On p-isogenies for elliptic curves with multiplicative reduction

George Turcaș (partially joint work with Filip Najman)

Modular curves and Galois representations
Zagreb September 19, 2023

Motivation

Theorem (Mazur, 1978)

Let E / \mathbb{Q} be an elliptic curve. Let p be a prime such that E admits a rational p-isogeny. Then

$$
p \in\{2,3,5,7,11,13,17,19,37,43,67,163\} .
$$

- It can be rephrased in terms of Galois representations;

Motivation

Theorem (Mazur, 1978)

Let E / \mathbb{Q} be an elliptic curve. Let p be a prime such that E admits a rational p-isogeny. Then

$$
p \in\{2,3,5,7,11,13,17,19,37,43,67,163\} .
$$

- It can be rephrased in terms of Galois representations;
- It can be rephrased in terms of modular curves;

Theorem (Mazur, 1978)

Let E / \mathbb{Q} be an elliptic curve. Let p be a prime such that E admits a rational p-isogeny. Then

$$
p \in\{2,3,5,7,11,13,17,19,37,43,67,163\}
$$

- It can be rephrased in terms of Galois representations;
- It can be rephrased in terms of modular curves;
- It plays an important role in the modular method.

The modular method for Diophantine equations

$$
a^{p}+b^{p}+c^{p}=0 \rightarrow E_{p, a, b, c}: Y^{2}=X\left(X-a^{p}\right)\left(X+b^{p}\right)
$$

Figure: Source: M. H. Şengün's PhD Thesis

$$
\begin{aligned}
& \left.\left\{\begin{array}{c}
p-\text { adic Galois } \\
\text { rep's of } \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})
\end{array}\right\} \stackrel{\text { Eichler-Shimura, Deligne }}{ } \text { \{modular forms }\right\} \\
& \Downarrow \begin{array}{c}
\Downarrow
\end{array} \\
& \left\{\begin{array}{c}
\text { mod- } p \text { Galois } \\
\text { rep's of } \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})
\end{array}\right\} \xrightarrow{\text { Serre's conjecture }}
\end{aligned}
$$

Arrows on the RHS go both ways because, in the classical case, for $p>3 \bmod p$ modular forms are just reductions of modular forms.

Some notation

- G_{K} - the absolute Galois group of K;
- p - a rational prime;
- E an elliptic curve defined over K;
- $\bar{\rho}_{E, p}: G_{K} \rightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ is the representation arising from the action of G_{K} on the p-torsion points in $E(\bar{K})$;
- E has a p-isogeny defined over K if and only if $\bar{\rho}_{E, p}$ is reducible.

$$
\bar{\rho}_{E, p} \sim\left(\begin{array}{cc}
\lambda & * \\
0 & \lambda^{\prime}
\end{array}\right)
$$

where $\lambda, \lambda^{\prime}: G_{K} \rightarrow \mathbb{F}_{p}^{\times}$are characters such that $\lambda \lambda^{\prime}=\chi_{p}$ is the $\bmod p$ cyclotomic character.

Theorem (Mazur, 1978)

For any elliptic curve E defined over \mathbb{Q} and any prime $p>163$, the representation $\bar{\rho}_{E, p}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ is irreducible.

Question

For a general number field K, is there a constant B_{K} such that for any elliptic curve E / K and any prime $p>B_{K}$, the representation $\bar{\rho}_{E, p}$ is irreducible?

Theorem (Mazur, 1978)

For any elliptic curve E defined over \mathbb{Q} and any prime $p>163$, the representation $\bar{\rho}_{E, p}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ is irreducible.

Question

For a general number field K, is there a constant B_{K} such that for any elliptic curve E / K and any prime $p>B_{K}$, the representation $\bar{\rho}_{E, p}$ is irreducible?

Short answer: No, due to the possible presence of elliptic curves with CM whose rings of endomorphisms are contained in K.

Theorem (Serre, 1972)

For general K, given E / K without $C M$, there exists a constant $B_{E, K}$ such that for any prime $p>B_{E, K}$, the representation $\bar{\rho}_{E, p}$ is surjective.

Question (aligned to Serre's uniformity question)

For a general number field K, is there a constant B_{K} such that for any elliptic curve E / K without $C M$ and any prime $p>B_{K}$, the representation $\bar{\rho}_{E, p}$ is irreducible?

Theorem (Serre, 1972)

For general K, given E / K without $C M$, there exists a constant $B_{E, K}$ such that for any prime $p>B_{E, K}$, the representation $\bar{\rho}_{E, p}$ is surjective.

Question (aligned to Serre's uniformity question)

For a general number field K, is there a constant B_{K} such that for any elliptic curve E / K without $C M$ and any prime $p>B_{K}$, the representation $\bar{\rho}_{E, p}$ is irreducible?

Fact: If E has $C M$, its $j(E)$ is an algebraic integer. In particular For any prime ideal \mathfrak{q}, we have $v_{\mathfrak{q}}(j(E)) \geq 0$.

Theorem (Serre, 1972)

For general K, given E / K without $C M$, there exists a constant $B_{E, K}$ such that for any prime $p>B_{E, K}$, the representation $\bar{\rho}_{E, p}$ is surjective.

Question (aligned to Serre's uniformity question)

For a general number field K, is there a constant B_{K} such that for any elliptic curve E / K without $C M$ and any prime $p>B_{K}$, the representation $\bar{\rho}_{E, p}$ is irreducible?

Fact: If E has $C M$, its $j(E)$ is an algebraic integer. In particular For any prime ideal \mathfrak{q}, we have $v_{\mathfrak{q}}(j(E)) \geq 0$. Idea (already appears in the work of Mazur for $K=\mathbb{Q}$)
If $\bar{\rho}_{E, p}$ is reducible for some large p, there should be a restricted set of primes that divide the denominator of $j(E)$.

$$
\begin{gathered}
a^{p}+b^{p}+c^{p}=0 \rightarrow E: Y^{2}=X\left(X-a^{p}\right)\left(X+b^{p}\right) \\
j(E)=\frac{2^{4}\left(b^{2 p}-a^{p} c^{p}\right)}{(a b c)^{2 p}}
\end{gathered}
$$

The elliptic curve has (potentially) multiplicative reduction at \mathfrak{q} if and only if $\operatorname{ord}_{\mathfrak{q}}(j(E))<0$.

Theorem (T., '20)

Let K be a quadratic imaginary number field of class number one. Assume Serre's modularity conjecture holds over K. Then, for any prime $p \geq 19$, the equation $a^{p}+b^{p}+c^{p}=0$ does not have solutions in coprime $a, b, c \in \mathcal{O}_{K} \backslash\{0\}$ such that $2 \mid \operatorname{Norm}_{K / \mathbb{Q}}(a b c)$.

Suppose K is a quadratic field

Theorem (Najman-T. '21)

Let K be a quadratic field and let $q>5$ be a rational prime that is unramified in K. Suppose an elliptic curve E / K has potentially multiplicative reduction at all primes \mathfrak{q} of K above q and posses a p-isogeny defined over K. Then $p \leq 71$ if either:
(1) q is inert in K.
(2) q splits in K as $\mathfrak{q}_{1} \mathfrak{q}_{2}$. Given $x \in X_{0}(p)(K)$ the quadratic point arrising from E and its Galois conjugate $x^{\tau} \in X_{0}(p)(K)$, both x and x^{τ} reduce to the same cusps when taken modulo \mathfrak{q}_{1} and \mathfrak{q}_{2}, respectively.

More general versions are presented in the work of Banwait and Derickx arXiv:2203.06009 and Michaud-Jacobs arXiv:2203.03533.

The proof makes use of the modular curve $X_{0}(p)$

- As a Riemann surface, $Y_{0}(p)=\Gamma_{0}(p) \backslash \mathbb{H}$. By adding the cusps $\infty, 0$ we make it into a compact Riemann surface $X_{0}(p)$.
- $X_{0}(p)$ is an algebraic curve defined over \mathbb{Q} and has good reduction at primes $q \neq p$.

The proof makes use of the modular curve $X_{0}(p)$

- As a Riemann surface, $Y_{0}(p)=\Gamma_{0}(p) \backslash \mathbb{H}$. By adding the cusps $\infty, 0$ we make it into a compact Riemann surface $X_{0}(p)$.
- $X_{0}(p)$ is an algebraic curve defined over \mathbb{Q} and has good reduction at primes $q \neq p$.
- The cusps are rational points: $\infty, 0 \in X_{0}(p)(\mathbb{Q})$.
- The j-map: $j: X_{0}(p) \rightarrow \mathbb{P}^{1}$. The poles of j are the two cusps.
- The Atkin-Lehner involution $w_{p}: X_{0}(p) \rightarrow X_{0}(p)$ swaps the cusps.
- $X_{0}(p)$ parametrises elliptic curves with p-isogenies: if E / K is an elliptic curve with a rational p-isogeny, φ, then

$$
(E, \varphi) \rightarrow[(E, \varphi)]=x \in X_{0}(p)(K)
$$

In this case, $j(x)=j(E)$.

- Let τ be the non-trivial element in $\operatorname{Gal}(K / \mathbb{Q})$.
- Let $x \in X_{0}(p)(K)$ be the point corresponding to (E, φ), and let $y=\left(x, x^{\tau}\right) \in X_{0}(p)^{(2)}(\mathbb{Q})$ be the point on the symmetric 2-th power of $X_{0}(p)$.

Fact

The point $y \in X_{0}(p)^{(2)}(\mathbb{Q})$ reduces to $(\infty, \infty)_{\mathbb{F}_{q}}$ after possibly applying an appropriate Atkin-Lehner involution.

Theorem (Mazur)

There is an optimal quotient $J_{0}^{e}(p)(\mathbb{Q})$ of the Jacobian whose rank is zero.

- Define $f_{2}: X_{0}^{(2)}(p) \rightarrow J_{0}^{e}$ to be the composition of the natural map

$$
\begin{gathered}
X_{0}^{(2)}(p) \rightarrow J_{0}(p) \\
\left(\alpha_{1}, \alpha_{2}\right) \mapsto\left[\alpha_{1}+\alpha_{2}-2 \infty\right]
\end{gathered}
$$

and the quotient map $J_{0}(p) \rightarrow J_{0}^{e}(p)$.

Key result

Theorem (Kamienny '92)

For $p>71$, the map $f_{2}: X_{0}(p)^{(2)} \rightarrow J_{0}^{e}(p)$ is a formal immersion at $(\infty, \infty)_{\mathbb{F}_{q}}$.

Consequence: If $f_{2}(y)-f_{2}((\infty, \infty))=0$, then $y=(\infty, \infty)$.

Key result

Theorem (Kamienny '92)

For $p>71$, the map $f_{2}: X_{0}(p)^{(2)} \rightarrow J_{0}^{e}(p)$ is a formal immersion at $(\infty, \infty)_{\mathbb{F}_{q}}$.

Consequence: If $f_{2}(y)-f_{2}((\infty, \infty))=0$, then $y=(\infty, \infty)$. But we only know that $\operatorname{red}_{q}\left(f_{2}(y)-f_{2}((\infty, \infty))\right)=\tilde{0} \in J_{0}^{e}(p)\left(\mathbb{F}_{q}\right)$. Here we use that $J_{0}^{e}(p)$ has rank 0 over \mathbb{Q} and we use injectivity of torsion to deduce that $f_{2}(y)-f_{2}((\infty, \infty))=0$.
This implies that $y=(\infty, \infty)$ and contradicts the hypothesis that $x \in X_{0}(p)(K)$ is non-cuspidal.

Generalizations?

Fact

It was essential to assume that $y=\left(x, x^{\tau}\right) \in X_{0}(p)(\mathbb{Q})^{(2)}$ reduces to $(\infty, \infty)_{\mathbb{F}_{q}}$ or to $(\infty, 0)_{\mathbb{F}_{q}}$.

- However, this is not always the case. If $q=\mathfrak{q} \cdot \mathfrak{q}^{\tau}$ splits on K, it might well be the case that x reduces modulo \mathfrak{q} to ∞ and x^{τ} reduces modulo \mathfrak{q}^{τ} to 0 . There are plenty of such examples.

Some computational examples

```
Elliptic Curve defined by y^2 + x*y = x^3 +
1/10097899036986002992630476477872996462372165708690514431418759800974201409557\
1258244*(-828490183576148659183582102909802497293807934663115708174500955453731\
035860430000*d + 14696535750381843426535201512786226149797854742770136772285345\
    28181243646823123453)*x + 1/36352436533149610773469715320342787264539796551\
28585195310753528350712507440565296784*(-82849018357614865918358210290980249729\
3807934663115708174500955453731035860430000*d +
    146965357503818434265352015127862261497978547427701367722853452818124364682\
    3123453) over K
> K;
Number Field with defining polynomial x^2 + 1887405189403/262589629225 over the
Rational Field
```

- This elliptic curve has a $p=79$-isogeny and also multiplicative reduction modulo both primes of K lying above 11 .

Some computational examples

```
Elliptic Curve defined by y^2 + x*y = x^3 +
1/10097899036986002992630476477872996462372165708690514431418759800974201409557\
1258244*(-828490183576148659183582102909802497293807934663115708174500955453731\
035860430000*d + 14696535750381843426535201512786226149797854742770136772285345\
    28181243646823123453)*x + 1/36352436533149610773469715320342787264539796551\
28585195310753528350712507440565296784*(-82849018357614865918358210290980249729\
3807934663115708174500955453731035860430000*d +
    146965357503818434265352015127862261497978547427701367722853452818124364682\
    3123453) over K
[> K;
Number Field with defining polynomial x^2 + 1887405189403/262589629225 over the
Rational Field
```

- This elliptic curve has a $p=79$-isogeny and also multiplicative reduction modulo both primes of K lying above 11.
- Computation uses code accompanying "Computing points on bielliptic modular curves over fixed quadratic fields" by Philippe Michaud-Jacobs and "Computing quadratic points on modular curves $X_{0}(N)$ " by Adzaga, Keller, Michaud-Jacobs, Najman and Ozman.

Similar examples can be found for $p=37,43,53,61,83,89,101$ and 131 , completing the list of primes p for which $X_{0}(p)$ is bielliptic (Bars '99).

Figure: Diagram taken from "Ogg's Torsion conjecture: Fifty years later" by Balakrishnan and Mazur

Here come \mathbb{Q}-curves

Theorem (Michaud-Jacobs '22)

For $q \neq p$, if $\left(x, x^{\tau}\right) \in X_{0}^{(2)}(p)(\mathbb{Q})$ reduces to $(\infty, 0)_{\mathbb{F}_{q}}$ then $x^{\tau}=w_{p}(x)$.

We point out the existence of the following commutative diagram over $\operatorname{Spec} \mathbb{Z}[1 / p]$.

(4)

The top left isomorphism above is given by $(y, z) \mapsto\left(w_{p}(z), y\right)$ and $h_{w}: X_{0}^{w}(p) \rightarrow$ $J_{0}(p)$ is defined as

$$
h_{w}(y, z)=\left[y+w_{p}(z)-2 \infty\right]
$$

Note that the injectivity of h_{w} follows from that of h and the commutativity of the diagram.

Note that the isomorphism $X_{0}^{w}(p) \rightarrow X_{0}^{(2)}(p)$ sending $(y, z) \mapsto\left(w_{p}(z), y\right)$ maps $(\infty, 0) \in X_{0}^{w}(p)$ to $(\infty, \infty) \in X_{0}^{(2)}(p)$. Now, if we similarly denote by $f_{w}: X_{0}^{w}(p) \rightarrow$ J_{p} the composition between h_{w} and the natural projection proj on the diagram (4), the proof of the following result is a consequence of the fact that $f=h \circ$ proj is a formal immersion at $(\infty, \infty)_{\mathbb{F}_{q}}$ as discussed in the proof of Theorem 2.

Proposition 3 For $q>5$ and $p>71$, the map

$$
f_{w}: X_{0}^{w}(p)_{/ \operatorname{Spec} \mathcal{Z}[1 / p]} \rightarrow J_{p / \operatorname{Spec} \mathbb{Z}[1 / p]}
$$

is a formal immersion at $(\infty, 0)_{F_{q}}$.

Strategy for Diophantine equations

- If not a CM-point, x corresponds therefore to a quadratic \mathbb{Q}-curve, i.e. to a rational point on $X_{0}^{+}(p)=X_{0}(p) /\left\langle w_{p}\right\rangle$. A result of González '01 implies that $j(x)=\frac{\alpha}{M^{p}}$, where α is an algebraic integer which satisfies

$$
\left(\operatorname{Tr}_{K / \mathbf{Q}}(\alpha), M\right)=1, \quad\left(N_{K / \mathbf{Q}}(\alpha), M^{p}\right)=M^{p-1}
$$

- Controlling the primes of multiplicative reduction and Diophantine equations

$$
E:=E_{a, b, c, p}: Y^{2}=X\left(X-a^{p}\right)\left(X+b^{p}\right)
$$

- The j-invariant of this elliptic curve has the formula

$$
j(E)=\frac{2^{4}\left(b^{2 p}-a^{p} c^{p}\right)}{(a b c)^{2 p}}
$$

Continuation. K is fixed imaginary quadratic

- Suppose that $a, b, c \in \mathcal{O}_{K}$ are coprime and satisfy (a variant of the Asymptotic) Fermat equation $a^{p}+b^{p}+c^{p}=0$, for some prime exponent p. One can construct the Frey elliptic curve
- With such results one can prove that if p is large and $\bar{\rho}_{E, p}$ is reducible, then $j(E)$ is integral outside a finite set S.
- The Fermat equation can be written as $(-a / c)^{p}+(-b / c)^{p}=1$. Observe that $(-a / c)^{p}$ and $(-b / c)^{p}$ are solutions to the S-unit equation

$$
x+y=1, \text { where } x, y \in \mathcal{O}_{K, S}^{\times}
$$

Thank you very much for your attention!

