Hyperelliptic and trigonal modular curves in positive charcteristic

Maarten Derickx¹ Filip Najman²

¹Universiteit Leiden

²University of Zagreb

Modular curves and Galois representations Zagreb - 20-09-2023

Slides at: bit.ly/hyperelliptic-trigonal

Let N > 0 be an integer and $H \subseteq (\mathbb{Z}/N\mathbb{Z})^*$ be a subgroup with $-1 \in H$. Then define:

$$\begin{split} \Gamma_{H}(N) &:= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathsf{PSL}_{2}(\mathbb{Z}) \, \middle| \, c \in N\mathbb{Z}, \ (d \mod N) \in H \right\} \\ \Gamma_{H}(N) \times \overline{\mathbb{H}} \to \overline{\mathbb{H}} : \quad \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}, z \right) \mapsto \frac{az + b}{cz + d} \\ \Gamma_{0}(N) &:= \Gamma_{(\mathbb{Z}/N\mathbb{Z})^{*}}(N), \quad \Gamma_{1}(N) := \Gamma_{\{\pm 1 \mod N\}}(N) \\ X_{H}(N) &:= \overline{\mathbb{H}}/\Gamma_{H}(N) \end{split}$$

Proposition

The complex curves $X_H(N)$ have a smooth model over $\mathbb{Z}[1/N]$.

Origin story

math**overflow**

Hyperelliptic modular curves in characteristic p

Ask Question

Asked 10 years, 3 months ago Modified 2 months ago Viewed 571 times

-

Ogg characterized the finitely many N such that $X_0(N)_Q$ is hyperelliptic, and Poonen proved in "Gonality of modular curves in characteristic p" that for large enough N, $X_0(N)_{\mathbb{F}_p}$ is not hyperelliptic.

Question: Are there any N such that $X_0(N)_{\mathbb{Q}}$ is not hyperelliptic but for some p not dividing N $X_0(N)_{\mathbb{F}_p}$ is hyperelliptic?

I'm also interested in this question for other modular curves of the form X_H , where H is a congruence subgroup.



Share Cite Edit Follow Flag

Question

Can one classify the triples $N, p, H \subset (\mathbb{Z}/N\mathbb{Z})^*$ consisting of an integer, a prime $p \nmid N$ and a subgroup such that $X_H(N)_{\mathbb{F}_p}$ (or $X_H(N)_{\mathbb{F}_p}$) is

- hyperelliptic,
- trigonal, or
- of gonality d for some integer d?

What about $X_H(N)_{\mathbb{Q}}$ or $X_H(N)_{\mathbb{C}}$?

Question

Is the set of pairs N, H for which there exists a prime p such that $X_H(N)_{\mathbb{F}_p}$ is d-gonal, finite for every integer d? Equivalently, can one bound the gonality of $X_H(N)_{\mathbb{F}_p}$ from below in terms of the index $[PSL_2(\mathbb{Z}) : \Gamma_H(N)]$ only?

Theorem (Ogg (1974))

 $X_0(N)$ is hyperelliptic in chracteristic 0 for the following 19 values of N:

 $\{22, 23, 26, 28, 29, 30, 31, 33, 35, 37, 39, 40, 41, 46, 47, 48, 50, 59, 71\}$

Theorem (Ishii, Momose (1991))

The only other modular curves of the form $X_H(N)$ that are hyperelliptic in characteristic 0 are $X_1(13)$, $X_1(16)$ and $X_1(18)$.

Theorem (Hasegawa, Shimura (1999))

The \mathbb{C} -gonality of $X_0(N)$ is $3 \iff N = 34, 38, 43, 44, 45, 53, 54, 61, 64, 81.$

Theorem (Najman, Orlić (2022))

Classification of the $X_0(N)$ that are of \mathbb{Q} -gonality ≤ 6 .

Lower bounds

Theorem (Abramovich (1996))

$$\operatorname{gon}(X_H(N)_{\mathbb{Q}}) \geq \operatorname{gon}(X_H(N)_{\mathbb{C}}) \geq rac{7}{800} [\operatorname{PSL}_2(\mathbb{Z}): \Gamma_H(N)/(\pm 1)]$$

Theorem (Poonen (2006))

$$gon(X_{\mathcal{H}}(N)_{\mathbb{F}_{p^2}}) \geq \frac{p-1}{12(p^2+1)} [\mathsf{PSL}_2(\mathbb{Z}) : \Gamma_{\mathcal{H}}(N)/(\pm 1)]$$
$$gon(X_{\mathcal{H}}(N)_{\overline{\mathbb{F}}_p}) \geq \sqrt{gon(X_{\mathcal{H}}(N)_{\mathbb{F}_{p^2}})}$$

Question

Does there exist a constant *C* such that $gon(X_H(N)_K) \ge C[PSL_2(\mathbb{Z}) : \Gamma_H(N)]$ for all fields *K* in which *N* is invertible?

M. Derickx, F. Najman

Hyperelliptic and trigonal modular curves

Proposition (Castelnuovo-Severi inequality)

Let X, Y, Z be nice curves over a perfect field k, with maps $\pi_Y : X \to Y$ and $\pi_Z : X \to Z$ of degrees m and n. Assume that there is no $X \to X'$ of degree > 1 through which both π_Y and π_X factor. Then: $g(X) \le m \cdot g(Y) + n \cdot g(Z) + (m-1)(n-1).$

Corollary (C-S inequality & Riemann-Hurwitz formula)

Let r_N be the ramifictation degree of $X_0(N) \to X_0(N)^+ := X_0(N)/W_N$. Suppose k is a perfect field in which N is invertible and $f: X_0(N)_k \to \mathbb{P}^1_k$ is a map with $r_N > 2 \deg(f)$, then f factors via $X_0(N)_k^+$.

Lemma

Suppose N > 4 then
$$r_N = \begin{cases} h(-4N) + h(-N) & \text{if } N \equiv 3 \pmod{4}, \\ h(-4N) & \text{otherwise.} \end{cases}$$

Let D < 0 be a fundamental discriminant and $f \in \mathbb{N}$. Define \mathcal{O}_{Df^2} as the order of discriminant Df^2 and let $h(Df^2)$ be the classnumber of $_{Df^2}$.

Theorem (Gauss conjecture, Heilbronn (1934))

 $h(D) \rightarrow \infty$ as $D \rightarrow -\infty$

Watkins (2004) classified all fundamental discriminants D < 0 such that $h(D) \le 100$.

Corollary

 $r_N \ge h(-4N) > 6$ if N > 1019.

Note: There are lots of $N \le 1019$ such that $r_N > 6$.

The level of hyperelliptic and trigonal modular curves

Corollary

Suppose k is a perfect field s.t. $\operatorname{char}(k) \nmid N$ and $f : X_0(N)_k \to \mathbb{P}^1_k$ is a map with $r_N > 2 \operatorname{deg}(f)$, then f factors via $X_0(N)_k^+$.

Proposition (Najman, D.)

Suppose N > 1019, k a field s.t. char $(k) \nmid N$ and $H \subset (\mathbb{Z}/N\mathbb{Z})^*$ a subgroup, then $X_H(N)_k$ is not hyperelliptic and not trigonal.

Proof.

It suffices to restrict to $k = \overline{\mathbb{F}}_p$ with $p \nmid N$. Since gonality can only decrease when taking a quotient of a curve we can also restrict to $H = (\mathbb{Z}/N\mathbb{Z})^*$ and hence $X_H(N) = X_0(N)$. Since N > 1019 one has $r_N > 6$, so any $f : X_0(N)_k \to \mathbb{P}_k^1$ of degree ≤ 3 factors via $X_0(N)_k^+$ by the corollary. Since $g(X_0(N)_k^+) > 0$ for $N \geq 73$ this prevents $X_0(N)^+$ from admitting a map of degree ≤ 3 to \mathbb{P}_k^1 .

Let *X* be a nice curve of genus g > 1 over a field *k*.

The canonical ring of X is: $R(X) := \bigoplus_{d=0} H^0(X, \Omega_{X/k}^{\otimes d})$

Let $V := H^0(X, \Omega_{X/k})$ and define $\operatorname{Sym}(V) := \bigoplus_{d=0}^{\infty} \operatorname{Sym}^d(V)$, then the identity map $\operatorname{Sym}^1(V) = V \to V = R(X)_1$ induces a natural map of graded rings $f_{can} : \operatorname{Sym}(V) \to R(X)$, and hence we get a map:

 $X \cong \operatorname{Proj}(R(X)) \to \operatorname{Proj}(\operatorname{Sym}(V)) \cong \mathbb{P}_k^{g-1}$ called the canonical map. The ideal $I_{can} := \ker(f_{can}) \subset \operatorname{Sym}(V)$ is the

called the canonical map. The ideal $I_{can} := \ker(I_{can}) \subset \operatorname{Sym}(V)$ is the canonical ideal.

Theorem (Babbage, Chisini, Enrique char 0, Saint-Donat char > 0)

X is hyperelliptic \iff the dimension of $I_{can,2} \subseteq Sym^2(V)$ is $\binom{g-1}{2}$. If *X* is not hyperelliptic and not a smooth plane quintic then: *X* is trigonal over $\overline{k} \iff$ the dimension of $I_{can,3}/(V \cdot I_{can,2})$ is g-3.

Computing the primes of hyperelliptic reduction

Let X be a nice curve of genus g > 1 over $\mathbb{Z}[1/N]$, then $V := H^0(X, \Omega_{X/\mathbb{Z}[1/N]})$, $\operatorname{Sym}^2(V)$ and $R(X)_2 := H^0(X, \Omega_{X/\mathbb{Z}[1/N]}^{\otimes 2})$ are free $\mathbb{Z}[1/N]$ -modules of rank g, $\binom{g+1}{2}$ and 3g - 3. If $p \nmid N$ one has:

3 Sym²(
$$V$$
) $\otimes \mathbb{F}_{\rho} \cong$ Sym²($V \otimes \mathbb{F}_{\rho}$) and

 $X_{\mathbb{F}_p}$ is hyperelliptic if and only if

$$\dim \ker \left(f_{can,\mathbb{F}_p} : \operatorname{Sym}^2(H^0(X,\Omega_{X/\mathbb{F}_p})) \to H^0(X_{\mathbb{F}_p},\Omega_{X/\mathbb{F}_p}^{\otimes 2}) \right) = \binom{g-1}{2}$$

The isomorphism 1,2 and 3 above mean we can read off the dimension of this kernel from a smith normal form of the matrix representing $Sym^2(V) \rightarrow R(X)_2$.

One can write down a similar matrix from which you can read off the primes of trigonal reduction.

Theorem (Najman, D.)

Let $p \nmid N$ then $X_H(N)_{\overline{\mathbb{F}}_p}$ is hyperelliptic if and only if $X_H(N)_{\mathbb{C}}$ is, with exactly one exception. Namely: if N = 37 and $H := \langle 4 \rangle \subset (\mathbb{Z}/37\mathbb{Z})^*$ then $X_H(N)_{\overline{\mathbb{F}}_2}$ is hyperelliptic, but $X_H(N)_{\mathbb{C}}$ as well as $X_H(N)_{\overline{\mathbb{F}}_p}$ with p > 2 are trigonal.

Theorem (Najman, D.)

Let $p \nmid N$ then $X_H(N)_{\overline{\mathbb{F}}_p}$ is trigonal if and only if $X_H(N)_{\mathbb{C}}$ is, with exactly one exception. Namely: $X_0(73)_{\overline{\mathbb{F}}_2}$ is trigonal, however $X_0(73)_{\mathbb{C}}$ as well as $X_0(73)_{\overline{\mathbb{F}}_p}$ with p > 2 are tetragonal.

Trigonality over non algebraically closed fields

Proposition (Castelnuovo-Severi inequality)

Let X, Y, Z be nice curves over a perfect field k, with maps $\pi_Y : X \to Y$ and $\pi_Z : X \to Z$ of degrees m and n. Assume that there is no $X \to X'$ of degree > 1 through which both π_Y and π_X factor. Then: $g(X) \le m \cdot g(Y) + n \cdot g(Z) + (m-1)(n-1).$

Corollary

If $g(X) \ge 5$ and X is trigonal, then the trigonal map is unique. In particular, if $g(X) \ge 5$ then X_k is trigonal $\iff X_{\overline{k}}$ is trigonal.

Proposition

If g(X) = 3 and $X(k) \neq \emptyset$ then X_k is trigonal $\iff X_k$ is not hyperelliptic. In this case again X_k is trigonal $\iff X_{\overline{k}}$ is trigonal.

Since $X_H(N)(\mathbb{Z}[1/N]) \neq \emptyset$ this means the trigonality over \mathbb{F}_p and $\overline{\mathbb{F}}_p$ can only differ if $g(X_H(N)) = 4$.

M. Derickx, F. Najman

Trigonal curves of genus 4

 $X_0(N)$ is of genus 4 for N = 38, 44, 47, 53, 54, 61, 81. $X_0(47)$ is hyperelliptic over all fields k with char $k \nmid N$. $X_0(54)$ and $X_0(81)$ are trigonal over all fields k with char $k \nmid N$. Let \mathcal{O}_d be the quadratic order of discriminant d.

Theorem (Najman, D.)

Let N, d one of the 4 pairs below and k be a field s.t. char $k \nmid N$ then $X_0(N)_k$ is 3-gonal \iff there exists a morphism $\mathcal{O}_d \rightarrow k$.

Ν	38	44	53	61
d	-3	-8	-15	-4

Proof.

These $X_0(N)$ are the intersection of a quadric of discriminant *d* and a cubic in \mathbb{P}^3 . Maps of degree 3 correspond to rulings of the quadric. The rulings are defined over \mathbb{F}_{p^2} if *p* is inert in \mathcal{O}_d , and \mathbb{F}_p otherwise.

Thank you!

Theorem (Anni, Assaf, Lorenzo Garcia (2022))

If a modular curve of the form $X_H(N)$ admits a smooth plane model over \mathbb{C} , then the degree of this model is at most 18 and not equal to 5,6 or 7.

Theorem (Najman, D.)

Let $p \nmid N$ then none of the modular curves $X_H(N)$ admit a smooth plane model of degree 5 over $\overline{\mathbb{F}}_p$.