On p-isogenies for elliptic curves with

multiplicative reduction

George Turcas (partially joint work with Filip Najman)

Modular curves and Galois representations
Zagreb September 19, 2023

1/20



Theorem (Mazur, 1978)

Let E/Q be an elliptic curve. Let p be a prime such that E admits
a rational p-isogeny. Then

p € {2,3,5,7,11,13,17,19, 37, 43,67,163}.

@ It can be rephrased in terms of Galois representations;
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Theorem (Mazur, 1978)

Let E/Q be an elliptic curve. Let p be a prime such that E admits
a rational p-isogeny. Then

p € {2,3,5,7,11,13,17,19, 37, 43,67,163}.

@ It can be rephrased in terms of Galois representations;
@ It can be rephrased in terms of modular curves;

@ It plays an important role in the modular method.
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The modular method for Diophantine equations

P +bP+cP=0—Epapc: Y2 =X(X—aP)(X + bP)

Figure: Source: M. H. Sengiin's PhD Thesis

{modular forms}

P — adic Galois Eichler-Shimura, Deligne
rep’s of Gal(Q/Q)

mod—p Galois Serre’s conjecture mod—p
rep’s of Gal(Q/Q) modular forms

Arrows on the RHS go both ways because, in the classical case, for
p > 3 mod p modular forms are just reductions of modular forms.
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Gk - the absolute Galois group of K;

p - a rational prime;

E an elliptic curve defined over K;

PEp Gk — Aut(E[p]) = GLo(FF,) is the representation
arising from the action of Gk on the p-torsion points in E(K);

@ E has a p-isogeny defined over K if and only if pg , is

reducible.
_ A %
PEp ™~ o N )

where \, X" : Gk — F; are characters such that A\ = x,, is
the mod p cyclotomic character.
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Theorem (Mazur, 1978)

For any elliptic curve E defined over Q and any prime p > 163, the
representation pg , : Gg — GL(IF,) is irreducible.

For a general number field K, is there a constant Bk such that for
any elliptic curve E/K and any prime p > By, the representation
PE,p IS irreducible?
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Theorem (Mazur, 1978)

For any elliptic curve E defined over Q and any prime p > 163, the
representation pg , : Gg — GL(IF,) is irreducible.

For a general number field K, is there a constant Bk such that for
any elliptic curve E/K and any prime p > By, the representation
PE,p IS irreducible?

Short answer: No, due to the possible presence of elliptic curves
with CM whose rings of endomorphisms are contained in K.
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Theorem (Serre, 1972)

For general K, given E /K without CM, there exists a constant
Be k such that for any prime p > Bg g, the representation pg ,, is
surjective.

Question (aligned to Serre’s uniformity question)

For a general number field K, is there a constant Bk such that for
any elliptic curve E /K without CM and any prime p > By, the
representation pg ,, is irreducible?
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Fact: If E has CM, its j(E) is an algebraic integer. In particular
For any prime ideal q, we have v4(j(E)) > 0.
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Theorem (Serre, 1972)

For general K, given E /K without CM, there exists a constant
Be k such that for any prime p > Bg g, the representation PE.p is
surjective.

Question (aligned to Serre’s uniformity question)

For a general number field K, is there a constant Bk such that for
any elliptic curve E /K without CM and any prime p > By, the
representation pg ,, is irreducible?

.

Fact: If E has CM, its j(E) is an algebraic integer. In particular
For any prime ideal q, we have v4(j(E)) > 0.

Idea (already appears in the work of Mazur for K = Q)

If pg p is reducible for some large p, there should be a restricted
set of primes that divide the denominator of j(E).
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P+ bPHcP=0—E:Y?=X(X—-aP)(X+bP)

24(b%P — aPcP)
(abc)?p

The elliptic curve has (potentially) multiplicative reduction at q if
and only if ordg(j(E)) < 0.

J(E) =

Theorem (T., '20)

Let K be a quadratic imaginary number field of class number one.
Assume Serre's modularity conjecture holds over K. Then, for any
prime p > 19, the equation aP + bP 4 cP = 0 does not have
solutions in coprime a, b, c € Ok \ {0} such that

2 | Normg /g(abc).
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Suppose K is a quadratic field

Theorem (Najman-T. '21)
Let K be a quadratic field and let g > 5 be a rational prime that is
unramified in K. Suppose an elliptic curve E/K has potentially

multiplicative reduction at all primes q of K above q and posses a
p-isogeny defined over K. Then p < 71 if either:

© g isinertinK.

@ g splits in K as q1q2. Given x € Xo(p)(K) the quadratic point
arrising from E and its Galois conjugate x™ € Xo(p)(K), both
x and x™ reduce to the same cusps when taken modulo q; and
q2, respectively.

v

More general versions are presented in the work of Banwait and
Derickx arXiv:2203.06009 and Michaud-Jacobs arXiv:2203.03533.
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The proof makes use of the modular curve Xy(p)

@ As a Riemann surface, Yo(p) = lNo(p)\H. By adding the cusps
00,0 we make it into a compact Riemann surface Xo(p).

@ Xo(p) is an algebraic curve defined over Q and has good
reduction at primes q # p.
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The proof makes use of the modular curve Xy(p)

@ As a Riemann surface, Yo(p) = lNo(p)\H. By adding the cusps
00,0 we make it into a compact Riemann surface Xo(p).

@ Xo(p) is an algebraic curve defined over Q and has good
reduction at primes q # p.

@ The cusps are rational points: 00,0 € Xo(p)(Q).
@ The j-map: j : Xo(p) — PL. The poles of j are the two cusps.

@ The Atkin-Lehner involution w, : Xp(p) — Xo(p) swaps the
cusps.

@ Xo(p) parametrises elliptic curves with p-isogenies: if E/K is
an elliptic curve with a rational p-isogeny, ¢, then

(E, @) = [(E, )] = x € Xo(p)(K).

In this case, j(x) = j(E).
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@ Let 7 be the non-trivial element in Gal(K/Q).

@ Let x € Xo(p)(K) be the point corresponding to (E, ¢), and
let y = (x,x7) € Xo(p)®(Q) be the point on the symmetric
2-th power of Xp(p).

The point y € Xo(p)®(Q) reduces to (oo, o0)r, after possibly
applying an appropriate Atkin-Lehner involution.
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Theorem (Mazur)

There is an optimal quotient J§(p)(Q) of the Jacobian whose rank
is zero.

@ Define £, : Xéz)(p) — J§ to be the composition of the natural
map

X§2(p) — Jo(p)
(a1,02) = [og + ap — 200]

and the quotient map Jo(p) — J§(p)-
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Key result

Theorem (Kamienny ’'92)

For p > 71, the map f, : Xo(p)® — J§(p) is a formal immersion
at (oo, 00)F, .-

Consequence: If f(y) — f2((00,0)) = 0, then y = (o0, o0).
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Key result

Theorem (Kamienny ’'92)

For p > 71, the map f, : Xo(p)® — J§(p) is a formal immersion
at (oo, 00)F, .-

Consequence: If f(y) — f2((00,00)) = 0, then y = (00, 00).
But we only know that red,(f(y) — f((00,0))) = 0 € JE(p)(Fy).

Here we use that J§(p) has rank 0 over Q and we use injectivity of
torsion to deduce that f(y) — f2((c0,0)) = 0.

This implies that y = (00, 00) and contradicts the hypothesis that
x € Xo(p)(K) is non-cuspidal.
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Generalizations?

It was essential to assume that y = (x,x7) € Xo(p)(Q)? reduces
to (00, 00)r, or to (oo, 0)F, -

@ However, this is not always the case. If g = q - q" splits on K,
it might well be the case that x reduces modulo gq to co and
X7 reduces modulo q” to 0. There are plenty of such
examples.
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e computational examples

Elliptic Curve defined by y”*2 + x*y = x"3 +

1/10097899036986002992630476477872996462372165708690514431418759800974201409557\

1258244%(-828490183576148659183582102909802497293807934663115708174500955453731\

035860430000%d + 14696535750381843426535201512786226149797854742770136772285345\
28181243646823123453)%x + 1/36352436533149610773469715320342787264539796551\

28585195310753528350712507440565296784% (—82849018357614865918358210290980249729\

3807934663115708174500955453731035860430000%d +
146965357503818434265352015127862261497978547427701367722853452818124364682\
3123453) over K

> K;

Number Field with defining polynomial x"2 + 1887405189403/262589629225 over the

Rational Field

@ This elliptic curve has a p = 79-isogeny and also multiplicative
reduction modulo both primes of K lying above 11.
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Some computational examples

Elliptic Curve defined by y”*2 + x*y = x"3 +

1/10097899036986002992630476477872996462372165708690514431418759800974201409557\

1258244%(-828490183576148659183582102909802497293807934663115708174500955453731\

035860430000%d + 14696535750381843426535201512786226149797854742770136772285345\
28181243646823123453)%x + 1/36352436533149610773469715320342787264539796551\

28585195310753528350712507440565296784% (—82849018357614865918358210290980249729\

3807934663115708174500955453731035860430000%d +
146965357503818434265352015127862261497978547427701367722853452818124364682\
3123453) over K

> K;

Number Field with defining polynomial x"2 + 1887405189403/262589629225 over the

Rational Field

@ This elliptic curve has a p = 79-isogeny and also multiplicative
reduction modulo both primes of K lying above 11.

@ Computation uses code accompanying “Computing points on
bielliptic modular curves over fixed quadratic fields” by
Philippe Michaud-Jacobs and “Computing quadratic points on
modular curves Xo(N)" by Adzaga, Keller, Michaud-Jacobs,
Najman and Ozman.
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Similar examples can be found for p = 37, 43, 53, 61, 83, 89, 101
and 131, completing the list of primes p for which Xp(p) is
bielliptic (Bars '99).
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Figure: Diagram taken from “Ogg's Torsion conjecture: Fifty years
later” by Balakrishnan and Mazur
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Here come QQ-curves

Theorem (Michaud-Jacobs '22)
For g # p, if (x,x™) € Xé”(p)(@) reduces to (00, 0)F, then

xT = wp(x).

‘We point out the existence of the following commutative diagram over Spec Z[1/p].
Xp(p) == X5 (p) == Jo(p)

e 8 e @

roj oo
Jopy —2s 4, MES

The top left isomorphism above is given by (v, 2) = (w(2), y) and hy, : X2 (p) —
Jo(p) is defined as

i —
ha(3:2) = [y + w0, (2) = 209]. | O |
Note that the injectivity of Ay, follows from that of & and the commutativity of the
diagram. i o i |
2 - HELP !

Note that the isomorphism X(p) — X\*' (p) sending (y,2) = (wp (), y) maps

(00,0) € X (p) to (00, 00) € X*) (p). Now, if we similarly denote by f,, : X{'(p) —
Jp the composition between 4, and the natural projection proj on the diagram (4),
the proof of the following result is a consequence of the fact that f = & o proj is a
formal immersion at (oo, c0), as discussed in the proof of Theorem 2.

Proposition 3 For g > 5 and p > 71, the map

Jw: X5 (P)sspeczii/p] = Ip/spy

is a formal immersion at (,0)z,.
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Strategy for Diophantine equations

@ If not a CM-point, x corresponds therefore to a quadratic
Q-curve, i.e. to a rational point on X; (p) = Xo(p)/(wp). A

result of Gonzélez '01 implies that j(x) = 475, where « is an

algebraic integer which satisfies
(TrK/Q(a)7 M) =1, (NK/Q(a)v Mp) = MP1.

@ Controlling the primes of multiplicative reduction and
Diophantine equations

E:=Espep: Y= X(X—aP)(X+bP).
@ The j-invariant of this elliptic curve has the formula

4(p2P — aPc
J'(E):‘2 ([zapbc)Q: 2
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Continuation. K is fixed imaginary quadratic

@ Suppose that a, b, c € Ok are coprime and satisfy (a variant
of the Asymptotic) Fermat equation aP + bP + cP = 0, for
some prime exponent p. One can construct the Frey elliptic
curve

@ With such results one can prove that if p is large and pg , is
reducible, then j(E) is integral outside a finite set S.

@ The Fermat equation can be written as
(—a/c)P + (—b/c)P = 1. Observe that (—a/c)P and (—b/c)P
are solutions to the S-unit equation

x+y =1, where x,y € Og s.
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Thank you very much for your attention!

Dae
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