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Scope

In this talk I will:

• Report on work on CM elliptic curves over number fields
(including almost two decades’ work of collaborators and me)

• With emphasis on recent joint work with F. Saia that solves
(stay tuned for fine print) the problem of computing torsion
subgroups of CM elliptic curves in fixed number field degree

• Discuss open problems you’re encouraged to work on.
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Analytic Study of CM Torsion

For d ∈ Z+, put

TCM(d) := sup {#E(F )[tors] | E/F is CM and [F : Q] = d}.

(In a pre-Merel world, not obvious this is always finite, but....)

(Silverberg 1988) TCM(d) = O((d log log d)2).
(Hindry-Silverman 1999) =⇒ TCM(d) = O(d log d).

(Actually, Silverberg showed expE(F )[tors] = O(d log log d).)

(Breuer 2010) TCM(d)� d log log d for infinitely many d.

Taking all this in...seems like Breuer’s bound is the truth.
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The Truth About Torsion

Theorem

a) (C-Pollack 2015) TCM(d) = O(d log log d).

b) (C-Pollack 2017) lim supd→∞
TCM(d)
d log log d = eγπ√

3
.

c) (Bourdon-C-Stankewicz ’17)
lim infd→∞ TCM(d) = 6 = TCM(1).

(Cf: T (d)�
√
d for all d! CM case is very different....)
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Low Degree CM Points on Modular Curves

(C-Genao-Pollack-Saia 2022) Give – good but not quite optimal
– upper and lower bounds on the least degree of a closed CM
point on modular curves X0(N), X1(N), X1(M,N).

Deduce: away from an explicit finite list of N or (M,N),
these curves have sporadic CM points.
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Galois Representations

• O be an order in an imaginary quadratic field K

• F ⊇ K a number field.

• For E/F O-CM elliptic curve, have ρ̂ : gF → Ô× ( GL2(Ẑ).

(Serre 1972) [Ô× : Im ρ̂] <∞

(Stevenhagen, Bourdon-C, Lozano-Robledo, Campagna-Pengo)
The index is bounded in terms of [F : Q] alone!

In fact: [Ô× : Im ρ̂] | #O×[F : K(j(E))] ≤ 3[F : Q].

Recent work of Alvaro, Campagna-Pengo, York goes farther.
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In fact: [Ô× : Im ρ̂] | #O×[F : K(j(E))] ≤ 3[F : Q].

Recent work of Alvaro, Campagna-Pengo, York goes farther.



Report on the
CM Case

Pete L. Clark

Algebraic Torsion

Problem: For d ∈ Z+, compute the complete (finite!) list of
torsion subgroups E(F )[tors] for [F : Q] = d and E/F CM.

Better: give the list separately for each CM j-invariant (up to
Galois conjugacy); equivalently for each order O; equivalently,
for each imaginary quadratic discriminant ∆ = ∆(O).

Theorem (Prior Work)

a) d ≤ 13 (Olson 1976, Clark-Corn-Rice-Stankewicz 2014)

b) d = p prime (Bourdon-Clark-Stankewicz 2017)

c) d odd (Bourdon-Pollack 2018)

d) d = 2p twice a prime (Bourdon-Chaos 2023)
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Introducing Clark-Saia

Recent work of C-Saia, building on work of Bourdon-C, gives a
complete classification of torsion subgroups of CM elliptic
curves in any number field d. More precisely:

• input List of all imaginary quadratic orders ∆ such that h∆

properly divides d.

• output For every CM j-invariant j with [Q(j) : Q] properly
dividing d, list of all possible subgroups E(F )[tors] with j(E)
Galois conjugate to j, [F : Q] = d.

(Why properly divides? Because otherwise F = Q(j(E)), and
then ϕ(#E(F )[tors]) ≤ 2 (Parish 1989). All six such groups
occur over Q (Olson 1976) and thus occur in every degree.)
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Details on Clark-Saia, Part 1

Fix M | N . Torsion problem is equivalent to understanding
degrees of closed CM points on modular curves X1(M,N).

We approach this via the corresponding problem on the
“isogeny version” X0(M,N), defined by the subgroup
H0(M,N) ={[

a b
0 d

]
∈ GL2(Z/NZ)

∣∣∣∣ b ≡ 0 mod M, a ≡ d mod M

}
.

task: for each ∆ and M | N , compute fiber of
X0(M,N)→ X(1) over the closed point J∆ (of degree h∆).
When ∆ < −4, these fibers are reduced, so are products of
number fields. Each number field is Q(Jn2∆) or K(Jn2∆) for
some n | N .
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Details on Clark-Saia, Part 2

Broad sketch of how we accomplish the main task:

1: Reduce to N = `a. (Mostly straightforward.)

2: For `-primary case, use isogeny volcanoes. With extant
theory, this would solve the problem working with K-schemes.
To work with Q-schemes, need to explicitly determine the
action of complex conjugation on isogeny volcanoes.

3: When ∆K < −4, this all goes very smoothly...and I
rederived some prior results to showcase the method.

4: When ∆K ∈ {−3,−4}, extra technical complications
everywhere. E.g. Step 1 is not straightforward. In some cases
there isn’t a well-defined action of complex conjugation
on isogeny volcano. Much less clean, but we got it.
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Details on Clark-Saia, Part 3

But why does the torsion problem X1(M,N) reduce to the
isogeny problem X0(M,N)? Because:

Theorem

All fibers of π : X1(M,N)→ X0(M,N) over closed CM
points are connected – i.e., π is a bijection on the CM-locus.

This is deduced from the largeness of the adelic Galois rep!

So: away from ∆ = −3,−4 the degree of every upstairs closed
point is deg π = max(ϕ(N)

2 , 1) times the degree of the
corresponding downstairs closed point.

Thus in passage from X0(M,N) to X1(M,N) we lose
information about what the residue fields are, but we retain the
number of such points and their degrees...which is (more than)
enough info to solve the torsion problem.
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What Remains

Problem

Record classification of CM torsion in degree d, for:

a) d ≤ 203 unconditionally.

b) d ≤ 18, 105 on GRH.

Problem

Complete the classification of sporadic CM points on X0(N),
X1(M,N). N.B.: What remains is not about CM points!
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More that Remains

Problem

Define an equivalence relation on Z+: d1 ∼CM d2 if the
classification of CM torsion in degrees d1 and d2 is the same
(same groups arise). E.g for all p ≥ 7, p ∼CM 1. Conjecture:

(i) For all d ∈ Z+, density([d]) > 0; and

(ii) Summing over all equivalence classes, we get density 1.

Bourdon-Pollack (2017) showed this for odd degrees. Showing
that [2] has positive density is open, though Bourdon-Chaos
(2023) show that it contains 2p for a density 1 set of primes p
conditionally on Schinzel’s Hypothesis H.


