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Introduction

Let E be an elliptic curve over Q. By the Mordell theorem we have

E(Q) ≃ Z⊕r ⊕ E(Q)tors

for a nonnegative integer r and a finite abelian group E(Q)tors.

Ogg conjectured (1975) and Mazur proved (1977) the following.

E(Q)tors ≃

{
Z/nZ for 1 ≤ n ≤ 10 and 12,

Z/2Z× Z/2mZ for 1 ≤ m ≤ 4.

More generally, for any elliptic curves over a number field K there are
finitely many possible K-rational torsion subgroups. Even further,
there is a uniform bound for the sizes of this K-rational torsion
subgroups depending only on [K : Q] by Merel (1996).
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Let A be an abelian variety over Q. By the Weil theorem we have

A(Q) ≃ Z⊕r ⊕A(Q)tors

for a nonnegative integer r and a finite abelian group A(Q)tors.

Q: Can we compute A(Q)tors? More generally, is there any
(infinite) family of abelian varieties (except for elliptic curves)

whose rational torsion subgroups are known?

One of the easiest ways to construct an abelian variety is the Jacobian
variety of a curve. So we restrict to the case of Jacobian varieties of
(certain) algebraic curves defined over Q.
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(another) Ogg’s conjecture

Let N be a positive integer and let J0(N) be the Jacobian variety of
the modular curve X0(N) over Q. This is an abelan variety over Q.

Q: Can we compute J0(N)(Q)tors?

Ogg conjectured (1975) and Mazur proved (1977) the following:

Theorem (Mazur, 1977)

For a prime N , we have

J0(N)(Q)tors = ⟨[0−∞]⟩ ≃ Z/nZ

where n is the numerator of N−1
12 .
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Generalized Ogg’s conjecture

Now let N be a positive integer. A natural generalization of RHS is the
cuspidal subgroup CN of J0(N) which is a subgroup generated by the
equivalence classes of the differences of two cusps of X0(N).
(In Lupoian’s talk, this is CH(p).)

However the cuspidal subgroup may contain non-rational points.
Thus, we consider the rational cuspidal subgroup of J0(N):

CN (Q) := CN ∩ J0(N)(Q).

Conjecture A (generalized Ogg’s conjecture)

For any positive integer N , we have

J0(N)(Q)tors = CN (Q).
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Another conjecture

Still we do not know how to compute the rational torsion subgroup of
J0(N) because it is hard to determine the rational cuspidal subgroup.
The latter has a large subgroup C(N), called the rational cuspidal
divisor class group of X0(N). This is a subgroup generated by the
equivalence classes of degree 0 rational cuspidal divisors on X0(N).
(In Lupoian’s talk, this is CQ

H (p).)

Conjecture B

For any positive integer N , we have

CN (Q) = C(N).

Note that the structure of the latter group for any positive integer N is
known. So our hope is to prove both conjectures.
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Remark

Conjectures A and B are both known when N is small enough.
(E.g. Ligozat, Poulakis, Box, Ozman–Siksek, Lupoian, and
Adzaga–Keller–Michaud-Jacobs–Najman–Ozman–Vukorepa.)

We easily have C(N) ⊂ CN (Q) ⊂ CN . When N = 2rM with 0 ≤ r ≤ 3

and M squarefree, then all cusps are rational. Hence we have

C(N) = CN (Q) = CN .

On the other hand, CN (Q) ⊊ CN in general.

Conjecture B is known for the following cases:

▶ N = n2M with n | 24 by Wang–Yang (2020).
▶ N = p2M with a prime p by Guo–Yang–Yu–Y. (2021).
▶ N = prqsM with odd primes p and q by Yu–Y. (2022).

Here M denotes any squarefree integer, and r, s are any integers ≥ 2.
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Conjecture A+B

Since all the groups we are interested in are finite abelian, it suffices to
compare their ℓ-primary subgroups for any primes ℓ. So we propose:

Conjecture C

Let N be a positive integer. For any prime ℓ, we have

J0(N)(Q)tors[ℓ
∞] = C(N)[ℓ∞].

Thus, from now on, ℓ always denotes a prime satisfying

ℓ ≥ 5
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Results

Theorem (Ohta, 2014)

Let N be a squarefree integer. Then we have

J0(N)(Q)tors[ℓ
∞] = C(N)[ℓ∞].

When ℓ ∤ N , Ribet and Wake proved this again by “pure-thought”.

Theorem (Y., 2019/2023)

Let N be any positive integer. If ℓ2 does not divide N , then we have

J0(N)(Q)tors[ℓ
∞] = C(N)[ℓ∞].

In the remaining of the talk, we prove this theorem.
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One page sketch for the proof of Mazur

For simplicity, we often denote

A(N) = C(N)[ℓ∞] and B(N) = J0(N)(Q)tors[ℓ
∞].

It is easy to see that A(N) ⊆ B(N). So it suffices to show that

#B(N) ≤ #A(N).

We consider them as modules over the Hecke ring T. For any ideal I
contained in the annihilator of B(N), both can be regarded as
T/I-modules. If the structure of T/I is “simple”, then so are their
modules. When N is a prime, it turns out that T/I ≃ Z/nZ and B(N)

is at most of rank 1. Moreover, A(N) is already free of rank 1 over T/I

and hence the result follows.

(In prime level case, the assumption ℓ ≥ 5 is redundant.)
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One page sketch for the proof of Ohta

Now let N be a squarefree integer. Then the structure of T/I for a
certain ideal contained in the annihilator of B(N) is “relatively simple”.
It can be decomposed into cyclic pieces T/Iε (whenever ℓ ̸= 2). Since
all T/I-modules can be decomposed accordingly, we consider their
eigenspaces:

A(N)[Iε] and B(N)[Iε].

In fact, we can prove that A(N)[Iε] is free of rank 1 over T/Iε. Also
B(N)[Iε] is of rank 1 “under a mild assumption”. This assumption is

▶ ℓ does not divide N ; or
▶ ℓ ≥ 5.

Thus, as in Mazur’s case, the result follows.
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New difficulty

From now on, let N be any positive integer. Then the ℓ-rank of A(N) is
larger than the number of “possible eigenspaces” of T/I in general.
(Each “possible eigenspace” of T/I is still cyclic though.)

So we need another idea.... Let’s start from the beginning...

(In particular, we will review the work of Mazur and Ohta...)
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Hecke and Atkin–Lehner operators

Let p be a prime. There are degeneracy maps between modular curves

X0(Np)

αp(N)

yy

βp(N)

%%
X0(N) X0(N)

By the Albanese/Picard functoriality, they induce the maps on
Jacobians:

αp(N)∗, βp(N)∗ : J0(Np) ⇒ J0(N)

αp(N)∗, βp(N)∗ : J0(N) ⇒ J0(Np)

We define the p-th Hecke operator Tp by

Tp := βp(N)∗ ◦ αp(N)∗ : J0(N) → J0(N).

If p | N , there is also the Atkin–Lehner operator wp ∈ End(J0(N)).
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Mazur’s Eisenstein ideal

Let N be a prime. Consider the Hecke algebra T(N) ⊂ End(J0(N))

which is a Z-subalgebra generated by all the p-th Hecke operators Tp

for p ̸= N and the Atkin–Lehner operator wN . Namely,

T(N) := Z[Tp,WN : for all primes p ̸= N ] ⊂ End(J0(N)).

Let T = T(N)⊗Z Zℓ. Then J0(N)(Q)tors[ℓ
∞] is a module over T. What

is the annihilator of this finite module? It is easy to compute the action
of the Hecke operators on C(N)[ℓ∞]. So we define the following,
which is the Mazur’s Eisenstein ideal:

I := (wN + 1, Tp − p− 1 : for all primes p ̸= N)
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Eichler–Shimura congruence relation

In fact, we can easily prove that I annihilates J0(N)(Q)tors[ℓ
∞].

For simplicity, let J := J0(N) and let p be a prime not dividing N . Then:

The operator Tp − p− 1 annihilates J(Q)tors[ℓ
∞].

Proof.
By the Eichler–Shimura congruence relation, the p-th Hecke operator
Tp acting on J/Fp

by Frobp + Verp. Since Frobp acts trivially on the
Fp-points, Tp − p− 1 annihilates J/Fp

(Fp). Note that there is a
Hecke-equivariant injection:

ιp : J(Q)tors[ℓ
∞] → J/Fp

(Fp)

Thus, the claim follows.
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Mazur’s another input

Note that the dimension of E2(Γ0(N)) is 1, and wN acts as −1 on any
Eisenstein series of weight 2. Motivated by this fact, Mazur proved:

I = (Tp − p− 1 : for all primes p ̸= N)

Since all the Hecke operators (and the Atkin–Lehner operator wN ) are
congruent to integers modulo I, the natural map

Zℓ → T/I

is surjective. If it is injective, then there is a cusp form (of weight 2) and
level N with coefficient in Zℓ whose p-th coefficient is 1 + p. This
violates Ramanujan’s bound and so there is an isomorphism

Zℓ/nZℓ ≃ T/I
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Now the problems are

1 compute the (ℓ-adic) index n;
2 prove that #C(N)[ℓ∞] = n;
3 prove that J0(N)(Q)tors[ℓ

∞] is cyclic as a T/I-module.

In fact, we first compute the order of the group C(N) = ⟨[0−∞]⟩. This
is done by Ogg. Let C(N)[ℓ∞] = ℓa for some a ≥ 0. Since C(N)[ℓ∞] is
annihilated by T/I, we have

T/I ↠ End(Z/ℓaZ) = Z/ℓaZ

This gives a lower bound for the index.

Consider the (normalized) Eisenstein series (of weight 2):

E2,N (τ) =
N − 1

24
+

∑
n≥1

(
∑

d|n,(d,N)=1

d)qn (q = e2πiτ ).

One can consider E2,N modulo I; as a modular form over the ring
T/I ≃ Z/nZ. Then its reduction is of the form

∑∞
n=0 anq

nN . Mazur
proved that such a form must come from level 1 (“level-lowering”), and
there is no non-trivial form of level 1. This gives an upper bound.
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Luckily, these two bounds are (ℓ-adically) equal. So the last thing we
have to prove is the cyclicity. This involves multiplicity one theorem
for differential (if ℓ ̸= N ) and the Cartier operator in characteristic N ;
or the computation of the action of the Hecke/Atkin–Lehner
operators on the special fiber of the Néron model of J0(N) over FN

(if ℓ = N ). Let’s skip this....

In summary, J0(N)(Q)tors[ℓ
∞] is a cyclic T/I-module. Also, from two

computations (the order of a certain cuspidal divisor and the constant
term of a certain Eisenstein series) we can prove that C(N)[ℓ∞] is a
free module of rank 1 over T/I. Since

C(N)[ℓ∞] ⊆ J0(N)(Q)tors[ℓ
∞],

we finally prove this inclusion is indeed an equality.
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Ohta’s generalization: squarefree level

Let N =
∏t

i=1 pi be a squarefree integer. Then we consider the
following Hecke algebra:

T(N) = Z[wpi
, Tp : 1 ≤ i ≤ t, for primes p ∤ N ] ⊂ End(J0(N)).

As before, let T = T(N)⊗Z Zℓ and its ideal

I := (Tp − p− 1 : for primes p ∤ N) ⊂ T.

By the Eichler–Shimura relation, we then have:

A(N) = A(N)[I] and B(N) = B(N)[I]

Now we regard A(N) and B(N) as modules over T/I.
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What is the structure of the ring T/I? It is a semi-local ring with
finitely many maximal ideals. Since the Atkin–Lehner operators are
involutions, the possible eigenvalues are ±1. Thus, all possible maximal
ideals of T containing I are of the form:

(ℓ, wp1
− ε1, wp2

− ε2, . . . , wpt
− εt, I),

where εi ∈ {±1}. For each ε = (ε1, . . . , εt) ∈ {±1}t, let

Iε := (I, wpi
− εi : 1 ≤ i ≤ t).

Then it is not so difficult to show that

T/I ≃
∏

ε∈{±1}t

T/Iε.

(Here we use the fact that (wpi
+ εi)(wpi

− εi) = 0 and
wpi + εi is a unit in the Hecke ring completed at mε.)
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Thus, we have the following decompositions:

A(N) ≃
⊕

ε∈{±1}t

A(N)[Iε] and B(N) ≃
⊕

ε∈{±1}t

B(N)[Iε].

Hence it suffices to show that #B(N)[Iε] ≤ #A(N)[Iε]. As before,
since all the operators are congruent to integers modulo Iε, we have
T/Iε ≃ Zℓ/n

εZℓ for some nε ∈ N. So...

1 Find a cuspidal divisor Cε annihilated by Iε and compute its order.
2 Find an Eisenstein series Eε having the same eigenvalues as Iε

and compute its constant term.
3 Prove that B(N)[Iε] is cyclic.
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The first one is relatively easy. We have developed an algorithm to
compute its order (by hand).

The second one is also easy if we have the following, which is a natural
generalization of Mazur’s result.

Lemma (level-lowering, Ohta)

Let p = pi. If f(τ) =
∑

n≥0 anq
pn is a modular form of level N , then

there is a modular form g of level N/p such that f(τ) = g(pτ).

The last one can be proved without further difficulty.

Remark

In fact, Ohta used a different argument. Instead of using certain cus-
pidal divisors, his proof lies on the computation of the order of the
whole cuspidal group, which is done by Takagi in 1997.
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Summary of Ohta’s work

By the Eichler–Shimura congruence relation, we have

A(N) = A(N)[I] and B(N) = B(N)[I].

Since T/I decomposes into T/Iε, two modules are also decomposed
accordingly. Thus, it suffices to show that

#B(N)[Iε] ≤ #A(N)[Iε].

Since all the operators are congruent to integers modulo Iε, we have
T/Iε ≃ Zℓ/n

εZℓ. By the first, nε is a multiple of the order of Cε. By the
second and the lemma, nε is a divisor of the constant term of Eε. All
three are indeed (ℓ-adically) equal. This proves that A(N)[Iε] is free of
rank 1. By the third, B(N)[Iε] is of rank 1 and so the result follows.
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Non-sqaurefree level

Now, let

N =

t∏
i=1

pi

u∏
j=1

q
rj
j

with rj ≥ 2. For simplicity, let M =
∏t

i=1 pi and let

T(N) = Z[wpi , Tp : 1 ≤ i ≤ t, for primes p ∤ M ] ⊂ End(J0(N)).

Also, let T = T(N)⊗Z Zℓ and its ideal

I := (Tp − p− 1 : for primes p ∤ N) ⊂ T.

By the Eichler–Shimura relation, we then have:

A(N) = A(N)[I] and B(N) = B(N)[I]

For each ε = (ε1, . . . , εt) ∈ {±1}t, let

Iε := (I, wpi
− εi : 1 ≤ i ≤ t).
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As before, one may want to have T/Iε ≃ Zℓ/nZℓ for some n ∈ N.
However, we do not know whether the operators Tqj are congruent to
integers. Note that Tqj acts as 0 on the space of newforms. So we may
try to consider the following ideal:

Iε0 := (Iε, Tqj : 1 ≤ j ≤ u).

Now we can generalize the work of Mazur and Ohta.

Theorem

There is a rational cuspidal divisor Cε
0 on X0(N) annihilated by Iε0.

The order of Cε
0 is nε0. Also, we have

T/Iε0 ≃ Zℓ/n
ε
0Zℓ.

Furthermore, J0(N)(Q)tors[ℓ
∞, Iε0] is cyclic as a T/Iε0-module.
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Sketch of proof / Remarks

▶ Finding a rational cuspidal divisor Cε
0 annihilated by Iε0 is not hard.

▶ Computing the order of Cε
0 is not hard... using the algorithm.

▶ Finding an Eisenstein series Eε
0 annihilated by Iε0 is not hard.

▶ However, the constant term of Eε
0 is zero in this case!

How can we get an upper bound for nε0?
▶ By the q-expansion principle (by Katz), we can prove that Eε

0 is in
fact a cusp form over the ring T/Iε0. So their residues at various
cusps must vanish. Computing the residues of Eε

0 , we have an
upper bound which is (ℓ-adically) equal to the order of Cε

0 .
▶ Finally, for the cyclicity of B(N)[Iε0].... The argument by Mazur

(and its generalization by Ohta) works verbatim. Here we use
assumption that either ℓ ≥ 5 or ℓ = 3 ∤ N .

▶ We slightly extend Ohta’s result by including some cases where
ℓ = 3 | N . (For instance, ∃ p | N s.t. p ≡ −1 (mod 3).)
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What’s left?

Thus, if we let
I0 := (Tqj , I : 1 ≤ j ≤ u) ⊂ T,

then the previous argument implies that

A(N)[I0] = B(N)[I0].

So we only need the following implication:

A(N)[Tqj : 1 ≤ j ≤ u] = B(N)[Tqj : 1 ≤ j ≤ u] =⇒ A(N) = B(N)

What can we do for this? This is “the problem” which has never been
encountered before. So...??
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Inductive method

Fortunately, we could solve this problem by induction.

Theorem

For any primes q = qj , suppose that Conjecture C holds for level
N/q. Namely, we have

A(N/q) = B(N/q).

Then we have

A(N)[Tq] = B(N)[Tq] ⇐⇒ A(N) = B(N).

Since Tq commutes with other Hecke operators, the theorem implies
that if we assume Conjecture C holds for all lower levels, then

A(N)[Tqj : 1 ≤ j ≤ u] = B(N)[Tqj : 1 ≤ j ≤ u] =⇒ A(N) = B(N)
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Proof of the theorem

Let q = qj for some 1 ≤ j ≤ u, i.e., q is a prime whose square divides N .

First, we insist the following.

Claim

If A(N/q) = B(N/q), then we have Tq(A(N)) = Tq(B(N)).

Note that there is an exact sequence

0 // A(N)[Tq] //
� _

��

A(N) //
� _

��

Tq(A(N)) //
� _

��

0

0 // B(N)[Tq] // B(N) // Tq(B(N)) // 0.

Thus, if Claim holds, then by five lemma we have

A(N)[Tq] = B(N)[Tq] ⇐⇒ A(N) = B(N).
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Thus, it suffices to prove the claim.

Proof of Claim. Since q2 divides the level N , by direct computation of
the degeneracy maps we can prove that

J0(Nq)

βq(N)∗

''
J0(N)

βq(N/q)∗

''

αq(N)∗

77

Tq :=βq(N)∗◦αq(N)∗

,,

αq(N/q)∗◦βq(N/q)∗

22|| J0(N).

J0(N/q)

αq(N/q)∗

77
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Also, by direct computation we have

βq(N/q)∗(A(N)) = A(N/q).

(We know everything about the rational cuspidal divisor class group!)

Since βq(N/q)∗ is rational, we have

βq(N/q)∗(B(N)) ⊆ B(N/q).

Thus, we have

Tq(B(N)) ⊆ αq(N/q)∗(B(N/q)) = αq(N/q)∗(A(N/q))

= αq(N/q)∗ ◦ βq(N/q)∗(A(N)) = Tq(A(N)).

This completes the proof.

30 / 30



Thank you very much
for your attention!


