About the equation $x^{4}+d y^{2}=z^{p}$

Modular Curves and Galois Representations, Zagreb

Franco Golfieri
September 19, 2023
Universidade de Aveiro

Introduction

Goal

Determine asymptotic conditions on d for the non-existence of primitive non-trivial solutions of the equation $x^{4}+d y^{2}=z^{p}$.

Introduction

Goal

Determine asymptotic conditions on d for the non-existence of primitive non-trivial solutions of the equation $x^{4}+d y^{2}=z^{p}$.

Observe that

$$
\frac{1}{4}+\frac{1}{2}+\frac{1}{p}<1
$$

for $p>3$.

Introduction

Goal

Determine asymptotic conditions on d for the non-existence of primitive non-trivial solutions of the equation $x^{4}+d y^{2}=z^{p}$.

Observe that

$$
\frac{1}{4}+\frac{1}{2}+\frac{1}{p}<1
$$

for $p>3$. Then, by the ABC conjecture, one expects that our equation does not have solutions for p greater enough.

Introduction

Goal

Determine asymptotic conditions on d for the non-existence of primitive non-trivial solutions of the equation $x^{4}+d y^{2}=z^{p}$.

Observe that

$$
\frac{1}{4}+\frac{1}{2}+\frac{1}{p}<1
$$

for $p>3$. Then, by the ABC conjecture, one expects that our equation does not have solutions for p greater enough.

First Cases

- $d=1$ for $p>211$ (Ellenberg, 2004)

Introduction

Goal

Determine asymptotic conditions on d for the non-existence of primitive non-trivial solutions of the equation $x^{4}+d y^{2}=z^{p}$.

Observe that

$$
\frac{1}{4}+\frac{1}{2}+\frac{1}{p}<1
$$

for $p>3$. Then, by the ABC conjecture, one expects that our equation does not have solutions for p greater enough.

First Cases

- $d=1$ for $p>211$ (Ellenberg, 2004)
- $d=2$ for $p>349 ; d=3$ for $p>131$ (Dieulefait, Jiménez, 2009)

Introduction

Goal

Determine asymptotic conditions on d for the non-existence of primitive non-trivial solutions of the equation $x^{4}+d y^{2}=z^{p}$.

Observe that

$$
\frac{1}{4}+\frac{1}{2}+\frac{1}{p}<1
$$

for $p>3$. Then, by the ABC conjecture, one expects that our equation does not have solutions for p greater enough.

First Cases

- $d=1$ for $p>211$ (Ellenberg, 2004)
- $d=2$ for $p>349 ; d=3$ for $p>131$ (Dieulefait, Jiménez, 2009)
- $d=1$ for $n \geq 4 ; d=2, n \geq 4$ (Bennett, Ellenberg, $\mathrm{Ng}, 2010$)

Introduction

Goal

Determine asymptotic conditions on d for the non-existence of primitive non-trivial solutions of the equation $x^{4}+d y^{2}=z^{p}$.

Observe that

$$
\frac{1}{4}+\frac{1}{2}+\frac{1}{p}<1
$$

for $p>3$. Then, by the ABC conjecture, one expects that our equation does not have solutions for p greater enough.

First Cases

- $d=1$ for $p>211$ (Ellenberg, 2004)
- $d=2$ for $p>349 ; d=3$ for $p>131$ (Dieulefait, Jiménez, 2009)
- $d=1$ for $n \geq 4 ; d=2, n \geq 4$ (Bennett, Ellenberg, $\mathrm{Ng}, 2010$)
- $d=5,6,7$ (Pacetti, Villagra, 2022)

General approach

(a, b, c) non-trivial primitive solution of $x^{4}+d y^{2}=z^{p}$

$$
E_{(a, b, c)}: y^{2}=x^{3}+4 a x^{2}+2\left(a^{2}+\sqrt{-d} b\right) x
$$

General approach

$$
(a, b, c) \text { non-trivial primitive solution of } x^{4}+d y^{2}=z^{p}
$$

$$
\begin{gathered}
\downarrow \\
E_{(a, b, c)}: y^{2}=x^{3}+4 a x^{2}+2\left(a^{2}+\sqrt{-d} b\right) x
\end{gathered}
$$

$E_{(a, b, c)}$ is defined over $K:=\mathbb{Q}(\sqrt{-d})$ and it is a \mathbb{Q}-curve totally defined over $K(\sqrt{-2})$.

General approach

(a, b, c) non-trivial primitive solution of $x^{4}+d y^{2}=z^{p}$

$$
\begin{gathered}
\downarrow \\
E_{(a, b, c)}: y^{2}=x^{3}+4 a x^{2}+2\left(a^{2}+\sqrt{-d} b\right) x
\end{gathered}
$$

$E_{(a, b, c)}$ is defined over $K:=\mathbb{Q}(\sqrt{-d})$ and it is a \mathbb{Q}-curve totally defined over $K(\sqrt{-2})$.Then, there exists a Hecke character \varkappa such that

$$
\rho:=\rho_{E_{(a, b, c), p}} \otimes \varkappa: \operatorname{Gal}(\bar{K} / K) \rightarrow \operatorname{GL}_{2}\left(\overline{\mathbb{Q}_{p}}\right),
$$

extends to a representation $\tilde{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}_{p}}\right)$.

General approach

(a, b, c) non-trivial primitive solution of $x^{4}+d y^{2}=z^{p}$ \downarrow

$$
E_{(a, b, c)}: y^{2}=x^{3}+4 a x^{2}+2\left(a^{2}+\sqrt{-d} b\right) x .
$$

$E_{(a, b, c)}$ is defined over $K:=\mathbb{Q}(\sqrt{-d})$ and it is a \mathbb{Q}-curve totally defined over $K(\sqrt{-2})$. Then, there exists a Hecke character \varkappa such that

$$
\rho:=\rho_{E_{(a, b, c), p}} \otimes \varkappa: \operatorname{Gal}(\bar{K} / K) \rightarrow \operatorname{GL}_{2}\left(\overline{\mathbb{Q}_{p}}\right),
$$

extends to a representation $\tilde{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}_{p}}\right)$.
Thus,

$$
\tilde{\rho} \simeq \rho_{f, \mathfrak{p}}
$$

for some $f \in S_{2}\left(N_{(a, b, c)}, \varepsilon\right)$.

General approach

Using Ellenber's results for \mathbb{Q}-curves, we get a big image of $\tilde{\rho}$ for $p>B$.

General approach

Using Ellenber's results for \mathbb{Q}-curves, we get a big image of $\tilde{\rho}$ for $p>B$.Then, using Ribet lowering the level Theorem, there exists $g \in S_{2}(M, \varepsilon)$, with $M \mid N$ not depending on the solution, such that

$$
\rho_{f, \mathfrak{p}} \simeq \rho_{g, \mathfrak{p}}
$$

General approach

Using Ellenber's results for \mathbb{Q}-curves, we get a big image of $\tilde{\rho}$ for $p>B$. Then, using Ribet lowering the level Theorem, there exists $g \in S_{2}(M, \varepsilon)$, with $M \mid N$ not depending on the solution, such that

$$
\rho_{f, \mathfrak{p}} \simeq \rho_{g, \mathfrak{p}}
$$

If $K_{f} \neq K_{g}$ one can discard g using Mazur's results.

General approach

Using Ellenber's results for \mathbb{Q}-curves, we get a big image of $\tilde{\rho}$ for $p>B$. Then, using Ribet lowering the level Theorem, there exists $g \in S_{2}(M, \varepsilon)$, with $M \mid N$ not depending on the solution, such that

$$
\rho_{f, \mathfrak{p}} \simeq \rho_{g, \mathfrak{p}}
$$

If $K_{f} \neq K_{g}$ one can discard g using Mazur's results.

Question

What happens when $K_{f}=K_{g}$?

General approach

Using Ellenber's results for \mathbb{Q}-curves, we get a big image of $\tilde{\rho}$ for $p>B$.Then, using Ribet lowering the level Theorem, there exists $g \in S_{2}(M, \varepsilon)$, with $M \mid N$ not depending on the solution, such that

$$
\rho_{f, \mathfrak{p}} \simeq \rho_{g, \mathfrak{p}}
$$

If $K_{f} \neq K_{g}$ one can discard g using Mazur's results.

Question

What happens when $K_{f}=K_{g}$? The method generally fails.

General approach

Using Ellenber's results for \mathbb{Q}-curves, we get a big image of $\tilde{\rho}$ for $p>B$. Then, using Ribet lowering the level Theorem, there exists $g \in S_{2}(M, \varepsilon)$, with $M \mid N$ not depending on the solution, such that

$$
\rho_{f, \mathfrak{p}} \simeq \rho_{g, \mathfrak{p}}
$$

If $K_{f} \neq K_{g}$ one can discard g using Mazur's results.

Question

What happens when $K_{f}=K_{g}$? The method generally fails.

Main goal

Under the assumption $K_{f}=K_{g}$. Obtain an elliptic curve E_{g}, relate it to $E_{(a, b, c)}$ for $p>M_{g}$, and arrive at a contradiction using properties of E_{g} that $E_{(a, b, c)}$ does not satisfy.

Asymptotic result

- Analyzing the algebra of endomorphisms of A_{f} and A_{g} we prove that

$$
A_{g} \sim E_{g}^{r}
$$

for some elliptic curve E_{g} defined over K and totally defined over $K(\sqrt{-2})$.

Asymptotic result

- Analyzing the algebra of endomorphisms of A_{f} and A_{g} we prove that

$$
A_{g} \sim E_{g}^{r}
$$

for some elliptic curve E_{g} defined over K and totally defined over $K(\sqrt{-2})$.

- For $p>B_{g}, \overline{\rho_{E_{(a, b, c)}, p}} \simeq \overline{\rho_{E_{g}, p}}$.

Asymptotic result

- Analyzing the algebra of endomorphisms of A_{f} and A_{g} we prove that

$$
A_{g} \sim E_{g}^{r}
$$

for some elliptic curve E_{g} defined over K and totally defined over $K(\sqrt{-2})$.

- For $p>B_{g}, \overline{\rho_{E_{(a, b, c)}, p}} \simeq \overline{\rho_{E_{g}, p}}$.

Theorem (Pacetti, Villagra, G.)

Let d be a natural number congruent to 3 modulo 8 and such that the class number of $\mathbb{Q}(\sqrt{-d})$ is coprime to 6 . Then there are non-trivial primitive solutions to the equation

$$
x^{4}+d y^{2}=z^{p}
$$

for p greater enough

Thank you for your attention!

