$D(-1)$-quadruples extending certain pairs in imaginary quadratic rings

## Ivan Soldo

School of Applied Mathematics and Computer Science, University of Osijek, Croatia


Modular curves and Galois representations,
September 18 - 22, 2023, Department of Mathematics, Faculty of Science, University of Zagreb, Zagreb, Croatia

## Definition 1.

Let $m \geq 2$ be an integer and let $R$ be a commutative ring with unity. Let $n \in R$ be a non-zero element and $\left\{a_{1}, \ldots, a_{m}\right\}$ a set of $m$ distinct non-zero elements from $R$ such that $a_{i} \cdot a_{j}+n$ is a square of an element of $R$, for $1 \leq i<j \leq m$. The set $\left\{a_{1}, \ldots, a_{m}\right\}$ is called a Diophantine $m$-tuple with the property $D(n)$ or simply a $D(n)$-m-tuple in $R$.

- $R=\mathbb{Z}$ and $n=1$ : the sets are known as Diophantine $m$-tuples;
- The first Diophantine quadruple in integers: Fermat's set $\{1,3,8,120\}$
- He, Togbé and Ziegler;
- $n=-1$;
- Dujella, Filipin and Fuchs;
- Bonciocat, Cipu and Mignotte
A. Dujella, Diophantine m-tuples page, http://web.math.pmf.unizg.hr/~duje/dtuples.html.
- generalizations of the problem of Diophantus;
- the ring $\mathbb{Z}[\sqrt{-k}]$, for certain $k>0$.
- $k=1, n=1$ : Dujella, Franušić, Bayad, Filipin, Togbé
- $k=1, n=-1 ; \quad k \geq 2, n=-1$ :
Y. Fujita, I. Soldo, $D(-1)$-tuples in the ring $\mathbb{Z}[\sqrt{-k}]$ with $k>0$, Publ. Math. Debrecen 100/1-2 (2022), 49-67.


## Theorem 1.

Let $k$ be an integer with $k \geq 2$ and $a, b$ positive integers with

$$
a<b \leq 8 a-3 .
$$

There does not exist a $D(-1)$-quadruple $\{a, b, c, d\}$ in the ring $\mathbb{Z}[\sqrt{-k}]$ with $c, d$ negative integers.

Corollary 1.
Let $k$ be an integer with $k \geq 2$ and $a, b$ positive integers with

$$
a<b \leq 8 a-3 .
$$

There does not exist a $D(-1)$-quintuple $\{a, b, c, d, e\}$ in $\mathbb{Z}[\sqrt{-k}]$ with $c, d, e$ integers.

By using Corollary 1. we were able to prove the result concerning the extendibility of $D(-1)$-pairs $\left\{p^{i}, q^{j}\right\}$ to quintuples in the ring $\mathbb{Z}[\sqrt{-k}], k \geq 2$ with different primes $p, q$ and positive integers $i, j$.
THEOREM 2.
Let $i, j$ be positive integers, $k$ an integer with $k \geq 2$, and $p, q$ primes such that

$$
p^{i}<q^{j} \leq 8 p^{i}-3 .
$$

There does not exist a $D(-1)$-quintuple of the form $\left\{p^{i}, q^{j}, c, d, e\right\}$ in the ring $\mathbb{Z}[\sqrt{-k}]$.
Y. Fujita, I. Soldo, The non-existence of $D(-1)$-quadruples extending certain pairs in imaginary quadratic rings, Acta Math. Hungar., to appear.

## Theorem 3.

Let $k$ be a non-square integer with $k \geq 2$ and $a, b$ positive integers with

$$
\begin{equation*}
a<b<16 a^{2}-a-2+2 \sqrt{k\left(8 a^{2}+3 a+1\right)} . \tag{1}
\end{equation*}
$$

Then, there does not exist a $D(-1)$-quadruple $\{a, b, c, d\}$ in $\mathbb{Z}[\sqrt{-k}]$ with $c, d$ integers satisfying $d<0<c$.

## Theorem 4 (generalization).

Let $k$ be a non-square integer with $k \geq 2$ and $a, b$ positive integers with

$$
a<b \leq 8 a-3 .
$$

Then, there does not exist a $D(-1)$-quadruple $\{a, b, c, d\}$ in $\mathbb{Z}[\sqrt{-k}]$ with $c, d$ integers.

## Theorem 5.

Let $i$ be a non-negative integer, $j$ a positive integer, $k$ a non-square integer with $k \geq 2$ and $p, q$ primes with

$$
p^{i}<q^{j} \leq 8 p^{i}-3 .
$$

Then, there does not exist a $D(-1)$-quadruple of the form $\left\{p^{i}, q^{j}, c, d\right\}$ in $\mathbb{Z}[\sqrt{-k}]$.

Finally, we considered if we could find some explicit parametric families of $D(-1)$-pairs $\{a, b\}$ satisfying $0<a<b \leq 8 a-3$. Indeed, such examples exist and one can easily see that some $a$ and $b$ can be of the following form:

1) $a=F_{2 n+1}, b=\left\{F_{2 n+3}, F_{2 n+5}\right\}$, where $F_{k}$ is the $k$ th Fibonacci number and $n$ is a positive integer; For positive integers $m, n$, we can take:
2) $a=n^{2}+1, b=n^{2}+2 n+2$;
3) $a=n^{2}+1, b=4 n^{2}+4 n+5$;
4) $a=n^{2}+2 n+2, b=4 n^{2}+4 n+5$;
5) $a=4 n^{2}+4 n+5, b=9 n^{2}+6 n+10$;
6) $a=9 n^{2}+6 n+10, b=16 n^{2}+8 n+17$;
7) $a=8 n^{4}+8 n^{3}+8 n^{2}+4 n+1$,
$b=8 n^{4}+24 n^{3}+24 n^{2}+12 n+5$.

## Thank you for your attention!

