Rational points on Atkin-Lehner quotients of geometrically hyperelliptic Shimura curves

Oana Pădurariu (MPIM Bonn) joint work with Ciaran Schembri

Modular Curves and Galois Representations, Zagreb

September 21st, 2023

Overview

- Rational points on curves
- Hasse principle
- Shimura curves
- A database of geometrically hyperelliptic Shimura curves and their Atkin-Lehner quotients

Rational points on curves

Given a curve C / \mathbb{Q} of arbitrary genus $g \geq 0$ we would like to answer the following:
(1) Is $C(\mathbb{Q})$ non-empty?
(2) If $C(\mathbb{Q})$ is non-empty, then what is $C(\mathbb{Q})$?

Both of these questions are deep and difficult to answer in general, and the answers depend on the genus g of the curve.

Genus trichotomy

(1) For a genus 0 curve C / \mathbb{Q}, the set $C(\mathbb{Q})$ is either infinite or empty, and if a rational point on the curve exists it is straightforward to explicitly parameterize all of the rational points.
(2) For a genus 1 curve C / \mathbb{Q}, the set $C(\mathbb{Q})$ is either empty or C / \mathbb{Q} is an elliptic curve. If $C(\mathbb{Q})$ is non-empty, then $C(\mathbb{Q})$ has the group structure of a finitely generated abelian group:

$$
C(\mathbb{Q}) \cong T \oplus \mathbb{Z}^{r}
$$

(3) Faltings proved in 1983 that $|C(\mathbb{Q})|<\infty$ whenever $g \geq 2$. His proof was not constructive, and there is no algorithm that is guaranteed to provably compute $C(\mathbb{Q})$. If J is the Jacobian of C, then

$$
J(\mathbb{Q}) \cong T \oplus \mathbb{Z}^{r}
$$

Hasse principle

- Hasse local to global principle: study a problem over \mathbb{Q} by studying it over \mathbb{R} and over all \mathbb{Q}_{p}.
- For curves: if a curve has points defined over \mathbb{R} and over \mathbb{Q}_{p} for all primes p, does it necessarily have a point defined over \mathbb{Q} ?
- Curves of genus 0 satisfy the Hasse principle.
- In genus 1 we find violations of the Hasse principle, e.g.

$$
3 x^{3}+4 y^{3}+5 z^{3}=0
$$

Shimura curves

As with modular curves, Shimura curves arise naturally as moduli spaces.

Before defining them, we need to introduce some notions related to quaternion algebras.

Quaternion algebras

Definition

Let K be a field with $\operatorname{char}(K) \neq 2$. Given $a, b \in K^{*}$, the quaternion K-algebra $\left(\frac{a, b}{\mathbb{Q}}\right)$ is the K-algebra with K-basis $\{1, i, j, k\}$ with the rules $i^{2}=a, j^{2}=b, i j=-j i=k$.

Example

$$
M_{2}(\mathbb{Q}) \simeq\left(\frac{1,-1}{\mathbb{Q}}\right)
$$

with \mathbb{Q}-basis

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Shimura curves

Let B be an indefinite quaternion algebra over \mathbb{Q} of discrimiant $D>1$. For $N \in \mathbb{Z}_{\geq 1}$ with $\operatorname{gcd}(D, N)=1$, one defines a group O_{N}^{1} similar to the group $\Gamma_{0}(N)$ for modular curves.

The Shimura curve associated to B of level N is defined as the quotient:

$$
X_{0}(D, N):=O_{N}^{1} \backslash \mathcal{H}
$$

Shimura curves arise naturally as moduli spaces of abelian surfaces with quaternionic multiplication.

It is well known that Shimura curves have no real points, i.e.

$$
X_{0}(D, N)(\mathbb{R})=\emptyset
$$

Atkin-Lehner quotients

Definition

We say that $d \mid N$ is a Hall divisor of N if $\operatorname{gcd}(d, N / d)=1$. We write $d \| N$.

For every Hall divisor m of $D N$, there exists an Atkin-Lehner involution w_{m}. The full group of Atkin-Lehner involutions is

$$
W(D, N)=\left\{w_{m}: m \geq 1, m \| D N\right\}
$$

There is an identification

$$
W(D, N) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{\omega(D N)}
$$

For every subgroup $W \leq W(D, N)$ we consider the quotient curve

$$
X_{0}(D, N) / W
$$

Equations

Guo-Yang computed a complete list of Shimura curves $X_{0}(D, N)$ which are hyperelliptic over $\overline{\mathbb{Q}}$ plus their Atkin-Lehner involutions. In total there are 44 such curves.

Theorem (P-Schembri)

Let $X_{0}(D, N)$ be a Shimura curve which is hyperelliptic over $\overline{\mathbb{Q}}$ and W a subgroup of Atkin-Lehner involutions.
Then defining equations for the Atkin-Lehner quotient curve $X_{0}(D, N) / W$ have been computed and in the case that the quotient curve has finitely many rational points the set $\left(X_{0}(D, N) / W\right)(\mathbb{Q})$ is given explicitly.
Furthermore, when the level N is 1 and the quotient curve has finitely many rational points it is known which of these points are CM.

Methods used for computing rational points

- Not everywhere locally solvable
- Two-cover descent
- Chabauty-Coleman method
- Pullback of rational points

For the rank = genus $=2$ cases, we were able to use

- exceptional isomorphisms between quotients of Shimura curves and modular curves:

$$
\begin{aligned}
& X_{0}(91,1) /\left\langle w_{91}\right\rangle \simeq X_{0}(91) /\left\langle w_{91}\right\rangle, \\
& X_{0}(93,1) /\left\langle w_{93}\right\rangle \simeq X_{0}(93) /\left\langle w_{3}, w_{31}\right\rangle,
\end{aligned}
$$

- bielliptic quadratic Chabauty:

$$
X_{0}(10,19) /\left\langle w_{190}\right\rangle \simeq X_{0}(190) /\left\langle w_{5}, w_{19}\right\rangle .
$$

New examples of violations of the Hasse principle

genus 2:

$$
X_{0}(87,1) /\left\langle w_{3}\right\rangle, \quad X_{0}(6,29) /\left\langle w_{6}\right\rangle, \quad X_{0}(6,37) /\left\langle w_{3}\right\rangle,
$$

genus 3:

$$
X_{0}(93,1) /\left\langle w_{3}\right\rangle, \quad X_{0}(39,2) /\left\langle w_{78}\right\rangle,
$$

genus 4:

$$
X_{0}(119,1) /\left\langle w_{7}\right\rangle
$$

Hvala!

