Hilbert's Irreducibility, Modular Forms, and Computation of Certain Galois Groups (joint with I. Kodrnja) Modular curves and Galois representations Zagreb, Croatia, September 18- 22, 2023

Goran Muić

September 22, 2023

Notation

Goran Muić

Hilbert's Irreducibility, Modular Forms, and Computation of Ce

Notation

$S L_{2}(\mathbb{R})$ is defined by

Notation

$S L_{2}(\mathbb{R})$ is defined by

$$
S L_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) ; a, b, c, d \in \mathbb{R}, a d-b c=1\right\}
$$

Notation

$S L_{2}(\mathbb{R})$ is defined by

$$
S L_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) ; a, b, c, d \in \mathbb{R}, a d-b c=1\right\}
$$

\mathbb{H} is the upper half-plane:

Notation

$S L_{2}(\mathbb{R})$ is defined by

$$
S L_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) ; a, b, c, d \in \mathbb{R}, a d-b c=1\right\}
$$

\mathbb{H} is the upper half-plane: $\operatorname{Im}(z)>0$

Notation

$S L_{2}(\mathbb{R})$ is defined by

$$
S L_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) ; a, b, c, d \in \mathbb{R}, a d-b c=1\right\}
$$

\mathbb{H} is the upper half-plane: $\operatorname{Im}(z)>0$
$S L_{2}(\mathbb{R})$ acts on \mathbb{H} in a well-known way

Notation

$S L_{2}(\mathbb{R})$ is defined by

$$
S L_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) ; a, b, c, d \in \mathbb{R}, a d-b c=1\right\}
$$

\mathbb{H} is the upper half-plane: $\operatorname{Im}(z)>0$
$S L_{2}(\mathbb{R})$ acts on \mathbb{H} in a well-known way

$$
g \cdot z=\frac{a z+b}{c z+d}, \quad g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{R}), \quad z \in \mathbb{H}
$$

Notation

$S L_{2}(\mathbb{R})$ is defined by

$$
S L_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) ; a, b, c, d \in \mathbb{R}, a d-b c=1\right\}
$$

\mathbb{H} is the upper half-plane: $\operatorname{Im}(z)>0$
$S L_{2}(\mathbb{R})$ acts on \mathbb{H} in a well-known way

$$
g \cdot z=\frac{a z+b}{c z+d}, \quad g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{R}), \quad z \in \mathbb{H}
$$

$S L_{2}(\mathbb{R})$ is defined by

$$
S L_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) ; a, b, c, d \in \mathbb{R}, a d-b c=1\right\}
$$

\mathbb{H} is the upper half-plane: $\operatorname{Im}(z)>0$
$S L_{2}(\mathbb{R})$ acts on \mathbb{H} in a well-known way

$$
g \cdot z=\frac{a z+b}{c z+d}, \quad g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{R}), \quad z \in \mathbb{H}
$$

let $N \geq 1$, we define

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) ; c \equiv 0(\bmod N)\right\}
$$

Notation

$S L_{2}(\mathbb{R})$ is defined by

$$
S L_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) ; a, b, c, d \in \mathbb{R}, a d-b c=1\right\}
$$

\mathbb{H} is the upper half-plane: $\operatorname{Im}(z)>0$
$S L_{2}(\mathbb{R})$ acts on \mathbb{H} in a well-known way

$$
g \cdot z=\frac{a z+b}{c z+d}, \quad g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{R}), \quad z \in \mathbb{H}
$$

let $N \geq 1$, we define

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) ; c \equiv 0(\bmod N)\right\}
$$

the set of cusps for groups $\Gamma_{0}(N)$ is $\mathbb{Q} \cup\{\infty\}$

Modular forms of one variable

Modular forms of one variable

a holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called modular form for $\Gamma_{0}(N)$ of (integral) even weight $m \geq 0$ if

Modular forms of one variable

a holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called modular form for $\Gamma_{0}(N)$ of (integral) even weight $m \geq 0$ if

1. $f(\gamma . z)=j(\gamma, z)^{m} f(z)$, for all $z \in \mathbb{H}, \gamma \in \Gamma_{0}(N)$, where

$$
j(\gamma, z) \stackrel{\text { def }}{=} c z+d, \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Modular forms of one variable

a holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called modular form for $\Gamma_{0}(N)$ of (integral) even weight $m \geq 0$ if

1. $f(\gamma . z)=j(\gamma, z)^{m} f(z)$, for all $z \in \mathbb{H}, \gamma \in \Gamma_{0}(N)$, where

$$
j(\gamma, z) \stackrel{\text { def }}{=} c z+d, \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

2. f has a Fourier expansion so called q-expansion

$$
f(z)=a_{0}+a_{1} q+a_{2} q^{2}+\cdots, \quad q=\exp (2 \pi \sqrt{-1} z)
$$

Modular forms of one variable

a holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called modular form for $\Gamma_{0}(N)$ of (integral) even weight $m \geq 0$ if

1. $f(\gamma . z)=j(\gamma, z)^{m} f(z)$, for all $z \in \mathbb{H}, \gamma \in \Gamma_{0}(N)$, where

$$
j(\gamma, z) \stackrel{\text { def }}{=} c z+d, \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

2. f has a Fourier expansion so called q-expansion

$$
f(z)=a_{0}+a_{1} q+a_{2} q^{2}+\cdots, \quad q=\exp (2 \pi \sqrt{-1} z)
$$

and condition 3. f is a cusp form if $a_{0}=0$

Modular forms of one variable

a holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called modular form for $\Gamma_{0}(N)$ of (integral) even weight $m \geq 0$ if

1. $f(\gamma . z)=j(\gamma, z)^{m} f(z)$, for all $z \in \mathbb{H}, \gamma \in \Gamma_{0}(N)$, where

$$
j(\gamma, z) \stackrel{\text { def }}{=} c z+d, \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

2. f has a Fourier expansion so called q-expansion

$$
f(z)=a_{0}+a_{1} q+a_{2} q^{2}+\cdots, \quad q=\exp (2 \pi \sqrt{-1} z)
$$

and condition 3. f is a cusp form if $a_{0}=0$
the space of all modular forms $M_{m}\left(\Gamma_{0}(N)\right)$, the space of cuspidal modular forms (or cusp forms) $S_{m}\left(\Gamma_{0}(N)\right)$

Modular forms of one variable

a holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called modular form for $\Gamma_{0}(N)$ of (integral) even weight $m \geq 0$ if

1. $f(\gamma . z)=j(\gamma, z)^{m} f(z)$, for all $z \in \mathbb{H}, \gamma \in \Gamma_{0}(N)$, where

$$
j(\gamma, z) \stackrel{\text { def }}{=} c z+d, \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

2. f has a Fourier expansion so called q-expansion

$$
f(z)=a_{0}+a_{1} q+a_{2} q^{2}+\cdots, \quad q=\exp (2 \pi \sqrt{-1} z)
$$

and condition 3. f is a cusp form if $a_{0}=0$
the space of all modular forms $M_{m}\left(\Gamma_{0}(N)\right)$, the space of cuspidal modular forms (or cusp forms) $S_{m}\left(\Gamma_{0}(N)\right)$ by the Riemann-Roch theorem they are finite dimensional

Modular forms of one variable

Modular forms of one variable

Famous example: Ramanujan Δ function is a cusp form for $S L_{2}(\mathbb{Z})=\Gamma_{0}(1)$ of weight 12 :

$$
\Delta(z)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=q-24 q^{2}+252 q^{3}-\cdots \in S_{12}\left(\Gamma_{0}(1)\right)
$$

Modular forms of one variable

Famous example: Ramanujan Δ function is a cusp form for $S L_{2}(\mathbb{Z})=\Gamma_{0}(1)$ of weight 12 :

$$
\Delta(z)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=q-24 q^{2}+252 q^{3}-\cdots \in S_{12}\left(\Gamma_{0}(1)\right)
$$

Eisenstein series: $E_{4}(z)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n} \in M_{4}\left(\Gamma_{0}(1)\right)$, $\sigma_{3}(n)=\sum_{0<d \mid n} d^{3}$

Modular forms of one variable

Famous example: Ramanujan Δ function is a cusp form for $S L_{2}(\mathbb{Z})=\Gamma_{0}(1)$ of weight 12 :

$$
\Delta(z)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=q-24 q^{2}+252 q^{3}-\cdots \in S_{12}\left(\Gamma_{0}(1)\right)
$$

Eisenstein series: $E_{4}(z)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n} \in M_{4}\left(\Gamma_{0}(1)\right)$, $\sigma_{3}(n)=\sum_{0<d \mid n} d^{3}$
$\Delta(N \cdot), E_{4}^{3}(N \cdot) \in M_{12}\left(\Gamma_{0}(N)\right), N \geq 1$

Modular forms of one variable

Note: not all interesting cusp forms comes from geometry i.e., not all are coming from $\frac{m}{2}$-holomorphic differentials. For example $\Delta(N \cdot)$.

For us it is important:

Modular forms of one variable

Note: not all interesting cusp forms comes from geometry i.e., not all are coming from $\frac{m}{2}$-holomorphic differentials. For example $\Delta(N \cdot)$.

For us it is important:
By Eichler-Shimura theory and explicit determination of certain Eisenstein series, we know that $S_{m}\left(\Gamma_{0}(N)\right)$, and $M_{m}\left(\Gamma_{0}(N)\right)$, for $m \geq 2$ even, have basis consisting of forms with integral q-expansions

Modular forms of one variable

Note: not all interesting cusp forms comes from geometry i.e., not all are coming from $\frac{m}{2}$-holomorphic differentials. For example $\Delta(N \cdot)$.

For us it is important:
By Eichler-Shimura theory and explicit determination of certain Eisenstein series, we know that $S_{m}\left(\Gamma_{0}(N)\right)$, and $M_{m}\left(\Gamma_{0}(N)\right)$, for $m \geq 2$ even, have basis consisting of forms with integral q-expansions

We let $S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ be the \mathbb{Q}-span of all cusp forms in $S_{m}\left(\Gamma_{0}(N)\right)$

Modular curve $X_{0}(N)$

Modular curve $X_{0}(N)$

let $j=E_{4}^{3} / \Delta$, then $\mathbb{Q}(j, j(N \cdot))$ has transcendence degree one over \mathbb{Q}, the corresponding curve $X_{0}(N)$ is curve modular curve i.e., the field of rational function is over $\mathbb{Q}, \mathbb{Q}\left(X_{0}(N)\right)=\mathbb{Q}(j, j(N \cdot))$

Modular curve $X_{0}(N)$

let $j=E_{4}^{3} / \Delta$, then $\mathbb{Q}(j, j(N \cdot))$ has transcendence degree one over \mathbb{Q}, the corresponding curve $X_{0}(N)$ is curve modular curve i.e., the field of rational function is over $\mathbb{Q}, \mathbb{Q}\left(X_{0}(N)\right)=\mathbb{Q}(j, j(N \cdot))$
for $m \geq 2$ an even integer, let f, g, h be three linearly independent modular forms in $M_{m}(\Gamma)$ with rational q-expansions,

Modular curve $X_{0}(N)$

let $j=E_{4}^{3} / \Delta$, then $\mathbb{Q}(j, j(N \cdot))$ has transcendence degree one over \mathbb{Q}, the corresponding curve $X_{0}(N)$ is curve modular curve i.e., the field of rational function is over $\mathbb{Q}, \mathbb{Q}\left(X_{0}(N)\right)=\mathbb{Q}(j, j(N \cdot))$
for $m \geq 2$ an even integer, let f, g, h be three linearly independent modular forms in $M_{m}(\Gamma)$ with rational q-expansions, define a holomorphic map $X_{0}(N) \rightarrow \mathbb{P}^{2}$ by

$$
z \in \mathbb{H} \longmapsto(f(z): g(z): h(z)) \in \mathbb{P}^{2}
$$

Modular curve $X_{0}(N)$

let $j=E_{4}^{3} / \Delta$, then $\mathbb{Q}(j, j(N \cdot))$ has transcendence degree one over \mathbb{Q}, the corresponding curve $X_{0}(N)$ is curve modular curve i.e., the field of rational function is over $\mathbb{Q}, \mathbb{Q}\left(X_{0}(N)\right)=\mathbb{Q}(j, j(N \cdot))$
for $m \geq 2$ an even integer, let f, g, h be three linearly independent modular forms in $M_{m}(\Gamma)$ with rational q-expansions, define a holomorphic map $X_{0}(N) \rightarrow \mathbb{P}^{2}$ by

$$
z \in \mathbb{H} \longmapsto(f(z): g(z): h(z)) \in \mathbb{P}^{2}
$$

is a regular map between projective varieties, defined over \mathbb{Q}.

Modular curve $X_{0}(N)$

let $j=E_{4}^{3} / \Delta$, then $\mathbb{Q}(j, j(N \cdot))$ has transcendence degree one over \mathbb{Q}, the corresponding curve $X_{0}(N)$ is curve modular curve i.e., the field of rational function is over $\mathbb{Q}, \mathbb{Q}\left(X_{0}(N)\right)=\mathbb{Q}(j, j(N \cdot))$
for $m \geq 2$ an even integer, let f, g, h be three linearly independent modular forms in $M_{m}(\Gamma)$ with rational q-expansions, define a holomorphic map $X_{0}(N) \rightarrow \mathbb{P}^{2}$ by

$$
z \in \mathbb{H} \longmapsto(f(z): g(z): h(z)) \in \mathbb{P}^{2}
$$

is a regular map between projective varieties, defined over \mathbb{Q}. the image is an irreducible complex projective curve which we denote by $\mathcal{C}(f, g, h)$ defined over \mathbb{Q}

Modular curve $X_{0}(N)$

Modular curve $X_{0}(N)$

it is easy to check that the map is birational over \mathbb{C} if and only if it is birational over \mathbb{Q}.

Modular curve $X_{0}(N)$

it is easy to check that the map is birational over \mathbb{C} if and only if it is birational over \mathbb{Q}.

In our earlier papers M., On degrees and birationality of the maps $X_{0}(N) \rightarrow \mathbb{P}^{2}$ constructed via modular forms, Monatsh. Math. Vol. 180, No. 3, 607-629, (2016), and G. M., I. Kodrnja On primitive elements of algebraic function fields and models of $X_{0}(N)$, The Ramanujan Journal, 55 No. 2 (2021) we study these problems in detail (besides vast literature before) giving several algorithms for birationality

Modular curve $X_{0}(N)$

it is easy to check that the map is birational over \mathbb{C} if and only if it is birational over \mathbb{Q}.

In our earlier papers M., On degrees and birationality of the maps $X_{0}(N) \rightarrow \mathbb{P}^{2}$ constructed via modular forms, Monatsh. Math. Vol. 180, No. 3, 607-629, (2016), and G. M., I. Kodrnja On primitive elements of algebraic function fields and models of $X_{0}(N)$, The Ramanujan Journal, 55 No. 2 (2021) we study these problems in detail (besides vast literature before) giving several algorithms for birationality

We mention the next result

Modular curve $X_{0}(N)$

Modular curve $X_{0}(N)$

Theorem

Assume that either $m=2$ and $X_{0}(N)$ is not hyperelliptic (implies $\left.g\left(\Gamma_{0}(N)\right) \geq 3\right)$ or $m \geq 4$ is an even integer such that $\operatorname{dim} S_{m}\left(\Gamma_{0}(N)\right) \geq \max \left(g\left(\Gamma_{0}(N)\right)+2,3\right)$. Then, we have the following:
(i) Let f_{0}, \ldots, f_{s-1} be a basis of $S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$. Then, $\mathbb{Q}\left(X_{0}(N)\right)$ is generated over \mathbb{Q} by the quotients $f_{i} / f_{0}, 1 \leq i \leq s-1$.
(ii) Assume that $f, g \in S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ are linearly independent over \mathbb{Q}. Then, there exists a non-empty Zariski open set $\mathcal{U}_{f, g} \subset S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ such that $X_{0}(N)$ is birationally equivalent over \mathbb{Q} to $\mathcal{C}(f, g, h)$ via the map constructed from f, g, h i.e., $\mathbb{Q}(g / f, h / f)=\mathbb{Q}\left(X_{0}(N)\right)$ for any $h \in \mathcal{U}_{f, g}$. The elements of set $\mathcal{U}_{f, g}$ are effectively computable from q-expansions of f and g.

Polynomials

Polynomials

there exists an irreducible over \mathbb{Z} homogeneous polynomial with integral coefficients $P_{f, g, h}$ such that $P_{f, g, h}(f, g, h)=0$ assuming that $f, g, h \in S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ be linearly independent
there exists an irreducible over \mathbb{Z} homogeneous polynomial with integral coefficients $P_{f, g, h}$ such that $P_{f, g, h}(f, g, h)=0$ assuming that $f, g, h \in S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ be linearly independent
$P_{f, g, h}$ can be computed in the SAGE software system given q-expansions of the modular forms f, g and h (for reasonably small N)
there exists an irreducible over \mathbb{Z} homogeneous polynomial with integral coefficients $P_{f, g, h}$ such that $P_{f, g, h}(f, g, h)=0$ assuming that $f, g, h \in S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ be linearly independent
$P_{f, g, h}$ can be computed in the SAGE software system given q-expansions of the modular forms f, g and h (for reasonably small N)
$P_{f, g, h}$ is a classical reduced equation of the curve $\mathcal{C}(f, g, h)$
there exists an irreducible over \mathbb{Z} homogeneous polynomial with integral coefficients $P_{f, g, h}$ such that $P_{f, g, h}(f, g, h)=0$ assuming that $f, g, h \in S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ be linearly independent
$P_{f, g, h}$ can be computed in the SAGE software system given q-expansions of the modular forms f, g and h (for reasonably small N)
$P_{f, g, h}$ is a classical reduced equation of the curve $\mathcal{C}(f, g, h)$
let $Q_{f, g, h}$ be its dehomogenization with respect to the first variable

Polynomials

there exists an irreducible over \mathbb{Z} homogeneous polynomial with integral coefficients $P_{f, g, h}$ such that $P_{f, g, h}(f, g, h)=0$ assuming that $f, g, h \in S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ be linearly independent
$P_{f, g, h}$ can be computed in the SAGE software system given q-expansions of the modular forms f, g and h (for reasonably small N)
$P_{f, g, h}$ is a classical reduced equation of the curve $\mathcal{C}(f, g, h)$
let $Q_{f, g, h}$ be its dehomogenization with respect to the first variable again, we obtain an irreducible over \mathbb{Z} polynomial with integral coefficients, $Q_{f, g, h}(g / f, h / f)=0$ in $\mathbb{Q}\left(X_{0}(N)\right)$
there exists an irreducible over \mathbb{Z} homogeneous polynomial with integral coefficients $P_{f, g, h}$ such that $P_{f, g, h}(f, g, h)=0$ assuming that $f, g, h \in S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ be linearly independent
$P_{f, g, h}$ can be computed in the SAGE software system given q-expansions of the modular forms f, g and h (for reasonably small N)
$P_{f, g, h}$ is a classical reduced equation of the curve $\mathcal{C}(f, g, h)$
let $Q_{f, g, h}$ be its dehomogenization with respect to the first variable again, we obtain an irreducible over \mathbb{Z} polynomial with integral coefficients, $Q_{f, g, h}(g / f, h / f)=0$ in $\mathbb{Q}\left(X_{0}(N)\right)$
the polynomial $Q_{f, g, h}$ depend on both variables since since f, g, h are linearly independent

Polynomials

Polynomials

given f, g, h linearly independent over \mathbb{Q}, we construct polynomial $Q_{f, g, h}$ as before

Polynomials

given f, g, h linearly independent over \mathbb{Q}, we construct polynomial $Q_{f, g, h}$ as before
observe that (unnormalized) minimal polynomial of $h / f \in \mathbb{Q}\left(X_{0}(N)\right)$ over $\mathbb{Q}(g / f)$ is $Q_{f, g, h}(g / f, \cdot)$

Polynomials

given f, g, h linearly independent over \mathbb{Q}, we construct polynomial $Q_{f, g, h}$ as before
observe that (unnormalized) minimal polynomial of $h / f \in \mathbb{Q}\left(X_{0}(N)\right)$ over $\mathbb{Q}(g / f)$ is $Q_{f, g, h}(g / f, \cdot)$
$\Longrightarrow \operatorname{deg} Q_{f, g, h}(g / f, \cdot) \leq\left[\mathbb{Q}\left(X_{0}(N)\right): \mathbb{Q}(g / f)\right]=$ the degree of the divisor of zeores of g / f

Polynomials

given f, g, h linearly independent over \mathbb{Q}, we construct polynomial $Q_{f, g, h}$ as before
observe that (unnormalized) minimal polynomial of $h / f \in \mathbb{Q}\left(X_{0}(N)\right)$ over $\mathbb{Q}(g / f)$ is $Q_{f, g, h}(g / f, \cdot)$
$\Longrightarrow \operatorname{deg} Q_{f, g, h}(g / f, \cdot) \leq\left[\mathbb{Q}\left(X_{0}(N)\right): \mathbb{Q}(g / f)\right]=$ the degree of the divisor of zeores of g / f
when f, g, h define a birational map, then $\operatorname{deg} Q_{f, g, h}(g / f, \cdot)=\left[\mathbb{Q}\left(X_{0}(N)\right): \mathbb{Q}(g / f)\right]$ then various gonality results give lower bound of the degree (Abramovich, Najman, Orlić, ...)

The problem

let $L_{f, g, h}$ be the splitting field $Q_{f, g, h}(g / f, \cdot)$ containing $\mathbb{Q}(g / f, h / f), G_{f, g, h}$ is the Galois group $\operatorname{Gal}\left(L_{f, g, h} / \mathbb{Q}(g / f)\right)$
let $L_{f, g, h}$ be the splitting field $Q_{f, g, h}(g / f, \cdot)$ containing $\mathbb{Q}(g / f, h / f), G_{f, g, h}$ is the Galois group $\left.\operatorname{Gal}^{(} L_{f, g, h} / \mathbb{Q}(g / f)\right)$

THE GOAL: is to study $L_{f, g, h}$ and $G_{f, g, h}$ for various f, g, h

The problem

let $L_{f, g, h}$ be the splitting field $Q_{f, g, h}(g / f, \cdot)$ containing $\mathbb{Q}(g / f, h / f), G_{f, g, h}$ is the Galois group $\left.\operatorname{Gal}^{(} L_{f, g, h} / \mathbb{Q}(g / f)\right)$

THE GOAL: is to study $L_{f, g, h}$ and $G_{f, g, h}$ for various f, g, h in fact study polynomials $Q_{f, g, h}$ with integral coefficients

The problem

let $L_{f, g, h}$ be the splitting field $Q_{f, g, h}(g / f, \cdot)$ containing $\mathbb{Q}(g / f, h / f), G_{f, g, h}$ is the Galois group $\left.\operatorname{Gal}^{(} L_{f, g, h} / \mathbb{Q}(g / f)\right)$

THE GOAL: is to study $L_{f, g, h}$ and $G_{f, g, h}$ for various f, g, h in fact study polynomials $Q_{f, g, h}$ with integral coefficients for example, fix f, g and let h vary

The problem

let $L_{f, g, h}$ be the splitting field $Q_{f, g, h}(g / f, \cdot)$ containing $\mathbb{Q}(g / f, h / f), G_{f, g, h}$ is the Galois group $\operatorname{Gal}\left(L_{f, g, h} / \mathbb{Q}(g / f)\right)$
THE GOAL: is to study $L_{f, g, h}$ and $G_{f, g, h}$ for various f, g, h
in fact study polynomials $Q_{f, g, h}$ with integral coefficients
for example, fix f, g and let h vary
then, using the trivial estimate
$\left[\mathbb{Q}\left(X_{0}(N)\right): \mathbb{Q}(g / f)\right] \leq I_{m, N} \stackrel{\text { def }}{=} \operatorname{dim} S_{m}\left(\Gamma_{0}(N)\right)+g\left(\Gamma_{0}(N)\right)-1-\epsilon_{m}$, $\epsilon_{2}=1$ and $\epsilon_{m}=0$ for $m \geq 4$, we see that up to an isomorphism of groups we can have only finitely many groups $G_{f, g, h}$ up to an isomorphism when we let h vary over $S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}-(\mathbb{Q} f+\mathbb{Q} g)$

The problem

Definition

Keep f, g fixed. Let $\mathcal{G}=\mathcal{G}_{f, g}$ be the set consisting of all representatives of groups $G_{f, g, h}, h \in S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}-(\mathbb{Q} f+\mathbb{Q} g)$ up to isomorphism. For $G \in \mathcal{G}$, let $\bar{\Xi}_{G}$ be the set of all $h \in S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}-(\mathbb{Q} f+\mathbb{Q} g)$ such that $G_{h} \simeq G$. We denote by $\bar{\Xi}^{\prime}$ the set of all $h \in \Xi_{G}$ such that the degree of $Q_{f, g, h}(g / f, \cdot)$ is $\left[\mathbb{Q}\left(X_{0}(N)\right): \mathbb{Q}(g / f)\right]$ i.e., the map given by f, g, h is birational $\operatorname{over} \mathbb{Q}\left(\Longleftrightarrow \mathbb{Q}(g / f, h / f)=\mathbb{Q}\left(X_{0}(N)\right)\right)$.

The problem

Definition

Keep f, g fixed. Let $\mathcal{G}=\mathcal{G}_{f, g}$ be the set consisting of all representatives of groups $G_{f, g, h}, h \in S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}-(\mathbb{Q} f+\mathbb{Q} g)$ up to isomorphism. For $G \in \mathcal{G}$, let $\bar{\Xi}_{G}$ be the set of all $h \in S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}-(\mathbb{Q} f+\mathbb{Q} g)$ such that $G_{h} \simeq G$. We denote by $\bar{\Xi}^{\prime}$ the set of all $h \in \Xi_{G}$ such that the degree of $Q_{f, g, h}(g / f, \cdot)$ is $\left[\mathbb{Q}\left(X_{0}(N)\right): \mathbb{Q}(g / f)\right]$ i.e., the map given by f, g, h is birational $\operatorname{over} \mathbb{Q}\left(\Longleftrightarrow \mathbb{Q}(g / f, h / f)=\mathbb{Q}\left(X_{0}(N)\right)\right)$.
to deal with the sets Ξ_{G} and Ξ_{G}^{\prime} we use Hilbert's irreducibility

Hilbert's irreducibilty

Hilbert's irreducibilty

Serre: a subset $A \subset \mathbb{Z}$ thin if the number of elements in the intersection of A with a segment $[-n, n]$ is $O\left(n^{1 / 2}\right)$ as $n \longrightarrow \infty$.

Hilbert's irreducibilty

Serre: a subset $A \subset \mathbb{Z}$ thin if the number of elements in the intersection of A with a segment $[-n, n]$ is $O\left(n^{1 / 2}\right)$ as $n \longrightarrow \infty$.

For $\lambda \in \mathbb{Z}$, we let $L_{f, g, h, \lambda}$ be the splitting field of $Q_{f, g, h}(\lambda, \cdot)$, and $G_{f, g, h, \lambda} \stackrel{\text { def }}{=} G_{a l}\left(L_{h, \lambda} / \mathbb{Q}\right)$.

Hilbert's irreducibilty

Serre: a subset $A \subset \mathbb{Z}$ thin if the number of elements in the intersection of A with a segment $[-n, n]$ is $O\left(n^{1 / 2}\right)$ as $n \longrightarrow \infty$.

For $\lambda \in \mathbb{Z}$, we let $L_{f, g, h, \lambda}$ be the splitting field of $Q_{f, g, h}(\lambda, \cdot)$, and $G_{f, g, h, \lambda} \stackrel{\text { def }}{=} \operatorname{Gal}\left(L_{h, \lambda} / \mathbb{Q}\right)$.

Hilbert's irreducibility \Longrightarrow There exists a thin subset $A_{f, g, h} \subset \mathbb{Z}$ such that $G_{f, g, h}$ is isomorphic to $G_{f, g, h, \lambda}$, for $\lambda \in \mathbb{Z}-A_{f, g, h}$

Hilbert's irreducibilty

Serre: a subset $A \subset \mathbb{Z}$ thin if the number of elements in the intersection of A with a segment $[-n, n]$ is $O\left(n^{1 / 2}\right)$ as $n \longrightarrow \infty$.

For $\lambda \in \mathbb{Z}$, we let $L_{f, g, h, \lambda}$ be the splitting field of $Q_{f, g, h}(\lambda, \cdot)$, and $G_{f, g, h, \lambda} \stackrel{\text { def }}{=} \operatorname{Gal}\left(L_{h, \lambda} / \mathbb{Q}\right)$.

Hilbert's irreducibility \Longrightarrow There exists a thin subset $A_{f, g, h} \subset \mathbb{Z}$ such that $G_{f, g, h}$ is isomorphic to $G_{f, g, h, \lambda}$, for $\lambda \in \mathbb{Z}-A_{f, g, h}$ but for our applications polynomail $Q_{f, g, h}$ needs to be transformed a little bit in a standard fashion

Hilbert's irreducibilty

Serre: a subset $A \subset \mathbb{Z}$ thin if the number of elements in the intersection of A with a segment $[-n, n]$ is $O\left(n^{1 / 2}\right)$ as $n \longrightarrow \infty$.

For $\lambda \in \mathbb{Z}$, we let $L_{f, g, h, \lambda}$ be the splitting field of $Q_{f, g, h}(\lambda, \cdot)$, and $G_{f, g, h, \lambda} \stackrel{\text { def }}{=} G a l\left(L_{h, \lambda} / \mathbb{Q}\right)$.

Hilbert's irreducibility \Longrightarrow There exists a thin subset $A_{f, g, h} \subset \mathbb{Z}$ such that $G_{f, g, h}$ is isomorphic to $G_{f, g, h, \lambda}$, for $\lambda \in \mathbb{Z}-A_{f, g, h}$ but for our applications polynomail $Q_{f, g, h}$ needs to be transformed a little bit in a standard fashion
write $Q_{f, g, h}(\lambda, T)=\sum_{i=1}^{n} a_{i}(\lambda) T^{i} \in \mathbb{Z}[\lambda, T], \lambda, T$ variables

Hilbert's irreducibilty

Serre: a subset $A \subset \mathbb{Z}$ thin if the number of elements in the intersection of A with a segment $[-n, n]$ is $O\left(n^{1 / 2}\right)$ as $n \longrightarrow \infty$.

For $\lambda \in \mathbb{Z}$, we let $L_{f, g, h, \lambda}$ be the splitting field of $Q_{f, g, h}(\lambda, \cdot)$, and $G_{f, g, h, \lambda} \stackrel{\text { def }}{=} G a l\left(L_{h, \lambda} / \mathbb{Q}\right)$.

Hilbert's irreducibility \Longrightarrow There exists a thin subset $A_{f, g, h} \subset \mathbb{Z}$ such that $G_{f, g, h}$ is isomorphic to $G_{f, g, h, \lambda}$, for $\lambda \in \mathbb{Z}-A_{f, g, h}$ but for our applications polynomail $Q_{f, g, h}$ needs to be transformed a little bit in a standard fashion
write $Q_{f, g, h}(\lambda, T)=\sum_{i=1}^{n} a_{i}(\lambda) T^{i} \in \mathbb{Z}[\lambda, T], \lambda, T$ variables
$\widetilde{Q}_{f, g, h}(\lambda, T) \stackrel{\text { def }}{=} a_{n}(\lambda)^{n-1} Q\left(\lambda, T / a_{n}(\lambda)\right)=$
$T^{n}+a_{n-1}(\lambda) T^{n-1}+\sum_{i=1}^{n-2} a_{n}(\lambda)^{n-1-i} a_{i}(\lambda) T^{i}$

Application of Hilbert's irreducibilty

Application of Hilbert's irreducibilty

the following theorem is useful for explicit computations

Application of Hilbert's irreducibilty

the following theorem is useful for explicit computations we regard $G_{f, g, h}$ a subgroup of symmteric group of n letters

Application of Hilbert's irreducibilty

the following theorem is useful for explicit computations we regard $G_{f, g, h}$ a subgroup of symmteric group of n letters
using Hilbert's irreducibility and famous theorem of Frobenius (latter generalized by Chebotarev)

Theorem

$G_{f, g, h}$ contains a permutation with a cycle pattern $n_{1}, n_{2}, \ldots, n_{t}$ if and only if there exists a prime number p and $r \in\{0,1, \ldots, p-1\}$ such that $\widetilde{Q}_{f, g, h}(r, T)=$
$T^{n}+a_{n-1}(r) T^{n-1}+\sum_{i=1}^{n-2} a_{n}(r)^{n-1-i} a_{i}(r) T^{i}(\bmod p)$ can be decomposed into a product of different irreducible factors of degrees $n_{1}, n_{2}, \ldots, n_{t}$.

Theorem

Let $m \geq 2$ be an even integer such that $\operatorname{dim} S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}} \geq 3$. Then, there exists a thin subset $A_{m, N} \subset \mathbb{Z}$, and triples of linearly independent forms $f_{i}, g_{i}, h_{i} \in S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}, 1 \leq i \leq k$, such that for any $f, g, h \in S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ which are linearly independent, there exists i such that $G_{f, g, h} \simeq G_{f_{i}, g_{i}, h_{i}, \lambda}, \lambda \in \mathbb{Z}-A_{m, N}$.

Some general results (part 2)

Theorem

Assume that either $m=2$ and $X_{0}(N)$ is not hyperelliptic (implies $\left.g\left(\Gamma_{0}(N)\right) \geq 3\right)$ or $m \geq 4$ is an even integer such that $\operatorname{dim} S_{m}\left(\Gamma_{0}(N)\right) \geq \max \left(g\left(\Gamma_{0}(N)\right)+2,3\right)$. Assume that $f, g \in S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ are linearly independent. Then, there exists a subgroup G of the symmetric group of $I_{m, N}$-letters such that $\bar{\Xi}_{G}^{\prime}$ is Zariski dense in $S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$.

The Case of Non-Hyperelliptic Modular Curves

The Case of Non-Hyperelliptic Modular Curves
by $\operatorname{Ogg} X_{0}(N)$ is non-hyperelliptic for
$N \in\{34,38,42,43,44,45,51-58,60-70\}$ or $N \geq 72$
$\Longrightarrow g\left(\Gamma_{0}(N)\right) \geq 3$

The Case of Non-Hyperelliptic Modular Curves

by $\operatorname{Ogg} X_{0}(N)$ is non-hyperelliptic for
$N \in\{34,38,42,43,44,45,51-58,60-70\}$ or $N \geq 72$
$\Longrightarrow g\left(\Gamma_{0}(N)\right) \geq 3$

Theorem

Maintaining above assumptions, we select f and g in $S_{2}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ with largest possible orders of vanishing at \mathfrak{a}_{∞} (a point in $X_{0}(N)$ that corresponds to a cusp $\infty), \nu_{\infty}(f)<\nu_{\infty}(g)$. Then, $\left[\mathbb{Q}\left(X_{0}(N)\right): \mathbb{Q}(g / f)\right] \leq g\left(\Gamma_{0}(N)\right)$. Consequently, for $h \in S_{2}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}-(\mathbb{Q} f+\mathbb{Q} g), G_{f, g, h}$ can be embedded as a subgroup of the symmetric group of $g\left(\Gamma_{0}(N)\right)$-letters $S_{g\left(\Gamma_{0}(N)\right)}$ (non-uniquely). Moreover, there exists a subgroup G of $S_{g\left(\Gamma_{0}(N)\right)}$ such that Ξ_{G}^{\prime} is Zariski dense in $S_{2}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$.

Some comments on the theorem

Some comments on the theorem

$\operatorname{dim} S_{2}\left(\Gamma_{0}(N)_{\mathbb{Q}}=g\left(\Gamma_{0}(N)\right)\right.$

Some comments on the theorem

$\operatorname{dim} S_{2}\left(\Gamma_{0}(N)_{\mathbb{Q}}=g\left(\Gamma_{0}(N)\right)\right.$
we obtain a bound $\# G \leq g\left(\Gamma_{0}(N)\right)$! on the size of every possible Galois group $G \in \mathcal{G}_{f, g}$
$\operatorname{dim} S_{2}\left(\Gamma_{0}(N)_{\mathbb{Q}}=g\left(\Gamma_{0}(N)\right)\right.$
we obtain a bound $\# G \leq g\left(\Gamma_{0}(N)\right)$! on the size of every possible Galois group $G \in \mathcal{G}_{f, g}$

Now, we give some examples of explicit computations

The case $N=63$

The case $N=63$

Consider three basis elements of 5-dimensional space $S_{2}\left(\Gamma_{0}(63)\right)$ having highest order of zero at ∞ :

$$
\begin{aligned}
& f \stackrel{\text { def }}{=} q^{4}+q^{7}-4 q^{10}+2 q^{13}-2 q^{16}-4 q^{19}+5 q^{22}+\cdots \\
& g \stackrel{\text { def }}{=} 2 q^{5}-q^{8}-3 q^{11}-q^{14}+2 q^{17}+q^{23}+\cdots \\
& h \stackrel{\text { def }}{=} q^{3}-q^{6}+q^{9}-q^{12}-2 q^{15}-q^{18}-q^{21}+3 q^{24}+\cdots
\end{aligned}
$$

The case $N=63$

Consider three basis elements of 5-dimensional space $S_{2}\left(\Gamma_{0}(63)\right)$ having highest order of zero at ∞ :

$$
\begin{aligned}
& f \stackrel{\text { def }}{=} q^{4}+q^{7}-4 q^{10}+2 q^{13}-2 q^{16}-4 q^{19}+5 q^{22}+\cdots \\
& g \stackrel{\text { def }}{=} 2 q^{5}-q^{8}-3 q^{11}-q^{14}+2 q^{17}+q^{23}+\cdots \\
& h \stackrel{\text { def }}{=} q^{3}-q^{6}+q^{9}-q^{12}-2 q^{15}-q^{18}-q^{21}+3 q^{24}+\cdots
\end{aligned}
$$

Proposition

Maintaining above assumptions, we have $G_{f, g, h} \simeq S(5), h \in \Xi_{S(5)}^{\prime}$, $\mathbb{Q}(g / f, h / f)=\mathbb{Q}\left(X_{0}(63)\right)$.

The case $N=63$

The case $N=63$
the polynomial $P_{f, g, h}$ is determined by
$-2 h^{4} f^{2}-h f^{5}+h^{5} g+2 h^{2} f^{3} g+h^{3} f g^{2}-f^{4} g^{2}+3 h f^{2} g^{3}-3 h^{2} g^{4}=0$ (computed in SAGE)

The case $N=63$
the polynomial $P_{f, g, h}$ is determined by
$-2 h^{4} f^{2}-h f^{5}+h^{5} g+2 h^{2} f^{3} g+h^{3} f g^{2}-f^{4} g^{2}+3 h f^{2} g^{3}-3 h^{2} g^{4}=0$ (computed in SAGE)
$Q_{f, g, h}(\lambda, T)=$
$\lambda T^{5}-2 T^{4}+\lambda^{2} T^{3}+\left(2 \lambda-3 \lambda^{4}\right) T^{2}+\left(3 \lambda^{3}-1\right) T-\lambda^{2}$

The case $N=63$
the polynomial $P_{f, g, h}$ is determined by
$-2 h^{4} f^{2}-h f^{5}+h^{5} g+2 h^{2} f^{3} g+h^{3} f g^{2}-f^{4} g^{2}+3 h f^{2} g^{3}-3 h^{2} g^{4}=0$ (computed in SAGE)
$Q_{f, g, h}(\lambda, T)=$
$\lambda T^{5}-2 T^{4}+\lambda^{2} T^{3}+\left(2 \lambda-3 \lambda^{4}\right) T^{2}+\left(3 \lambda^{3}-1\right) T-\lambda^{2}$
$\widetilde{Q}_{f, g, h}(\lambda, T)=$
$T^{5}-2 T^{4}+\lambda^{3} T^{3}+\left(2 \lambda-3 \lambda^{4}\right) \lambda^{2} T^{2}+\left(3 \lambda^{3}-1\right) \lambda^{3} T-\lambda^{6}$
the polynomial $P_{f, g, h}$ is determined by
$-2 h^{4} f^{2}-h f^{5}+h^{5} g+2 h^{2} f^{3} g+h^{3} f g^{2}-f^{4} g^{2}+3 h f^{2} g^{3}-3 h^{2} g^{4}=0$ (computed in SAGE)
$Q_{f, g, h}(\lambda, T)=$
$\lambda T^{5}-2 T^{4}+\lambda^{2} T^{3}+\left(2 \lambda-3 \lambda^{4}\right) T^{2}+\left(3 \lambda^{3}-1\right) T-\lambda^{2}$
$\widetilde{Q}_{f, g, h}(\lambda, T)=$
$T^{5}-2 T^{4}+\lambda^{3} T^{3}+\left(2 \lambda-3 \lambda^{4}\right) \lambda^{2} T^{2}+\left(3 \lambda^{3}-1\right) \lambda^{3} T-\lambda^{6}$
For $\lambda \equiv-1(\bmod 3)$, reducing $\equiv(\bmod 3)$, the polynomial $\widetilde{Q}_{f, g, h}(\lambda, T)$ becomes $T^{5}+T^{4}-T^{3}+T^{2}+T+1$ which is irreducible over $\mathbb{Z} / 3 \mathbb{Z}$
the polynomial $P_{f, g, h}$ is determined by
$-2 h^{4} f^{2}-h f^{5}+h^{5} g+2 h^{2} f^{3} g+h^{3} f g^{2}-f^{4} g^{2}+3 h f^{2} g^{3}-3 h^{2} g^{4}=0$ (computed in SAGE)
$Q_{f, g, h}(\lambda, T)=$
$\lambda T^{5}-2 T^{4}+\lambda^{2} T^{3}+\left(2 \lambda-3 \lambda^{4}\right) T^{2}+\left(3 \lambda^{3}-1\right) T-\lambda^{2}$
$\widetilde{Q}_{f, g, h}(\lambda, T)=$
$T^{5}-2 T^{4}+\lambda^{3} T^{3}+\left(2 \lambda-3 \lambda^{4}\right) \lambda^{2} T^{2}+\left(3 \lambda^{3}-1\right) \lambda^{3} T-\lambda^{6}$
For $\lambda \equiv-1(\bmod 3)$, reducing $\equiv(\bmod 3)$, the polynomial $\widetilde{Q}_{f, g, h}(\lambda, T)$ becomes $T^{5}+T^{4}-T^{3}+T^{2}+T+1$ which is irreducible over $\mathbb{Z} / 3 \mathbb{Z} \Longrightarrow G_{f, g, h}$ contains a 5-cycle

The case $N=63$

for $\lambda \equiv-1(\bmod 7)$, the polynomial $\widetilde{Q}_{f, g, h}(\lambda, T)$ becomes a product of two irreducible polynomials

$$
T^{5}-2 T^{4}-T^{3}+2 T^{2}+3 T-1=\left(T^{2}-T+3\right) \cdot\left(T^{3}-T^{2}+4 T+2\right) .
$$

for $\lambda \equiv-1(\bmod 7)$, the polynomial $\widetilde{Q}_{f, g, h}(\lambda, T)$ becomes a product of two irreducible polynomials

$$
T^{5}-2 T^{4}-T^{3}+2 T^{2}+3 T-1=\left(T^{2}-T+3\right) \cdot\left(T^{3}-T^{2}+4 T+2\right) .
$$

This shows that the Galois group $G_{f, g, h}$ contains a permutation which is a product of commuting 2-cycle and 3-cycle. Its cube is a transposition.
for $\lambda \equiv-1(\bmod 7)$, the polynomial $\widetilde{Q}_{f, g, h}(\lambda, T)$ becomes a product of two irreducible polynomials

$$
T^{5}-2 T^{4}-T^{3}+2 T^{2}+3 T-1=\left(T^{2}-T+3\right) \cdot\left(T^{3}-T^{2}+4 T+2\right) .
$$

This shows that the Galois group $G_{f, g, h}$ contains a permutation which is a product of commuting 2-cycle and 3-cycle. Its cube is a transposition.
$\Longrightarrow G_{f, g, h}=S(5)$

The case $N=72$

The case $N=72$

We have $g\left(\Gamma_{0}(72)\right)=5$. Using SAGE, the basis of 5-dimensional space $S_{2}\left(\Gamma_{0}(72)\right)$ is given by

The case $N=72$

We have $g\left(\Gamma_{0}(72)\right)=5$. Using SAGE, the basis of 5-dimensional space $S_{2}\left(\Gamma_{0}(72)\right)$ is given by

$$
\begin{aligned}
& f \stackrel{\text { def }}{=} f_{0} \\
& g \stackrel{\text { def }}{=} q^{5}-2 q^{11}-q^{17}+4 q^{23}-3 q^{29}+\cdots, \\
& f_{1} \stackrel{\text { def }}{=} q^{7}-q^{13}-3 q^{19}+q^{25}+3 q^{31}+4 q^{37}+\cdots, \\
& f_{2} \stackrel{\text { def }}{=} q^{3}-q^{9}-2 q^{15}+q^{27}+4 q^{33}-2 q^{39}+\cdots, \\
& f_{3} \stackrel{\text { def }}{=} q^{2}-4 q^{14}+2 q^{26}+8 q^{38}+\cdots, \\
& f_{4} \stackrel{\text { def }}{=} q-2 q^{13}-4 q^{19}-q^{25}+8 q^{31}+6 q^{37}+\cdots,
\end{aligned}
$$

The case $N=72$

The case $N=72$

Proposition

Let $h=f_{3}$. Then, we have that $G_{f, g, h} \simeq D(4)$ a dihedral group of order $2 \cdot 4=8$. Next, $h \in \Xi_{D(4)}^{\prime}$. Moreover,
$\mathbb{Q}(g / f, h / f)=\mathbb{Q}\left(X_{0}(72)\right)$,
$\left[\mathbb{Q}\left(X_{0}(72)\right): \mathbb{Q}(g / f)\right]=4<g\left(\Gamma_{0}(72)\right)=5$. Moreover, the Galois group of the extension $\mathbb{Q}\left(X_{0}(72)\right) \subset L_{f, g, h}$ is generated by a transposition in $D(4)$.

The case $N=72$

Proposition

Let $h=f_{3}$. Then, we have that $G_{f, g, h} \simeq D(4)$ a dihedral group of order $2 \cdot 4=8$. Next, $h \in \Xi_{D(4)}^{\prime}$. Moreover,
$\mathbb{Q}(g / f, h / f)=\mathbb{Q}\left(X_{0}(72)\right)$,
$\left[\mathbb{Q}\left(X_{0}(72)\right): \mathbb{Q}(g / f)\right]=4<g\left(\Gamma_{0}(72)\right)=5$. Moreover, the Galois group of the extension $\mathbb{Q}\left(X_{0}(72)\right) \subset L_{f, g, h}$ is generated by a transposition in $D(4)$.

Proposition

Let $h=f_{3}+f_{4}$. Then, $h \in \Xi_{D(4)}^{\prime}$ and we have $G_{f, g, h} \simeq S(4)$. Moreover, $\mathbb{Q}(g / f, h / f)=\mathbb{Q}\left(X_{0}(72)\right)$.

The case $N=72$

Proposition

Maintaining above assumptions, let $h=f_{2}$. Then, we have $G_{f, g, h} \simeq \mathbb{Z} / 2 \mathbb{Z}$. Next, $h \in \bar{E}_{\mathbb{Z} / 2 \mathbb{Z}}$ but $\Xi_{\mathbb{Z} / 2 \mathbb{Z}}^{\prime}=\emptyset$.

MGMA routine

MGMA routine

The Galois groups of polynomials $\widetilde{Q}(\lambda, \cdot)$ over $\mathbb{Q}(\lambda)$ can also be computed using MAGMA system and a routine GaloisGroup due to Fiecker

The Case of Hyperelliptic Modular Curves

The Case of Hyperelliptic Modular Curves
by
Ogg, $X_{0}(N)$ is a hyperelliptic curve if and only if N belongs to the set $\{22,23,26,28,29,30,31,33,35,37,39,40,41,46,47,48,50,59,71\}$.

The Case of Hyperelliptic Modular Curves

by
Ogg, $X_{0}(N)$ is a hyperelliptic curve if and only if N belongs to the set $\{22,23,26,28,29,30,31,33,35,37,39,40,41,46,47,48,50,59,71\}$.
select $f, g \in S_{2}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ such that their orders at ∞ satisfy that $\nu_{\infty}(g)$ is largest possible, and $\nu_{\infty}(f)=\nu_{\infty}(g)-1$. The existence of f and g is easy to check using SAGE system.

The Case of Hyperelliptic Modular Curves

by
Ogg, $X_{0}(N)$ is a hyperelliptic curve if and only if N belongs to the set $\{22,23,26,28,29,30,31,33,35,37,39,40,41,46,47,48,50,59,71\}$.
select $f, g \in S_{2}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ such that their orders at ∞ satisfy that $\nu_{\infty}(g)$ is largest possible, and $\nu_{\infty}(f)=\nu_{\infty}(g)-1$. The existence of f and g is easy to check using SAGE system.

Theorem

Assume that $X_{0}(N)$ is a hyperelliptic curve, and $f, g \in S_{2}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ as above. Then, we have the following:
(i) The extension $\mathbb{Q}(g / f) \subset \mathbb{Q}\left(X_{0}(N)\right)$ has the degree two, and therefore the Galois group is $\mathbb{Z} / 2 \mathbb{Z}$.
(ii) For all even integers $m \geq 4$ there exists a non-empty Zariski open set $\mathcal{U}_{m} \subset S_{m}\left(\Gamma_{0}(N)\right)_{\mathbb{Q}}$ such that

$$
L_{f^{\frac{m}{2}}, g f^{\frac{m}{2}-1}, h}=\mathbb{Q}\left(X_{0}(N)\right)=\mathbb{Q}\left(g / f, h / f^{m / 2}\right), h \in \mathcal{U}_{m}
$$

An example to the theorem

An example to the theorem

Let $N=30$. Then, $g\left(\Gamma_{0}(30)\right)=3$. Using SAGE we find the following base of $S_{2}\left(\Gamma_{0}(30)\right)$:

$$
\begin{aligned}
& f_{0}=q-q^{4}-q^{6}-2 q^{7}+q^{9}+q^{10}+\cdots \\
& f_{1}=q^{2}-q^{4}-q^{6}-q^{8}+q^{10}+\cdots \\
& f_{2}=q^{3}+q^{4}-q^{5}-q^{6}-2 q^{7}-2 q^{8}+q^{10}+\cdots
\end{aligned}
$$

An example to the theorem

Let $N=30$. Then, $g\left(\Gamma_{0}(30)\right)=3$. Using SAGE we find the following base of $S_{2}\left(\Gamma_{0}(30)\right)$:

$$
\begin{aligned}
& f_{0}=q-q^{4}-q^{6}-2 q^{7}+q^{9}+q^{10}+\cdots \\
& f_{1}=q^{2}-q^{4}-q^{6}-q^{8}+q^{10}+\cdots \\
& f_{2}=q^{3}+q^{4}-q^{5}-q^{6}-2 q^{7}-2 q^{8}+q^{10}+\cdots
\end{aligned}
$$

We let $f=f_{1}$ and $g=f_{2}$. Now, we have that

$$
\begin{aligned}
& f^{2}=q^{4}-2 q^{6}-q^{8}+5 q^{12}+\cdots \\
& f g=q^{5}+q^{6}-2 q^{7}-2 q^{8}-2 q^{9}-2 q^{10}+2 q^{11}+3 q^{12} \ldots
\end{aligned}
$$

are elements of $S_{4}\left(\Gamma_{0}(30)\right)$. By listing the basis of $S_{4}\left(\Gamma_{0}(30)\right)$ using SAGE, we construct a new base as follows: $F=F_{0}=f^{2}$, $G=F_{1}=f g, F_{i}=q^{i-1}+\ldots, 2 \leq i \leq 4, F_{i}=q^{i+1}+\ldots$, $5 \leq i \leq 14$.

An example to the theorem

An example to the theorem

Applying the Trial method (from our Ramanujan paper), we may let $h=F_{3} \in \mathcal{U}_{m}$. The corresponding polynomial $Q_{f^{2}, f g, h}(\lambda, T)$ is given by
$225 \lambda^{6}\left(1-\lambda-\lambda^{2}+\lambda^{3}\right) T^{2}-\lambda^{3}\left(237-370 \lambda+319 \lambda^{2}+341 \lambda^{3}\right.$
$\left.-310 \lambda^{4}-101 \lambda^{5}+400 \lambda^{6}-10 \lambda^{7}-64 \lambda^{8}+32 \lambda^{9}\right) T+12-44 \lambda-85 \lambda^{2}$
$+153 \lambda^{3}+1073 \lambda^{4}+1375 \lambda^{5}-420 \lambda^{6}-660 \lambda^{7}-30 \lambda^{8}+162 \lambda^{9}-26 \lambda^{10}$
$-118 \lambda^{11}+84 \lambda^{12}+20 \lambda^{13}+12 \lambda^{14}-4 \lambda^{15}$

An example to the theorem

Applying the Trial method (from our Ramanujan paper), we may let $h=F_{3} \in \mathcal{U}_{m}$. The corresponding polynomial $Q_{f^{2}, f g, h}(\lambda, T)$ is given by
$225 \lambda^{6}\left(1-\lambda-\lambda^{2}+\lambda^{3}\right) T^{2}-\lambda^{3}\left(237-370 \lambda+319 \lambda^{2}+341 \lambda^{3}\right.$
$\left.-310 \lambda^{4}-101 \lambda^{5}+400 \lambda^{6}-10 \lambda^{7}-64 \lambda^{8}+32 \lambda^{9}\right) T+12-44 \lambda-85 \lambda^{2}$
$+153 \lambda^{3}+1073 \lambda^{4}+1375 \lambda^{5}-420 \lambda^{6}-660 \lambda^{7}-30 \lambda^{8}+162 \lambda^{9}-26 \lambda^{10}$
$-118 \lambda^{11}+84 \lambda^{12}+20 \lambda^{13}+12 \lambda^{14}-4 \lambda^{15}$
observe that we have obtained a quadratic polynomial in T as it should be

An example to the theorem

We easily see that $\widetilde{Q}_{f^{2}, f g, h}(\lambda, T)$ is given by

$$
\begin{aligned}
& T^{2}-\lambda^{3}\left(237-370 \lambda+319 \lambda^{2}+341 \lambda^{3}-310 \lambda^{4}-101 \lambda^{5}+400 \lambda^{6}-10 \lambda^{7}\right. \\
& \left.-64 \lambda^{8}+32 \lambda^{9}\right) T+225 \lambda^{6}\left(1-\lambda-\lambda^{2}+\lambda^{3}\right) \cdot\left(12-44 \lambda-85 \lambda^{2}\right. \\
& +153 \lambda^{3}+1073 \lambda^{4}+1375 \lambda^{5}-420 \lambda^{6}-660 \lambda^{7}-30 \lambda^{8}+162 \lambda^{9}-26 \lambda^{10} \\
& \left.-118 \lambda^{11}+84 \lambda^{12}+20 \lambda^{13}+12 \lambda^{14}-4 \lambda^{15}\right) .
\end{aligned}
$$

An example to the theorem

We easily see that $\widetilde{Q}_{f 2, f g, h}(\lambda, T)$ is given by

$$
\begin{aligned}
& T^{2}-\lambda^{3}\left(237-370 \lambda+319 \lambda^{2}+341 \lambda^{3}-310 \lambda^{4}-101 \lambda^{5}+400 \lambda^{6}-10 \lambda^{7}\right. \\
& \left.-64 \lambda^{8}+32 \lambda^{9}\right) T+225 \lambda^{6}\left(1-\lambda-\lambda^{2}+\lambda^{3}\right) \cdot\left(12-44 \lambda-85 \lambda^{2}\right. \\
& +153 \lambda^{3}+1073 \lambda^{4}+1375 \lambda^{5}-420 \lambda^{6}-660 \lambda^{7}-30 \lambda^{8}+162 \lambda^{9}-26 \lambda^{10} \\
& \left.-118 \lambda^{11}+84 \lambda^{12}+20 \lambda^{13}+12 \lambda^{14}-4 \lambda^{15}\right) .
\end{aligned}
$$

We let $\lambda \in \mathbb{Z}-A_{f^{2}, f g, h}$ and reduce that polynomial $(\bmod 5) \Longrightarrow$ $T^{2}-\lambda^{3}\left(2-\lambda^{2}+\lambda^{3}-\lambda^{5}+\lambda^{8}+2 \lambda^{9}\right) T$. Letting $\lambda \equiv 1(\bmod 5)$ we obtain $T^{2}-T=T(T-1)$. Considering $G_{f^{2}, f g, h, \lambda}$ as a subgroup of the symmetric group $S(2)$, we see that it contains a transposition. Hence, $G_{f^{2}, f g, H, \lambda}=S(2)$. This recovers the Galois group by using Hilbert's irreducibility.

Thank you!

