Hyperelliptic and trigonal modular curves in positive charcteristic

Maarten Derickx ${ }^{1}$ Filip Najman ${ }^{2}$

${ }^{1}$ Universiteit Leiden
${ }^{2}$ University of Zagreb

Modular curves and Galois representations
Zagreb - 20-09-2023

Slides at: bit.ly/hyperelliptic-trigonal

Modular curves

Let $N>0$ be an integer and $H \subseteq(\mathbb{Z} / N \mathbb{Z})^{*}$ be a subgroup with $-1 \in H$. Then define:

$$
\begin{aligned}
& \Gamma_{H}(N):=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{PSL}_{2}(\mathbb{Z}) \right\rvert\, c \in N \mathbb{Z},(d \bmod N) \in H\right\} \\
& \Gamma_{H}(N) \times \overline{\mathbb{H}} \rightarrow \overline{\mathbb{H}}: \quad\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], z\right) \mapsto \frac{a z+b}{c z+d} \\
& \Gamma_{0}(N):=\Gamma_{(\mathbb{Z} / N \mathbb{Z})^{*}}(N), \quad \Gamma_{1}(N):=\Gamma_{\{ \pm 1 \bmod N\}}(N) \\
& X_{H}(N):=\overline{\mathbb{H}} / \Gamma_{H}(N)
\end{aligned}
$$

Proposition

The complex curves $X_{H}(N)$ have a smooth model over $\mathbb{Z}[1 / N]$.

Origin story

mathoverflow

Hyperelliptic modular curves in characteristic p

Asked 10 years, 3 months ago Modified 2 months ago Viewed 571 times

- Ogg characterized the finitely many N such that $X_{0}(N)_{\mathbb{Q}}$ is hyperelliptic, and Poonen proved in "Gonality of modular curves in characteristic p " that for large enough $\mathrm{N}, X_{0}(N)_{\mathbb{F}_{p}}$ is not hyperelliptic.
7
Question: Are there any N such that $X_{0}(N)_{\mathbb{Q}}$ is not hyperelliptic but for some p not dividing N
- $\quad X_{0}(N)_{\mathbb{F}_{p}}$ is hyperelliptic?

I'm also interested in this question for other modular curves of the form X_{H}, where H is a congruence subgroup.
nt.number-theory
ag.algebraic-geometry

Share Cite Edit Follow Flag
asked Jun 3, 2013 at 2:45
David Zureick-Brown

The main Questions

Question

Can one classify the triples $N, p, H \subset(\mathbb{Z} / N \mathbb{Z})^{*}$ consisting of an integer, a prime $p \nmid N$ and a subgroup such that $X_{H}(N)_{\mathbb{F}_{p}}\left(\operatorname{or} X_{H}(N)_{\overline{\mathbb{F}}_{p}}\right)$ is

- hyperelliptic,
- trigonal, or
- of gonality d for some integer d ?

What about $X_{H}(N)_{\mathbb{Q}}$ or $X_{H}(N)_{\mathbb{C}}$?

Question

Is the set of pairs N, H for which there exists a prime p such that $X_{H}(N)_{\overline{\mathbb{F}}_{p}}$ is d-gonal, finite for every integer d ?
Equivalently, can one bound the gonality of $X_{H}(N)_{\overline{\mathbb{F}}_{p}}$ from below in terms of the index $\left[\mathrm{PSL}_{2}(\mathbb{Z}): \Gamma_{H}(N)\right]$ only?

Some highlighted results in characteristic 0

Theorem (Ogg (1974))

$X_{0}(N)$ is hyperelliptic in chracteristic 0 for the following 19 values of N : $\{22,23,26,28,29,30,31,33,35,37,39,40,41,46,47,48,50,59,71\}$

Theorem (Ishii, Momose (1991))

The only other modular curves of the form $X_{H}(N)$ that are hyperelliptic in characteristic 0 are $X_{1}(13), X_{1}(16)$ and $X_{1}(18)$.

Theorem (Hasegawa, Shimura (1999))

The \mathbb{C}-gonality of $X_{0}(N)$ is $3 \Longleftrightarrow N=34,38,43,44,45,53,54,61,64,81$.

Theorem (Najman, Orlić (2022))

Classification of the $X_{0}(N)$ that are of \mathbb{Q}-gonality ≤ 6.

Lower bounds

Theorem (Abramovich (1996))

$$
\operatorname{gon}\left(X_{H}(N)_{\mathbb{Q}}\right) \geq \operatorname{gon}\left(X_{H}(N)_{\mathbb{C}}\right) \geq \frac{7}{800}\left[\mathrm{PSL}_{2}(\mathbb{Z}): \Gamma_{H}(N) /(\pm 1)\right]
$$

Theorem (Poonen (2006))

$$
\begin{gathered}
\operatorname{gon}\left(X_{H}(N)_{\mathbb{F}_{p^{2}}}\right) \geq \frac{p-1}{12\left(p^{2}+1\right)}\left[\mathrm{PSL}_{2}(\mathbb{Z}): \Gamma_{H}(N) /(\pm 1)\right] \\
\operatorname{gon}\left(X_{H}(N)_{\mathbb{F}_{p}}\right) \geq \sqrt{\operatorname{gon}\left(X_{H}(N)_{\mathbb{F}_{p^{2}}}\right)}
\end{gathered}
$$

Question

Does there exist a constant C such that

$$
\operatorname{gon}\left(X_{H}(N)_{K}\right) \geq C\left[\mathrm{PSL}_{2}(\mathbb{Z}): \Gamma_{H}(N)\right]
$$

for all fields K in which N is invertible?

Castelnuovo-Severi and class numbers

Proposition (Castelnuovo-Severi inequality)

Let X, Y, Z be nice curves over a perfect field k, with maps $\pi_{Y}: X \rightarrow Y$ and $\pi_{Z}: X \rightarrow Z$ of degrees m and n. Assume that there is no $X \rightarrow X^{\prime}$ of degree >1 through which both π_{Y} and π_{X} factor. Then:

$$
g(X) \leq m \cdot g(Y)+n \cdot g(Z)+(m-1)(n-1)
$$

Corollary (C-S inequality \& Riemann-Hurwitz formula)
Let r_{N} be the ramifictation degree of $X_{0}(N) \rightarrow X_{0}(N)^{+}:=X_{0}(N) / W_{N}$. Suppose k is a perfect field in which N is invertible and $f: X_{0}(N)_{k} \rightarrow \mathbb{P}_{k}^{1}$ is a map with $r_{N}>2 \operatorname{deg}(f)$, then f factors via $X_{0}(N)_{k}^{+}$.

Lemma

$$
\text { Suppose } N>4 \text { then } r_{N}= \begin{cases}h(-4 N)+h(-N) & \text { if } N \equiv 3(\bmod 4) \\ h(-4 N) & \text { otherwise }\end{cases}
$$

Growth of class numbers

Let $D<0$ be a fundamental discriminant and $f \in \mathbb{N}$. Define $\mathcal{O}_{D f^{2}}$ as the order of discriminant $D f^{2}$ and let $h\left(D f^{2}\right)$ be the classnumber of ${ }_{D f^{2}}$.

```
Theorem (Gauss conjecture, Heilbronn (1934))
\(h(D) \rightarrow \infty\) as \(D \rightarrow-\infty\)
```

Watkins (2004) classified all fundamental discriminants $D<0$ such that $h(D) \leq 100$.

Corollary
$r_{N} \geq h(-4 N)>6$ if $N>1019$.
Note: There are lots of $N \leq 1019$ such that $r_{N}>6$.

The level of hyperelliptic and trigonal modular curves

Corollary

Suppose k is a perfect field s.t. $\operatorname{char}(k) \nmid N$ and $f: X_{0}(N)_{k} \rightarrow \mathbb{P}_{k}^{1}$ is a map with $r_{N}>2 \operatorname{deg}(f)$, then f factors via $X_{0}(N)_{k}^{+}$.

Proposition (Najman, D.)

Suppose $N>1019, k$ a field s.t. char $(k) \nmid N$ and $H \subset(\mathbb{Z} / N \mathbb{Z})^{*} a$ subgroup, then $X_{H}(N)_{k}$ is not hyperelliptic and not trigonal.

Proof.

It suffices to restrict to $k=\overline{\mathbb{F}}_{p}$ with $p \nmid N$. Since gonality can only decrease when taking a quotient of a curve we can also restrict to $H=(\mathbb{Z} / N \mathbb{Z})^{*}$ and hence $X_{H}(N)=X_{0}(N)$. Since $N>1019$ one has $r_{N}>6$, so any $f: X_{0}(N)_{k} \rightarrow \mathbb{P}_{k}^{1}$ of degree ≤ 3 factors via $X_{0}(N)_{k}^{+}$by the corollary. Since $g\left(X_{0}(N)_{k}^{+}\right)>0$ for $N \geq 73$ this prevents $X_{0}(N)^{+}$ from admitting a map of degree ≤ 3 to \mathbb{P}_{k}^{1}.

Canonical map

Let X be a nice curve of genus $g>1$ over a field k.
The canonical ring of X is: $R(X):=\bigoplus_{d=0}^{\infty} H^{0}\left(X, \Omega_{X / k}^{\otimes d}\right)$
Let $V:=H^{0}\left(X, \Omega_{X / k}\right)$ and define $\operatorname{Sym}(V):=\bigoplus_{d=0}^{\infty} \operatorname{Sym}^{d}(V)$, then the identity map $\operatorname{Sym}^{1}(V)=V \rightarrow V=R(X)_{1}$ induces a natural map of graded rings $f_{c a n}: \operatorname{Sym}(V) \rightarrow R(X)$, and hence we get a map:

$$
X \cong \operatorname{Proj}(R(X)) \rightarrow \operatorname{Proj}(\operatorname{Sym}(V)) \cong \mathbb{P}_{k}^{g-1}
$$

called the canonical map. The ideal $I_{\text {can }}:=\operatorname{ker}\left(f_{\text {can }}\right) \subset \operatorname{Sym}(V)$ is the canonical ideal.

Theorem (Babbage, Chisini, Enrique char 0, Saint-Donat char > 0)

X is hyperelliptic \Longleftrightarrow the dimension of $I_{\text {can }, 2} \subseteq \operatorname{Sym}^{2}(V)$ is $\binom{-1}{2}$. If X is not hyperelliptic and not a smooth plane quintic then: X is trigonal over $\bar{k} \Longleftrightarrow$ the dimension of $I_{\text {can }, 3} /\left(V \cdot I_{\text {can }, 2}\right)$ is $g-3$.

Computing the primes of hyperelliptic reduction

Let X be a nice curve of genus $g>1$ over $\mathbb{Z}[1 / N]$, then $V:=H^{0}\left(X, \Omega_{X / \mathbb{Z}[1 / N]}\right), \operatorname{Sym}^{2}(V)$ and $R(X)_{2}:=H^{0}\left(X, \Omega_{X / \mathbb{Z}[1 / N]}^{\otimes 2}\right)$ are free $\mathbb{Z}[1 / N]$-modules of rank $g,\binom{g+1}{2}$ and $3 g-3$. If $p \nmid N$ one has:
(1) $V \otimes \mathbb{F}_{p} \cong H^{0}\left(X_{\mathbb{F}_{p}}, \Omega_{X / \mathbb{F}_{p}}\right)$,
(2) $\operatorname{Sym}^{2}(V) \otimes \mathbb{F}_{p} \cong \operatorname{Sym}^{2}\left(V \otimes \mathbb{F}_{p}\right)$ and
(3) $R(X)_{2} \otimes \mathbb{F}_{p} \cong R\left(X_{\mathbb{F}_{p}}\right):=H^{0}\left(X_{\mathbb{F}_{p}}, \Omega_{X / \mathbb{F}_{p}}^{\otimes 2}\right)$
$X_{\mathbb{F}_{p}}$ is hyperelliptic if and only if
$\operatorname{dim} \operatorname{ker}\left(f_{c a n, \mathbb{F}_{p}}: \operatorname{Sym}^{2}\left(H^{0}\left(X, \Omega_{X / \mathbb{F}_{p}}\right)\right) \rightarrow H^{0}\left(X_{\mathbb{F}_{p}}, \Omega_{X / \mathbb{F}_{p}}^{\otimes 2}\right)\right)=\binom{g-1}{2}$
The isomorphism 1,2 and 3 above mean we can read off the dimension of this kernel from a smith normal form of the matrix representing

$$
\operatorname{Sym}^{2}(V) \rightarrow R(X)_{2}
$$

One can write down a similar matrix from which you can read off the primes of trigonal reduction.

The main Theorems

Theorem (Najman, D.)

Let $p \nmid N$ then $X_{H}(N)_{\mathbb{F}_{p}}$ is hyperelliptic if and only if $X_{H}(N)_{\mathbb{C}}$ is, with exactly one exception.
Namely: if $N=37$ and $H:=\langle 4\rangle \subset(\mathbb{Z} / 37 \mathbb{Z})^{*}$ then $X_{H}(N)_{\overline{\mathbb{F}}_{2}}$ is hyperelliptic, but $X_{H}(N)_{\mathbb{C}}$ as well as $X_{H}(N)_{\overline{\mathbb{F}}_{p}}$ with $p>2$ are trigonal.

Theorem (Najman, D.)

Let $p \nmid N$ then $X_{H}(N)_{\mathbb{F}_{p}}$ is trigonal if and only if $X_{H}(N)_{\mathrm{C}}$ is, with exactly one exception.
Namely: $X_{0}(73)_{\overline{\mathbb{F}}_{2}}$ is trigonal, however $X_{0}(73)_{\mathbb{C}}$ as well as $X_{0}(73)_{\overline{\mathbb{F}}_{p}}$ with $p>2$ are tetragonal.

Trigonality over non algebraically closed fields

Proposition (Castelnuovo-Severi inequality)

Let X, Y, Z be nice curves over a perfect field k, with maps
$\pi_{Y}: X \rightarrow Y$ and $\pi_{Z}: X \rightarrow Z$ of degrees m and n. Assume that there is no $X \rightarrow X^{\prime}$ of degree >1 through which both π_{Y} and π_{X} factor. Then: $g(X) \leq m \cdot g(Y)+n \cdot g(Z)+(m-1)(n-1)$.

Corollary

If $g(X) \geq 5$ and X is trigonal, then the trigonal map is unique. In particular, if $g(X) \geq 5$ then X_{k} is trigonal $\Longleftrightarrow X_{\bar{k}}$ is trigonal.

Proposition

If $g(X)=3$ and $X(k) \neq \emptyset$ then X_{k} is trigonal $\Longleftrightarrow X_{k}$ is not hyperelliptic. In this case again X_{k} is trigonal $\Longleftrightarrow X_{\bar{k}}$ is trigonal.

Since $X_{H}(N)(\mathbb{Z}[1 / N]) \neq \emptyset$ this means the trigonality over \mathbb{F}_{p} and $\overline{\mathbb{F}}_{p}$ can only differ if $g\left(X_{H}(N)\right)=4$.

Trigonal curves of genus 4

$X_{0}(N)$ is of genus 4 for $N=38,44,47,53,54,61,81$.
$X_{0}(47)$ is hyperelliptic over all fields k with char $k \nmid N$.
$X_{0}(54)$ and $X_{0}(81)$ are trigonal over all fields k with char $k \nmid N$.
Let \mathcal{O}_{d} be the quadratic order of discriminant d.

Theorem (Najman, D.)

Let N, d one of the 4 pairs below and k be a field s.t. char $k \nmid N$ then $X_{0}(N)_{k}$ is 3-gonal \Longleftrightarrow there exists a morphism $\mathcal{O}_{d} \rightarrow k$.

N	38	44	53	61
d	-3	-8	-15	-4

Proof.

These $X_{0}(N)$ are the intersection of a quadric of discriminant d and a cubic in \mathbb{P}^{3}. Maps of degree 3 correspond to rulings of the quadric. The rulings are defined over $\mathbb{F}_{p^{2}}$ if p is inert in \mathcal{O}_{d}, and \mathbb{F}_{p} otherwise.

Thank you!

Bonus slide

Theorem (Anni, Assaf, Lorenzo Garcia (2022))

If a modular curve of the form $X_{H}(N)$ admits a smooth plane model over \mathbb{C}, then the degree of this model is at most 18 and not equal to 5,6 or 7 .

Theorem (Najman, D.)

Let $p \nmid N$ then none of the modular curves $X_{H}(N)$ admit a smooth plane model of degree 5 over $\overline{\mathbb{F}}_{p}$.

