Some ℓ-adic properties of modular forms with Nebentypus and ℓ-regular partitions (joint with Mostafa Ghazy)

Ahmad El-Guindy

Cairo University
Modular Curves and Galois Representations Zagreb, Croatia 19 Sep 2023

Definitions

■ For integer $k \geq 2$, a partition is called k-regular if none if its parts is divisible by k.

Definitions

■ For integer $k \geq 2$, a partition is called k-regular if none if its parts is divisible by k.

■ Let $b_{k}(n)$ denote the number of k-regular partitions of n $\left(b_{k}(0):=1\right)$

Definitions

■ For integer $k \geq 2$, a partition is called k-regular if none if its parts is divisible by k.

■ Let $b_{k}(n)$ denote the number of k-regular partitions of n $\left(b_{k}(0):=1\right)$

$$
\sum_{n=0}^{\infty} b_{k}(n) q^{n}=\prod_{m=1}^{\infty} \frac{\left(1-q^{m k}\right)}{\left(1-q^{m}\right)}
$$

Definitions

■ For integer $k \geq 2$, a partition is called k-regular if none if its parts is divisible by k.

■ Let $b_{k}(n)$ denote the number of k-regular partitions of n $\left(b_{k}(0):=1\right)$

$$
\sum_{n=0}^{\infty} b_{k}(n) q^{n}=\prod_{m=1}^{\infty} \frac{\left(1-q^{m k}\right)}{\left(1-q^{m}\right)}
$$

■ For instance $b_{2}(n)$ is precisely the number of partitions of n into odd parts (which famously equals the number of partitions into distinct parts since $\left.\frac{\left(1-q^{2 m}\right)}{1-q^{m}}=\left(1+q^{m}\right)\right)$.

Relation to "unrestricted" partitions

l-regular partitions modulo ℓ

Ahmad
El-Guindy El-Guindy

■ Initially (i.e. for $n \leq k-1$) we have $b_{k}(n)=p(n)$.

Relation to "unrestricted" partitions

€-regular
partitions modulo ℓ

■ Initially (i.e. for $n \leq k-1$) we have $b_{k}(n)=p(n)$.

- Also $b_{k}(k)=p(k)-1, b_{k}(k+1)=p(k+1)-1$, $b_{k}(k+2)=p(k+2)-2($ for $k \geq 3)$, etc. But no simple known general relation between $b_{k}(n)$ and $p(n)$.

Relation to "unrestricted" partitions

- Initially (i.e. for $n \leq k-1$) we have $b_{k}(n)=p(n)$.

■ Also $b_{k}(k)=p(k)-1, b_{k}(k+1)=p(k+1)-1$, $b_{k}(k+2)=p(k+2)-2($ for $k \geq 3)$, etc. But no simple known general relation between $b_{k}(n)$ and $p(n)$.

■ Recall Dedekind's $\eta(z)=q^{\frac{1}{24}} \prod_{m=1}^{\infty}\left(1-q^{m}\right)$. Note that $p(n)$ is related to $\frac{1}{\eta(z)}$ (weight $\frac{-1}{2}$), whereas $b_{k}(n)$ is related to $\frac{\eta(\mathrm{kz})}{\eta(z)}$ (weight 0 , also different level and character).

■ k-regular partitions are a well-studied variant of $p(n)$. For instance Dandurand and Penniston (2009), using the theory of complex multiplication, determined exact criteria for the ℓ-divisibility of $b_{\ell}(n)$ for $\ell \in\{5,7,11\}$, whereas Xia (2015), using theta function identities of Ramanujan, obtained congruences of the form

$$
b_{\ell}(A(k) n+B(k)) \equiv C(k) b_{\ell}(n) \quad(\bmod \ell)
$$

for $\ell \in\{13,17,19\}$ and certain functions $A(k), B(k), C(k)$ depending on ℓ and k.

Congruences for ℓ-regular partitions modulo ℓ for small primes

Theorem (E. and Ghazy (2023))

For $5 \leq \ell \leq 31$ prime, $m \geq 1$, there exists $b_{\ell}(m)$ s.t. for $b_{1} \equiv b_{2}(\bmod 2), b_{2}>b_{1} \geq b_{\ell}(m)$, there exists $\mathfrak{B}_{\ell}\left(b_{1}, b_{2}, m\right)$ s.t. for $n \geq 0$ (and a certain c to be defined below)
$b_{\ell}\left(\ell^{b_{1}} n+\frac{\ell^{b_{1}} c-\ell+1}{24}\right) \equiv$
$\mathfrak{B}_{\ell}\left(b_{1}, b_{2}, m\right) b_{\ell}\left(\ell^{b_{2}} n+\frac{\ell^{b_{2}} c-\ell+1}{24}\right) \quad\left(\bmod \ell^{m}\right)\left(b_{1}\right.$ odd $)$,
$b_{\ell}\left(\ell^{b_{1}} n-\frac{\ell^{b_{1}} c+\ell-1}{24}\right) \equiv$
$\mathfrak{B}_{\ell}\left(b_{1}, b_{2}, m\right) b_{\ell}\left(\ell^{b_{2}} n-\frac{\ell^{b_{2}} c+\ell-1}{24}\right) \quad\left(\bmod \ell^{m}\right)\left(b_{1}\right.$ even $)$.

Example

Example

We illustrate Theorem 1 with $\ell=17$. For $m=1$ it applies for every pair of positive integers $b_{1}<b_{2}$ with the same parity. We let $b_{1}:=1$ and $b_{2}:=3$. It turns out that $\mathfrak{B}(1,3,1)=11$, and so

$$
b_{17}\left(17^{3} n+1637\right) \equiv 11 b_{17}(17 n+5) \quad(\bmod 17)
$$

Remarks

ℓ-regular
partitions modulo ℓ

Ahmad El-Guindy

■ These results generalize work of Folsom, Kent and Ono (2012) (further detailed by Boylan and Webb (2013)) on $p(n)$.

Remarks

■ These results generalize work of Folsom, Kent and Ono (2012) (further detailed by Boylan and Webb (2013)) on $p(n)$.

- In some sense, some of our arguments amount to "taking a square root" of their results and arguments. For instance, certain weights of modular forms we study are half their counterparts, and generally live in spaces with quadratic Nebentypus.

Remarks

■ These results generalize work of Folsom, Kent and Ono (2012) (further detailed by Boylan and Webb (2013)) on $p(n)$.

- In some sense, some of our arguments amount to "taking a square root" of their results and arguments. For instance, certain weights of modular forms we study are half their counterparts, and generally live in spaces with quadratic Nebentypus.

■ The above Theorem is a statement on a certain \mathbb{Z} / ℓ^{m} module being of rank ≤ 1 for $5 \leq \ell \leq 31$. A more general version holds for all primes ≥ 5 that we describe next.

The general setting for all $\ell \geq 5$

ℓ-regular
partitions modulo ℓ

Ahmad El-Guindy

- We attach an integer c to primes $\ell \geq 5$ as follows

$$
c=c(\ell):=24\left\lceil\frac{\ell-1}{24}\right\rceil-(\ell-1)
$$

(so that $c+\ell-1 \equiv 0(\bmod 24)$ and $0 \leq c<24$. $c \in\{0,20,18,14,12,8,6,2\})$.

The general setting for all $\ell \geq 5$

- We attach an integer c to primes $\ell \geq 5$ as follows

$$
c=c(\ell):=24\left\lceil\frac{\ell-1}{24}\right\rceil-(\ell-1)
$$

(so that $c+\ell-1 \equiv 0(\bmod 24)$ and $0 \leq c<24$. $c \in\{0,20,18,14,12,8,6,2\})$.

- Also set (following Folsom-Kent-Ono for $p(n)$)

$$
\Phi_{\ell}(z):=\frac{\eta\left(\ell^{2} z\right)}{\eta(z)}
$$

$R_{\ell}(0 ; z)=\eta(\ell z) \eta(z)^{c-1}$ (instead of 1 for $\left.p(n)\right)$

The general setting for all $\ell \geq 5$

ℓ-regular

- We attach an integer c to primes $\ell \geq 5$ as follows

$$
c=c(\ell):=24\left\lceil\frac{\ell-1}{24}\right\rceil-(\ell-1)
$$

(so that $c+\ell-1 \equiv 0(\bmod 24)$ and $0 \leq c<24$. $c \in\{0,20,18,14,12,8,6,2\})$.

- Also set (following Folsom-Kent-Ono for $p(n)$)

$$
\begin{gathered}
\Phi_{\ell}(z):=\frac{\eta\left(\ell^{2} z\right)}{\eta(z)} \\
\left.R_{\ell}(0 ; z)=\eta(\ell z) \eta(z)^{c-1} \text { (instead of } 1 \text { for } p(n)\right) \\
R_{\ell}(b ; z)=\left\{\begin{array}{l}
R_{\ell}(b-1 ; z) \Phi_{\ell}^{c}(z) \mid U(\ell) \text { if } b \text { is odd } \\
R_{\ell}(b-1 ; z) \mid U(\ell) \text { if } b \text { is even. }
\end{array}\right.
\end{gathered}
$$

The spaces

८-regular
partitions modulo ℓ

Ahmad El-Guindy

Consider the following two infinite families of descending $\mathbb{Z} / \ell^{m} \mathbb{Z}$ modules

$$
\Lambda_{\ell, \text { reg }}^{\text {odd }}(2 b+1, m):=\operatorname{Span}_{\mathbb{Z} / \ell^{m} \mathbb{Z}}\left\{R_{\ell}(2 \beta+1 ; z) \quad\left(\bmod \ell^{m}\right): \beta \geq b\right\}
$$

$$
\Lambda_{\ell, \text { reg }}^{\text {even }}(2 b, m):=\operatorname{Span}_{\mathbb{Z} / \ell^{m} \mathbb{Z}}\left\{R_{\ell}(2 \beta ; z) \quad\left(\bmod \ell^{m}\right): \beta \geq b\right\}
$$

The General Theorem

Theorem (E. and Ghazy (2023))

Let $\ell \geq 5$ be prime. For every $m \geq 1$ there exists $b_{\ell}(m)$ s.t.
1 The nested sequence of $\mathbb{Z} / \ell^{m} \mathbb{Z}$ modules

$$
\Lambda_{\ell, \text { reg }}^{\text {odd }}(1, m) \supseteq \cdots \supseteq \Lambda_{\ell, \text { reg }}^{\text {odd }}(2 b+1, m) \supseteq \cdots
$$

stabilizes for all b with $2 b+1 \geq b_{\ell}(m)$. Moreover, if we denote the stabilized $\mathbb{Z} / \ell^{m} \mathbb{Z}$ module by $\Omega_{\ell, \text { reg }}^{\text {odd }}(m)$ then its rank is bounded above by $1+\left\lfloor\frac{\ell-1}{12}\right\rfloor-\left\lceil\frac{\ell-1}{24}\right\rceil$.
2 Likewise for

$$
\begin{aligned}
\quad \Lambda_{\ell, r e g}^{\text {even }}(0, m) & \supseteq \Lambda_{\ell, r e g}^{\text {even }}(2, m) \supseteq \cdots \supseteq \Lambda_{\ell, \text { reg }}^{\text {even }}(2 b, m) \supseteq \cdots \\
\text { and } \Omega_{\ell, \text { ereg }}^{\text {even }}(m) & \cong \Omega_{\ell, \text { erg }}^{\text {edd }}(m) .
\end{aligned}
$$

Twisted example of Serre's ℓ-adic modular forms

El-Guindy

- $R_{\ell}(b ; z)$ is of weight $\frac{c}{2} \in\{0,10,9,7,6,4,3,1\}$, level ℓ and quadratic character. Yet it is congruent modulo any power of ℓ to forms of level 1 (and increasing weights.)
■ For $\ell=23, c=2$ and $m=1$, we have $k_{\ell}=34$

$$
R_{23}(1 ; z) \equiv \Delta^{2}(z) E_{10}(z) \quad(\bmod 23)
$$

Twisted example of Serre's ℓ-adic modular forms

El-Guindy

- $R_{\ell}(b ; z)$ is of weight $\frac{c}{2} \in\{0,10,9,7,6,4,3,1\}$, level ℓ and quadratic character. Yet it is congruent modulo any power of ℓ to forms of level 1 (and increasing weights.)
■ For $\ell=23, c=2$ and $m=1$, we have $k_{\ell}=34$

$$
R_{23}(1 ; z) \equiv \Delta^{2}(z) E_{10}(z) \quad(\bmod 23)
$$

- $m=2$, weight 254

$$
\begin{aligned}
R_{23}(1 ; z) & \equiv \Delta^{2}(z) E_{230}(z)+115 \Delta^{3}(z) E_{1218}(z) \\
& +276 \Delta^{4}(z) E_{206}(z) \quad\left(\bmod 23^{2}\right)
\end{aligned}
$$

Twisted example of Serre's ℓ-adic modular forms

ℓ-regular

partitions modulo ℓ

Ahmad
El-Guindy

- $R_{\ell}(b ; z)$ is of weight $\frac{c}{2} \in\{0,10,9,7,6,4,3,1\}$, level ℓ and quadratic character. Yet it is congruent modulo any power of ℓ to forms of level 1 (and increasing weights.)
■ For $\ell=23, c=2$ and $m=1$, we have $k_{\ell}=34$

$$
R_{23}(1 ; z) \equiv \Delta^{2}(z) E_{10}(z) \quad(\bmod 23)
$$

■ $m=2$, weight 254

$$
\begin{aligned}
R_{23}(1 ; z) & \equiv \Delta^{2}(z) E_{230}(z)+115 \Delta^{3}(z) E_{1218}(z) \\
& +276 \Delta^{4}(z) E_{206}(z) \quad\left(\bmod 23^{2}\right)
\end{aligned}
$$

■ $m=3$, weight 5820

$$
\begin{aligned}
R_{23}(1 ; z) & \equiv \Delta^{2}(z) E_{5796}(z)+3289 \Delta^{3}(z) E_{5784}(z) \\
& +7682 \Delta^{4}(z) E_{5772}(z)+529 \Delta^{5}(z) E_{5760}(z) \\
& +11638 \Delta^{6}(z) E_{5748}(z)\left(\bmod 23^{3}\right)
\end{aligned}
$$

Final remark

El-Guindy

■ In the course of the proof, we require the Eisenstein series of level ℓ and quadratic character χ. They are well-known (essentially going back to Hecke (1927)) to be

$$
\begin{gathered}
E_{k, \chi}(z):=1-\frac{2 k}{B_{k, \chi}} \sum_{n=1}^{\infty}\left(\sum_{d \mid n, d>0} \chi(d) d^{k-1}\right) q^{n} \\
F_{k, \chi}(z):=\sum_{n=1}^{\infty}\left(\sum_{d \mid n, d>0} \chi\left(\frac{n}{d}\right) d^{k-1}\right) q^{n}
\end{gathered}
$$

Final remark

■ In the course of the proof, we require the Eisenstein series of level ℓ and quadratic character χ. They are well-known (essentially going back to Hecke (1927)) to be

$$
\begin{gathered}
E_{k, \chi}(z):=1-\frac{2 k}{B_{k, \chi}} \sum_{n=1}^{\infty}\left(\sum_{d \mid n, d>0} \chi(d) d^{k-1}\right) q^{n} \\
F_{k, \chi}(z):=\sum_{n=1}^{\infty}\left(\sum_{d \mid n, d>0} \chi\left(\frac{n}{d}\right) d^{k-1}\right) q^{n}
\end{gathered}
$$

- They have the following beautiful symmetry in their q-expansion

A curious phenomenon

ℓ-regular
partitions modulo ℓ

Ahmad El-Guindy

$$
\begin{aligned}
& E_{3, \chi-7}=1-\frac{7}{8}\left(q+5 q^{2}-8 q^{3}+21 q^{4}-24 q^{5}-40 q^{6}+q^{7}\right. \\
& +85 q^{8}+73 q^{9}-120 q^{10}+122 q^{11}-168 q^{12}-168 q^{13} \\
& +5 q^{14}+192 q^{15}+341 q^{16}-288 q^{17}+365 q^{18}-360 q^{19} \\
& \left.-504 q^{20}-8 q^{21}+610 q^{22}+530 q^{23}-680 q^{24}+\ldots\right)
\end{aligned}
$$

A curious phenomenon

ℓ-regular
partitions
modulo ℓ
Ahmad
El-Guindy

$$
\begin{aligned}
& E_{3, \chi-7}=1-\frac{7}{8}\left(q+5 q^{2}-8 q^{3}+21 q^{4}-24 q^{5}-40 q^{6}+q^{7}\right. \\
& +85 q^{8}+73 q^{9}-120 q^{10}+122 q^{11}-168 q^{12}-168 q^{13} \\
& +5 q^{14}+192 q^{15}+341 q^{16}-288 q^{17}+365 q^{18}-360 q^{19} \\
& \left.-504 q^{20}-8 q^{21}+610 q^{22}+530 q^{23}-680 q^{24}+\ldots\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{3, \chi-7}=q+5 q^{2}+8 q^{3}+21 q^{4}+24 q^{5}+40 q^{6}+49 q^{7} \\
& +85 q^{8}+73 q^{9}+120 q^{10}+122 q^{11}+168 q^{12}+168 q^{13} \\
& +245 q^{14}+192 q^{15}+341 q^{16}+288 q^{17}+365 q^{18}+360 q^{19} \\
& +504 q^{20}+392 q^{21}+610 q^{22}+530 q^{23}+680 q^{24}+\ldots
\end{aligned}
$$

ℓ-regular
partitions
modulo ℓ
Ahmad
El-Guindy

Hvala!

