# On *p*-isogenies for elliptic curves with multiplicative reduction

George Ţurcaş (partially joint work with Filip Najman)

Modular curves and Galois representations Zagreb September 19, 2023

Let  $E/\mathbb{Q}$  be an elliptic curve. Let p be a prime such that E admits a rational p-isogeny. Then

 $p \in \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163\}.$ 

• It can be rephrased in terms of Galois representations;

Let  $E/\mathbb{Q}$  be an elliptic curve. Let p be a prime such that E admits a rational p-isogeny. Then

 $p \in \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163\}.$ 

- It can be rephrased in terms of Galois representations;
- It can be rephrased in terms of modular curves;

Let  $E/\mathbb{Q}$  be an elliptic curve. Let p be a prime such that E admits a rational p-isogeny. Then

 $p \in \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163\}.$ 

- It can be rephrased in terms of Galois representations;
- It can be rephrased in terms of modular curves;
- It plays an important role in the modular method.

# The modular method for Diophantine equations

$$a^{p} + b^{p} + c^{p} = 0 \rightarrow E_{p,a,b,c} : Y^{2} = X(X - a^{p})(X + b^{p})$$

Figure: Source: M. H. Şengün's PhD Thesis



Arrows on the RHS go both ways because, in the classical case, for  $p > 3 \mod p$  modular forms are just reductions of modular forms.

## Some notation

- $G_K$  the absolute Galois group of K;
- p a rational prime;
- E an elliptic curve defined over K;
- $\overline{\rho}_{E,p}$ :  $G_{\mathcal{K}} \to \operatorname{Aut}(E[p]) \cong \operatorname{GL}_2(\mathbb{F}_p)$  is the representation arising from the action of  $G_{\mathcal{K}}$  on the *p*-torsion points in  $E(\overline{\mathcal{K}})$ ;
- *E* has a *p*-isogeny defined over *K* if and only if *p*<sub>*E*,*p*</sub> is reducible.

$$\overline{\rho}_{E,p} \sim \left(\begin{array}{cc} \lambda & * \\ 0 & \lambda' \end{array}\right),$$

where  $\lambda, \lambda' : G_K \to \mathbb{F}_p^{\times}$  are characters such that  $\lambda \lambda' = \chi_p$  is the mod p cyclotomic character.

For any elliptic curve E defined over  $\mathbb{Q}$  and any prime p > 163, the representation  $\overline{\rho}_{E,p} : G_{\mathbb{Q}} \to GL_2(\mathbb{F}_p)$  is irreducible.

#### Question

For a general number field K, is there a constant  $B_K$  such that for any elliptic curve E/K and any prime  $p > B_K$ , the representation  $\overline{\rho}_{E,p}$  is irreducible?

For any elliptic curve E defined over  $\mathbb{Q}$  and any prime p > 163, the representation  $\overline{\rho}_{E,p} : G_{\mathbb{Q}} \to GL_2(\mathbb{F}_p)$  is irreducible.

#### Question

For a general number field K, is there a constant  $B_K$  such that for any elliptic curve E/K and any prime  $p > B_K$ , the representation  $\overline{\rho}_{E,p}$  is irreducible?

**Short answer:** No, due to the possible presence of elliptic curves with CM whose rings of endomorphisms are contained in K.

#### Theorem (Serre, 1972)

For general K, given E/K without CM, there exists a constant  $B_{E,K}$  such that for any prime  $p > B_{E,K}$ , the representation  $\overline{\rho}_{E,p}$  is surjective.

#### Question (aligned to Serre's uniformity question)

For a general number field K, is there a constant  $B_K$  such that for any elliptic curve E/K without CM and any prime  $p > B_K$ , the representation  $\overline{\rho}_{E,p}$  is irreducible?

#### Theorem (Serre, 1972)

For general K, given E/K without CM, there exists a constant  $B_{E,K}$  such that for any prime  $p > B_{E,K}$ , the representation  $\overline{\rho}_{E,p}$  is surjective.

#### Question (aligned to Serre's uniformity question)

For a general number field K, is there a constant  $B_K$  such that for any elliptic curve E/K without CM and any prime  $p > B_K$ , the representation  $\overline{\rho}_{E,p}$  is irreducible?

**Fact**: If *E* has CM, its j(E) is an algebraic integer. In particular For any prime ideal  $\mathfrak{q}$ , we have  $v_{\mathfrak{q}}(j(E)) \ge 0$ .

#### Theorem (Serre, 1972)

For general K, given E/K without CM, there exists a constant  $B_{E,K}$  such that for any prime  $p > B_{E,K}$ , the representation  $\overline{\rho}_{E,p}$  is surjective.

#### Question (aligned to Serre's uniformity question)

For a general number field K, is there a constant  $B_K$  such that for any elliptic curve E/K without CM and any prime  $p > B_K$ , the representation  $\overline{\rho}_{E,p}$  is irreducible?

**Fact**: If *E* has CM, its j(E) is an algebraic integer. In particular For any prime ideal q, we have  $v_q(j(E)) \ge 0$ . **Idea (already appears in the work of Mazur for**  $K = \mathbb{Q}$ ) If  $\overline{\rho}_{E,p}$  is reducible for some large *p*, there should be a restricted set of primes that divide the denominator of j(E).

$$a^{p} + b^{p} + c^{p} = 0 \rightarrow E : Y^{2} = X(X - a^{p})(X + b^{p})$$

$$j(E) = \frac{2^4(b^{2p} - a^p c^p)}{(abc)^{2p}}$$

The elliptic curve has (potentially) multiplicative reduction at q if and only if  $\operatorname{ord}_{\mathfrak{q}}(j(E)) < 0$ .

## Theorem (Ţ., '20)

Let K be a quadratic imaginary number field of class number one. Assume Serre's modularity conjecture holds over K. Then, for any prime  $p \ge 19$ , the equation  $a^p + b^p + c^p = 0$  does not have solutions in coprime  $a, b, c \in \mathcal{O}_K \setminus \{0\}$  such that  $2 \mid \operatorname{Norm}_{K/\mathbb{Q}}(abc)$ .

## Theorem (Najman-Ţ. '21)

Let K be a quadratic field and let q > 5 be a rational prime that is unramified in K. Suppose an elliptic curve E/K has potentially multiplicative reduction at all primes q of K above q and posses a p-isogeny defined over K. Then  $p \le 71$  if either:

- q is inert in K.
- q splits in K as q<sub>1</sub>q<sub>2</sub>. Given x ∈ X<sub>0</sub>(p)(K) the quadratic point arrising from E and its Galois conjugate x<sup>τ</sup> ∈ X<sub>0</sub>(p)(K), both x and x<sup>τ</sup> reduce to the same cusps when taken modulo q<sub>1</sub> and q<sub>2</sub>, respectively.

More general versions are presented in the work of Banwait and Derickx arXiv:2203.06009 and Michaud-Jacobs arXiv:2203.03533.

# The proof makes use of the modular curve $X_0(p)$

- As a Riemann surface,  $Y_0(p) = \Gamma_0(p) \setminus \mathbb{H}$ . By adding the cusps  $\infty$ , 0 we make it into a compact Riemann surface  $X_0(p)$ .
- X<sub>0</sub>(p) is an algebraic curve defined over Q and has good reduction at primes q ≠ p.

# The proof makes use of the modular curve $X_0(p)$

- As a Riemann surface,  $Y_0(p) = \Gamma_0(p) \setminus \mathbb{H}$ . By adding the cusps  $\infty$ , 0 we make it into a compact Riemann surface  $X_0(p)$ .
- X<sub>0</sub>(p) is an algebraic curve defined over Q and has good reduction at primes q ≠ p.
- The cusps are rational points:  $\infty, 0 \in X_0(p)(\mathbb{Q})$ .
- The *j*-map:  $j : X_0(p) \to \mathbb{P}^1$ . The poles of *j* are the two cusps.
- The Atkin-Lehner involution w<sub>p</sub> : X<sub>0</sub>(p) → X<sub>0</sub>(p) swaps the cusps.
- X<sub>0</sub>(p) parametrises elliptic curves with p-isogenies: if E/K is an elliptic curve with a rational p-isogeny, φ, then

$$(E,\varphi) \rightarrow [(E,\varphi)] = x \in X_0(p)(K).$$

In this case, j(x) = j(E).

- Let  $\tau$  be the non-trivial element in  $Gal(K/\mathbb{Q})$ .
- Let x ∈ X<sub>0</sub>(p)(K) be the point corresponding to (E, φ), and let y = (x, x<sup>τ</sup>) ∈ X<sub>0</sub>(p)<sup>(2)</sup>(Q) be the point on the symmetric 2-th power of X<sub>0</sub>(p).

#### Fact

The point  $y \in X_0(p)^{(2)}(\mathbb{Q})$  reduces to  $(\infty, \infty)_{\mathbb{F}_q}$  after possibly applying an appropriate Atkin-Lehner involution.

## Theorem (Mazur)

There is an optimal quotient  $J_0^e(p)(\mathbb{Q})$  of the Jacobian whose rank is zero.

• Define  $f_2: X_0^{(2)}(p) \to J_0^e$  to be the composition of the natural map

$$egin{aligned} X^{(2)}_0(p) &
ightarrow J_0(p) \ (lpha_1,lpha_2) &\mapsto [lpha_1+lpha_2-2\infty] \end{aligned}$$

and the quotient map  $J_0(p) o J_0^e(p)$ .

#### Theorem (Kamienny '92)

For p > 71, the map  $f_2 : X_0(p)^{(2)} \to J_0^e(p)$  is a formal immersion at  $(\infty, \infty)_{\mathbb{F}_q}$ .

**Consequence:** If  $f_2(y) - f_2((\infty, \infty)) = 0$ , then  $y = (\infty, \infty)$ .

#### Theorem (Kamienny '92)

For p > 71, the map  $f_2 : X_0(p)^{(2)} \to J_0^e(p)$  is a formal immersion at  $(\infty, \infty)_{\mathbb{F}_q}$ .

**Consequence:** If  $f_2(y) - f_2((\infty, \infty)) = 0$ , then  $y = (\infty, \infty)$ .

But we only know that  $\operatorname{red}_q(f_2(y) - f_2((\infty,\infty))) = \tilde{0} \in J_0^e(p)(\mathbb{F}_q).$ 

Here we use that  $J_0^e(p)$  has rank 0 over  $\mathbb{Q}$  and we use injectivity of torsion to deduce that  $f_2(y) - f_2((\infty, \infty)) = 0$ .

This implies that  $y = (\infty, \infty)$  and contradicts the hypothesis that  $x \in X_0(p)(K)$  is non-cuspidal.

#### Fact

It was essential to assume that  $y = (x, x^{\tau}) \in X_0(p)(\mathbb{Q})^{(2)}$  reduces to  $(\infty, \infty)_{\mathbb{F}_q}$  or to  $(\infty, 0)_{\mathbb{F}_q}$ .

However, this is not always the case. If q = q ⋅ q<sup>τ</sup> splits on K, it might well be the case that x reduces modulo q to ∞ and x<sup>τ</sup> reduces modulo q<sup>τ</sup> to 0. There are plenty of such examples.

```
Elliptic Curve defined by y^2 + x*y = x^3 + y^2 + y^2 + y^3 + y^
```

1/100778998369860029926304764778729964623721657086690514431418757800974201409557 1258244\*(-828490183576148659183582102909802497293807934663115708174500955453731\ 035860430000\*d + 14696535750381843426535201512786226149797854742770136772285345\

28181243646823123453)\*X + 1/3635243653149610773469715320342787264539796551\ 28585195310753528350712507446565296784\*(-82849018357614865918358210290980249729\ 3807934663115708174500955453731835860430000\*d +

146965357503818434265352015127862261497978547427701367722853452818124364682\ 3123453) over K

[> K;

Number Field with defining polynomial  $x^{\rm A2}$  + 1887405189403/262589629225 over the Rational Field

• This elliptic curve has a p = 79-isogeny and also multiplicative reduction modulo both primes of K lying above 11.

```
Elliptic Curve defined by y^2 + x*y = x^3 +
1/1007899036986002992630476477872996462372165708690514431418759800974201409557\
1258244*(-828490183576148659183582102909802497293807934663115708174500955453731\
03586043000*d + 14696535750381843426535201512786226149797854742770136772285345\
28181243646823123453)*x + 1/36352436533149610773469715320342787264539796551\
2858519531075352536071250744656529763*4*(-82849018357614865918358210290980249729\
380793466311570817450095545373103586043000*d +
146965357503818434265352015127862261497978547427701367722853452818124364682\
3123453) over K
```

- This elliptic curve has a p = 79-isogeny and also multiplicative reduction modulo both primes of K lying above 11.
- Computation uses code accompanying "Computing points on bielliptic modular curves over fixed quadratic fields" by Philippe Michaud-Jacobs and "Computing quadratic points on modular curves X<sub>0</sub>(N)" by Adzaga, Keller, Michaud-Jacobs, Najman and Ozman.

Similar examples can be found for p = 37, 43, 53, 61, 83, 89, 101 and 131, completing the list of primes p for which  $X_0(p)$  is bielliptic (Bars '99).



**Figure:** Diagram taken from "Ogg's Torsion conjecture: Fifty years later" by Balakrishnan and Mazur

## Here come O-curves

#### Theorem (Michaud-Jacobs '22)

For 
$$q \neq p$$
, if  $(x, x^{\tau}) \in X_0^{(2)}(p)(\mathbb{Q})$  reduces to  $(\infty, 0)_{\mathbb{F}_q}$  then  $x^{\tau} = w_p(x)$ .

We point out the existence of the following commutative diagram over Spec  $\mathbb{Z}[1/p]$ .



The top left isomorphism above is given by  $(y, z) \mapsto (w_p(z), y)$  and  $h_w: X_0^w(p) \to$  $J_0(p)$  is defined as NDI

 $h_w(y, z) = [y + w_p(z) - 2\infty].$ 

Note that the injectivity of  $h_w$  follows from that of h and the commutativity of the diagram.

Note that the isomorphism  $X_0^w(p) \to X_0^{(2)}(p)$  sending  $(y, z) \mapsto (w_p(z), y)$  maps  $(\infty, 0) \in X_0^w(p)$  to  $(\infty, \infty) \in X_0^{(2)}(p)$ . Now, if we similarly denote by  $f_w : X_0^w(p) \to \infty$  $J_p$  the composition between  $h_w$  and the natural projection proj on the diagram (4), the proof of the following result is a consequence of the fact that  $f = h \circ \text{proj}$  is a formal immersion at  $(\infty, \infty)_{\mathbb{F}_n}$  as discussed in the proof of Theorem 2.

**Proposition 3** For a > 5 and p > 71, the map

$$f_w : X_0^w(p)_{|\operatorname{Spec} \mathbb{Z}[1/p]} \rightarrow J_{p/\operatorname{Spec} \mathbb{Z}[1/p]}$$

is a formal immersion at  $(\infty, 0)_{\mathbb{F}_{a}}$ .

イロト 不得 トイヨト イヨト 二日

## **Strategy for Diophantine equations**

• If not a CM-point, x corresponds therefore to a quadratic  $\mathbb{Q}$ -curve, i.e. to a rational point on  $X_0^+(p) = X_0(p)/\langle w_p \rangle$ . A result of González '01 implies that  $j(x) = \frac{\alpha}{M^p}$ , where  $\alpha$  is an algebraic integer which satisfies

$$(\mathsf{Tr}_{\mathcal{K}/\mathbf{Q}}(\alpha), \mathcal{M}) = 1, \quad (\mathcal{N}_{\mathcal{K}/\mathbf{Q}}(\alpha), \mathcal{M}^p) = \mathcal{M}^{p-1},$$

 Controlling the primes of multiplicative reduction and Diophantine equations

$$E := E_{a,b,c,p} : Y^2 = X(X - a^p)(X + b^p).$$

• The *j*-invariant of this elliptic curve has the formula

$$j(E) = \frac{2^4(b^{2p} - a^p c^p)}{(abc)^{2p}}$$

イロン スピン スピン スピン 一日

# **Continuation.** *K* is fixed imaginary quadratic

- Suppose that a, b, c ∈ O<sub>K</sub> are coprime and satisfy (a variant of the Asymptotic) Fermat equation a<sup>p</sup> + b<sup>p</sup> + c<sup>p</sup> = 0, for some prime exponent p. One can construct the Frey elliptic curve
- With such results one can prove that if p is large and p
  <sub>E,p</sub> is reducible, then j(E) is integral outside a finite set S.
- The Fermat equation can be written as  $(-a/c)^p + (-b/c)^p = 1$ . Observe that  $(-a/c)^p$  and  $(-b/c)^p$  are solutions to the *S*-unit equation

$$x + y = 1$$
, where  $x, y \in \mathcal{O}_{K,S}^{\times}$ .

Thank you very much for your attention!