About the equation $x^4 + dy^2 = z^p$

Modular Curves and Galois Representations, Zagreb

Franco Golfieri September 19, 2023

Universidade de Aveiro

Goal

Determine asymptotic conditions on d for the non-existence of primitive non-trivial solutions of the equation $x^4 + dy^2 = z^p$.

Goal

Determine asymptotic conditions on d for the non-existence of primitive non-trivial solutions of the equation $x^4 + dy^2 = z^p$.

Observe that

$$\frac{1}{4} + \frac{1}{2} + \frac{1}{p} < 1$$

for p > 3.

Goal

Determine asymptotic conditions on d for the non-existence of primitive non-trivial solutions of the equation $x^4 + dy^2 = z^p$.

Observe that

$$\frac{1}{4} + \frac{1}{2} + \frac{1}{p} < 1$$

for p > 3. Then, by the ABC conjecture, one expects that our equation does not have solutions for p greater enough.

Goal

Determine asymptotic conditions on d for the non-existence of primitive non-trivial solutions of the equation $x^4 + dy^2 = z^p$.

Observe that

$$\frac{1}{4} + \frac{1}{2} + \frac{1}{p} < 1$$

for p > 3. Then, by the ABC conjecture, one expects that our equation does not have solutions for p greater enough.

First Cases

• d = 1 for p > 211 (Ellenberg, 2004)

Goal

Determine asymptotic conditions on d for the non-existence of primitive non-trivial solutions of the equation $x^4 + dy^2 = z^p$.

Observe that

$$\frac{1}{4} + \frac{1}{2} + \frac{1}{p} < 1$$

for p > 3. Then, by the ABC conjecture, one expects that our equation does not have solutions for p greater enough.

First Cases

- d = 1 for p > 211 (Ellenberg, 2004)
- d = 2 for p > 349; d = 3 for p > 131 (Dieulefait, Jiménez, 2009)

Goal

Determine asymptotic conditions on d for the non-existence of primitive non-trivial solutions of the equation $x^4 + dy^2 = z^p$.

Observe that

$$\frac{1}{4} + \frac{1}{2} + \frac{1}{p} < 1$$

for p > 3. Then, by the ABC conjecture, one expects that our equation does not have solutions for p greater enough.

First Cases

- d = 1 for p > 211 (Ellenberg, 2004)
- d = 2 for p > 349; d = 3 for p > 131 (Dieulefait, Jiménez, 2009)
- d = 1 for $n \ge 4$; $d = 2, n \ge 4$ (Bennett, Ellenberg, Ng, 2010)

Goal

Determine asymptotic conditions on d for the non-existence of primitive non-trivial solutions of the equation $x^4 + dy^2 = z^p$.

Observe that

$$\frac{1}{4} + \frac{1}{2} + \frac{1}{p} < 1$$

for p > 3. Then, by the ABC conjecture, one expects that our equation does not have solutions for p greater enough.

First Cases

- d = 1 for p > 211 (Ellenberg, 2004)
- d = 2 for p > 349; d = 3 for p > 131 (Dieulefait, Jiménez, 2009)
- d=1 for $n\geq 4$; $d=2,n\geq 4$ (Bennett, Ellenberg, Ng, 2010)
- d = 5, 6, 7 (Pacetti, Villagra, 2022)

(a,b,c) non-trivial primitive solution of $x^4+dy^2=z^p$ $\downarrow \\ E_{(a,b,c)}:y^2=x^3+4ax^2+2(a^2+\sqrt{-d}b)x.$

(a,b,c) non-trivial primitive solution of $x^4 + dy^2 = z^p$ \downarrow $E_{(a,b,c)} : y^2 = x^3 + 4ax^2 + 2(a^2 + \sqrt{-d}b)x.$ $E_{(a,b,c)} \text{ is defined over } K := \mathbb{Q}(\sqrt{-d}) \text{ and it is a } \mathbb{Q}\text{-curve totally defined over } K(\sqrt{-2}).$

(a,b,c) non-trivial primitive solution of $x^4+dy^2=z^p$ \downarrow

$$E_{(a,b,c)}: y^2 = x^3 + 4ax^2 + 2(a^2 + \sqrt{-d}b)x.$$

 $E_{(a,b,c)}$ is defined over $K:=\mathbb{Q}(\sqrt{-d})$ and it is a \mathbb{Q} -curve totally defined over $K(\sqrt{-2}).$ Then, there exists a Hecke character \varkappa such that

$$\rho := \rho_{E_{(a,b,c)},p} \otimes \varkappa : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_2(\overline{\mathbb{Q}_p}),$$

extends to a representation $\tilde{\rho} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\overline{\mathbb{Q}_p}).$

 $(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c})$ non-trivial primitive solution of $x^4+dy^2=z^p$

$$E_{(a,b,c)}: y^2 = x^3 + 4ax^2 + 2(a^2 + \sqrt{-d}b)x.$$

 $E_{(a,b,c)}$ is defined over $K:=\mathbb{Q}(\sqrt{-d})$ and it is a \mathbb{Q} -curve totally defined over $K(\sqrt{-2}).$ Then, there exists a Hecke character \varkappa such that

$$\rho := \rho_{E_{(a,b,c)},p} \otimes \varkappa : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_2(\overline{\mathbb{Q}_p}),$$

extends to a representation $\tilde{\rho}$: $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\overline{\mathbb{Q}_p})$. Thus,

$$\tilde{\rho} \simeq \rho_{f,\mathfrak{p}}.$$

for some $f \in S_2(N_{(a,b,c)},\varepsilon)$.

Using Ellenber's results for $\mathbb Q\text{-curves},$ we get a big image of $\tilde\rho$ for p>B.

 $\rho_{f,\mathfrak{p}} \simeq \rho_{g,\mathfrak{p}}.$

$$\rho_{f,\mathfrak{p}} \simeq \rho_{g,\mathfrak{p}}.$$

If $K_f \neq K_g$ one can discard g using Mazur's results.

 $\rho_{f,\mathfrak{p}} \simeq \rho_{g,\mathfrak{p}}.$

If $K_f \neq K_g$ one can discard g using Mazur's results.

Question

What happens when $K_f = K_g$?

 $\rho_{f,\mathfrak{p}} \simeq \rho_{g,\mathfrak{p}}.$

If $K_f \neq K_g$ one can discard g using Mazur's results.

Question

What happens when $K_f = K_g$? The method generally fails.

 $\rho_{f,\mathfrak{p}} \simeq \rho_{g,\mathfrak{p}}.$

If $K_f \neq K_g$ one can discard g using Mazur's results.

Question

What happens when $K_f = K_q$? The method generally fails.

Main goal

Under the assumption $K_f = K_g$. Obtain an elliptic curve E_g , relate it to $E_{(a,b,c)}$ for $p > M_g$, and arrive at a contradiction using properties of E_g that $E_{(a,b,c)}$ does not satisfy.

Asymptotic result

• Analyzing the algebra of endomorphisms of A_f and A_g we prove that

 $A_g \sim E_g^r$

for some elliptic curve E_g defined over K and totally defined over $K(\sqrt{-2}).$

Asymptotic result

• Analyzing the algebra of endomorphisms of A_f and A_q we prove that

$$A_g \sim E_g^r$$

for some elliptic curve E_g defined over K and totally defined over $K(\sqrt{-2}).$

• For
$$p > B_g$$
, $\overline{\rho_{E_{(a,b,c)},p}} \simeq \overline{\rho_{E_g,p}}$.

Asymptotic result

• Analyzing the algebra of endomorphisms of A_f and A_g we prove that

$$A_g \sim E_g^r$$

for some elliptic curve E_g defined over K and totally defined over $K(\sqrt{-2}).$

• For
$$p > B_g$$
, $\overline{\rho_{E_{(a,b,c)},p}} \simeq \overline{\rho_{E_g,p}}$.

Theorem (Pacetti, Villagra, G.)

Let d be a natural number congruent to 3 modulo 8 and such that the class number of $\mathbb{Q}(\sqrt{-d})$ is coprime to 6. Then there are non-trivial primitive solutions to the equation

$$x^4 + dy^2 = z^p$$

for p greater enough

Thank you for your attention!