v(C_i)$.

Having C_i as root lowers the degree of the remaining roots: $\operatorname{roots}(g_v - r) - \{C_i\}$ has only places of degree < d.

Often $r = \pm 1$. (Can improve "often" to "always" if you want).

Boosting "often" to "always"

If C_i is a cusp, then we can define $L_i := \{ v \in L \mid g_v(C_i) = \pm 1 \}.$

Could also define $L_{i,i}$ ($g_v \pm 1$ has at least a double root at C_i), etc.

For any $v \in L_i$ (find such v with modified LLL), the corresponding modular unit g_v has value ± 1 , so $g_v - 1$ or $g_v + 1$ already has a forced root.

 \rightsquigarrow lowers the potential degrees of the remaining roots \rightsquigarrow high probability of finding low degree places, if they exist.

Could also try more than one forced root (search $L_i \cap L_j$) and/or a forced double root (search $L_{i,i}$), etc.

Even without such improvements, the $roots(g \pm 1)$ -method is very effective; experiments with a more rigorous approach (Riemann-Roch computations) did not yield anything new.

Write $\mathbb{Q}(X_1(N)) \cong \mathbb{Q}(x)[y]/(F_N)$ where F_N is a defining equation.

To find roots(g-1), compute the norm $N(g-1) \in \mathbb{Q}(x)$.

If we know all poles of g - 1 (and some roots), then we can write N(g - 1) = AB/C with $A, B, C \in \mathbb{Q}[x]$, and B, C known. The x-coordinates of the remaining roots of g are roots of A.

Idea: No need to spell out g in terms of coordinates x, y. It suffices to evaluate g at points over finite fields. Then $A \mod p$ is recovered by polynomial interpolation, and A is recovered with rational number reconstruction.

If $g = \prod F_i^{m_i}$, can rapidly evaluate each factor F_i at a point with the recurrence for division polynomials.

Defining equations, division polynomials

The following correspond

- A non-cuspidal place of $X_1(N)$.
- (Elliptic curve, point of order N) up to equivalence.
- (j, X) where X is a coordinate of an order-N point on E_j .
- Tate coordinates (b, c).
- Sutherland coordinates (x, y).

 E_j = an equation of an elliptic curve with *j*-invariant *j*.

X =coordinate of a point on E_j of order $N \rightsquigarrow$ an equation F_N .

For any $N \ge 2$, F_N is

- a defining equation for $X_1(N)$
- a division polynomial (they satisfy recurrence relations)
- (after a small modification) a modular unit on $X_1(N')$, for any $N' \neq N$.

Defining equations, division polynomials

 F_N is a defining equation for $X_1(N)$ for $N \ge 2$.

Problem: F_N is very large in (j, X) coordinates.

Solution: Switch to Sutherland coordinates (x, y) if $N \ge 10$, or Tate coordinates (b, c) if $N \ge 4$.

Let $k, N \ge 2$. If $k \ne N$ then:

- $F_k = 0$ (encodes: exact order k)
- $F_N = 0$ (encodes: exact order N)

are mutually contradictory.

This implies: Every root of F_k in $X_1(N)$ is a cusp. A minor modification (poles) turns F_k into a modular unit. Basis(modular units) = { $F_2, \ldots, F_{\lfloor N/2 \rfloor + 1}$ }.

Recurrence relations (converted to (x, y)-coordinates, website) \rightsquigarrow fast algorithm to evaluate F_k , or to construct $F_k \in \mathbb{Q}[x, y]$. For N = 31. Found 5 diamond-orbits of low degree places, with degrees 9, 10, 11, 11, 11. Are there more?

Say P is such a place.

 $P - \deg(P) \cdot C_1 \rightsquigarrow$ an element of $J_1(31)(\mathbb{Q}) = J_1(31)_{\mathrm{cusps}}$.

The latter is computed explicitly (implementation on my website) and is isomorphic to $\mathbb{Z}/(10) \times \mathbb{Z}/(1772833370)$.

Trying every element (a Riemann-Roch computation for each case) provably produces all low-degree places.

An improvement

Take for instance N = 31 and d = 11. Found three diamond orbits for N, d with the roots($g \pm 1$)-method. Are there more?

```
J_1(31)(\mathbb{Q}) \hookrightarrow J_1(31)(\mathbb{F}_2)
```

```
X_1(31)(\mathbb{F}_2) has 15 places of degree 1,
0 of degree 2, 3, or 4,
3 of degree 5,
15 of degree 6,
15 of degree 7,
30 of degree 8,
50 of degree 9,
94 of degree 10, and
210 of degree 11.
```

Taking sums produces $\approx 250,000$ divisors of degree 11. Take one per diamond-orbit and check if it lifts to $J_1(31)(\mathbb{Q})$. \rightsquigarrow far fewer cases than previous slide. Idea from gonality paper with Maarten Derickx:

If $D = D_1 + C_i = D_2 + C_j$ then D "dominates" both D_1 and D_2 .

If we increase degree(D) then \implies it dominates more divisors D_i \implies we need fewer Riemann Roch computations.

If we increase degree(D) too much: $\implies \dim(RR \text{ Space}) \text{ increases (bad, how to pick right element?)}$

After some work: Number of Riemann Roch computations \ll number of divisors that need to be covered.

 $J_1(37)(\mathbb{Q}) \cong J_1(37)(\mathbb{Q})_{\mathrm{cusps}} \oplus \mathbb{Z}.$

If D is a divisor, let index(D) be its image in \mathbb{Z} .

Let P_6 be the degree 6 place on $X_1(37)$ from arXiv 2012. index $(P_6) \neq 0$ (P_6 is not cuspidal). Assume index $(P_6) = 1$.

LLL({ $v \in L \mid g_v(P_6) = \pm 1$ }) \rightsquigarrow places, index -1 (probabilistic). Like before, could do a rigorous search for any fixed index $i \in \mathbb{Z}$.

Would like to cover every $N \le 40$. However, problem at N = 37: To provably find all low-degree places P, need to bound index(P).

(Website has low-degree places with index -1, 0, and 1).

Gauss Hypergeometric Function $_2F_1(a, b; c \mid x)$.

Goal: for which $a, b, c \in \mathbb{Q}$ does there exist algebraic functions f, r with $f \neq x$, and with $r \cdot {}_2F_1(a, b; c | f)$ and ${}_2F_1(a, b; c | x)$ having same minimal differential equation.

Found some non-trivial examples where \exists such r, f. For other cases, how to prove such r, f do not exist?

Idea: if $f \in \mathbb{Q}((x))$ has infinitely many primes in denominators, then f is not algebraic over $\mathbb{Q}(x)$.

For prime p to NOT appear in the denominator, a certain congruence needs to hold.

Testing(congruence) ~> a number of conjectures.

A conjecture and a question for the audience

Let $n \ge 3$ and let

$$Y(x) = {}_{2}F_{1}(\frac{1}{4} - \frac{1}{2n}, \frac{1}{4} + \frac{1}{2n}; 1 \mid x)^{2} \cdot \frac{3n^{2} + 4}{8n^{2}}\sqrt{1 - x}.$$

Let c_p be the coefficient of x^p in the series of 1/Y(x) at x = 0. Then for all but finitely many primes p

$$c_p \equiv 1 \mod p \iff p \equiv \pm 1 \mod n.$$

For n = 3, 4, 6 this can be proved in multiple ways. Those ${}_2F_1$ functions are related to modular functions (inverse of *j*-invariant).

Are other cases $n = 5, 7, 8, \ldots$ related to modular functions?

Need a strategy to prove that the congruence $c_p \equiv 1 \mod p$ holds only for specific primes ($p \equiv \pm 1 \mod n$). Where to start?