Determining biellipticity for quotient modular curves

Francesc Bars (UAB)

Modular curves and Galois representations.
Zagreb, Hrvatska. 20 de setembre de 2023.

Determining biellipticity for quotient modular curves

Francesc Bars (UAB)

Modular curves and Galois representations.
Zagreb, Hrvatska. 20 de setembre de 2023.

Bielliptic curves

$X_{\mid K}$ smooth projective curve defined over number field K.

- g_{X} genus of X
- $X(K)$ the set of K-rational points
- \bar{K} a fix algebraic closure of K, and all L / K finite $L \subseteq \bar{K}$.
- By Faltings' theorem:

$$
|X(K)|=\infty \Rightarrow g_{X} \leq 1
$$

- The converse is not true: If $g \leq 1$, may happen $X(K)=\emptyset$.
- If $|X(K)|>0$ and $g_{X}=0$, then $|X(K)|=\infty$.
- If $|X(K)|>0$ and $g_{X}=1$, may happen $|X(K)|<\infty$.

Quadratic Points

Quadratic Points

Assume $g_{X}>1$, and denote

$$
\Gamma_{2}(X, K):=\cup_{[L: K] \leq 2} X(L) .
$$

Assume X has an involution u defined over K such that $g_{X_{u}} \leq 1$ where $X_{u}:=X / u$ (hyperelliptic or bielliptic curve over K, respectively).

$$
\text { If }\left|X_{u}(K)\right|=\infty \Rightarrow\left|\Gamma_{2}(X, K)\right|=\infty .
$$

The converse is true (Abramovich-Harris-Silverman).

A weak result is as follows

Theorem (Harris-Silverman)

Assume $g_{X} \geq 2$. Then $\exists L / K$ finite field extension with $\left|\Gamma_{2}(X, L)\right|=\infty$ if and only if C is hyperelliptic or bielliptic (i.e., have a degree 2 map over \bar{K}

$$
\varphi: X \rightarrow \mathbb{P}^{1} ; \text { or } E
$$

to the projective line or an elliptic curve)
For general global field k we have:
Proposition
Assume $g_{X} \geq 2$. Then,
(1) X_{k} is hyperelliptic if and only if there exists a (hyperelliptic) involution $w \in \operatorname{Aut}\left(X_{\bar{k}}\right)$, having exactly $2 g_{X}+2$ fixed points. In particular, if X_{k} is hyperelliptic, then w is unique, defined over a finite purely inseparable extension ℓ / k of k, and it is called the hyperelliptic involution of X_{k}.
(1) X_{k} is bielliptic if and only if there exists a (bielliptic) involution $\tilde{w} \in \operatorname{Aut}\left(X_{\bar{k}}\right)$, having $2 g_{X}-2$ fixed points. If X_{k} is bielliptic and $g_{X} \geq 6$, then there is an unique bielliptic involution, which belongs to the center of $\operatorname{Aut}\left(X_{\bar{k}}\right)$ and is defined over a finite purely inseparable extension ℓ of k.

Theorem (Grauert-Samuel)
Let X_{k} defined over a global field k of characteristic $p>0$, and assume that X_{k} is conservative. Then $C(k)$ is always a finite set except possible when $X_{k} \otimes_{k} k^{\text {sep }}$ is isomorphic to a smooth projective curve C^{\prime} defined over a finite field (isotrivial curve).

Theorem (Schweizer)
X_{k} defined over global field k of char $=p>0$, conservative over k. Assume $g_{X} \geq 3$ and $J a c\left(X_{k} \times_{k} \bar{k}\right)$ has no non-zero homomorphic images defined over $\overline{\mathbb{F}_{q=p^{n}}}$, then, there exist L / k finite such that $\left|\Gamma_{2}(X, L)\right|=\infty$ iff X is bielliptic or hyperelliptic.

Classical modular curves

T

- Are algebraic curves corresponding to certain moduli problem classifying elliptic curves with additional data.
- Over $\mathbb{C}, X_{\Gamma, \mathbb{C}}$ corresponds to a Riemann surface obtained by completing by the cusps the

$$
\mathbb{H} / \Gamma
$$

Γ is a modular subgroup of $S L_{2}(\mathbb{R})$ commensurable with $S L_{2}(\mathbb{Z})$.
One of the more known are $\Gamma(N) \leq \Gamma_{1}(N) \leq \Gamma_{\Delta}(N) \leq \Gamma_{0}(N) \leq S L_{2}(\mathbb{Z})$ corresponding to natural maps

$$
X(N)_{\mathbb{C}} \rightarrow X_{1}(N)_{\mathbb{C}} \rightarrow X_{\Delta}(N)_{\mathbb{C}} \rightarrow X_{0}(N)_{\mathbb{C}}
$$

and each of such modular curves are algebraic curves over \mathbb{Q} with good reduction for $p \nmid N$.

If X_{Γ} is bielliptic or hyperelliptic, exist an involution in $\operatorname{Aut}\left(X_{\Gamma}\right)$.
Always $\operatorname{Norm}_{S L_{2}(\mathbb{R})} \Gamma / \Gamma \leq \operatorname{Aut}\left(X_{\Gamma}\right)$
$X_{0}(N)$, for $N \neq 37,63,108$

$$
\operatorname{Norm}_{S L_{2}(\mathbb{R})} \Gamma_{0}(N) / \Gamma_{0}(N)=\operatorname{Aut}\left(X_{0}(N)\right),
$$

where

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0(\bmod N)\right\}
$$

and for each $d \mid N$ with $(N, N / d)=1$ we have $w_{d}=\frac{1}{\sqrt{d}}\left(\begin{array}{cc}d a & b \\ N c & d k\end{array}\right) \in S L_{2}(\mathbb{R})$ Atkin-Lehner involutins in $\operatorname{Aut}\left(X_{0}(N)\right)$ and

$$
B(N):=\left\langle\left\{w_{d}\right\}_{d \| N}\right\rangle \leq \operatorname{Aut}\left(X_{0}(N)\right)
$$

The bielliptic modular situations

For classical modular curves, has been determined all bielliptic curves between

- the curves $X_{0}(N)$ (B., 1999).
- the curves $X_{1}(N)$ (D. Jeon-C.H. Kim 2004)
- the curves $X(N)$ (D.Jeon -C.H. Kim, B.-Kontogeorgis-Xarles 2013)
- the intermediate curves $X_{\Delta}(N)$ (D. Jeon -C.H. Kim- A.Schweizer 2017).
- The modular curves $X_{0}^{+}\left(p^{n}\right)=X_{0}\left(p^{n}\right) / w_{p^{n}}$ (D. Jeon 2018).

In different works, we study which bielliptic curves appear in the families $X_{0}^{W_{N}}(N)=X_{0}(N) / W_{N}$, with $W_{N} \leq B(N)$ a non-trivial subgroup with $W_{N} \neq\left\langle w_{N}\right\rangle$.
The hyperelliptic $X_{0}^{W_{N}}(N)$ where determined by different works of Hasegawa and Hashimoto (~ 1997), and Hasegawa (~ 1999).

After finding the bielliptic curves (with few extra work), we could obtain the N such that $\left|\Gamma_{2}\left(X_{0}^{W_{N}}, \mathbb{Q}\right)\right|=\infty$.

Bielliptic and quadratic

Proposition (Accola-Landman,Harris-Silverman)
If X is bielliptic and $f: X \rightarrow X^{\prime}$ finite map then X^{\prime} is bielliptic or hyperelliptic or $g_{X^{\prime}} \leq 1$.

Theorem (Harris-Abramovich, available proof in Momose volume by B.)
Assume $g_{X} \geq 2$. Then $\left|\Gamma_{2}(X, K)\right|=\infty$ if and only if C is hyperelliptic over K or bielliptic over K where the elliptic quotient has positive K-rank.

Notation

- $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.
- $B(N)$ group inv. Atkin-Lehner, $n=\#$ primes $p\left|N,|B(N)|=2^{n}\right.$.
- $X_{0}^{*}(N)=X_{0}(N) / B(N), X_{0}^{W_{N}}(N)=X_{0}(N) / W_{N}$ with $W_{N} \leq B(N)$.
- g_{N}, g_{N}^{*} and $g_{N}^{W_{N}}$, genus of $X_{0}(N), X_{0}^{*}(N)$ and $X_{0}(N)^{W_{N}}$, respectively.
- $J_{0}(N)=\operatorname{Jac}\left(X_{0}(N)\right), J_{0}^{*}(N)=\operatorname{Jac}\left(X_{0}^{*}(N)\right)$ and $J_{0}^{W_{N}}(N)=\operatorname{Jac}\left(X_{0}^{W_{N}}(N)\right)$.
- New_{N} set of normalized new forms if $S_{2}\left(\Gamma_{0}(N)\right)^{\text {new }}$.
- $\mathrm{New}_{N}^{*}=\mathrm{New}_{N}^{B(N)}$ subset of New_{N} invariant by $B(N)$.
- For $f \in \operatorname{New}_{N}$,
- A_{f} is the a.v. associated by Shimura to f,
- $a_{m}(f)$ is the m-th Fourier coefficient of f,
- K_{f} the totally real number field $\mathbb{Q}\left(\left\{a_{m}(f)\right\}_{m}\right)$.
- ψ the Dedekind function.
- $\sigma_{0}(M)$ the number of positive divisors of M.
- A and B a. v. over $K, A \stackrel{K}{\sim} B$ mean isogeny over K.

Some facts about $X_{0}(N)$

We known that

- the map $S_{2}\left(\Gamma_{0}(N)\right) \cap K[[q]] \rightarrow \Omega_{X_{0}(N) / K}^{1}, h \mapsto h(q) d q / q$ is an \simeq.
- $J_{0}(N) \stackrel{\mathbb{Q}}{\sim} \prod_{M \mid N} \prod_{f \in \mathrm{New}_{M} \backslash G_{\mathbb{Q}}} A_{f}^{\sigma_{0}(N / M)}$.
- the set $\cup_{M \mid N} \cup_{f \in \operatorname{New}_{M}}\left\{f\left(q^{d}\right): d \mid N / M\right\}$ is a base of $S_{2}\left(\Gamma_{0}(N)\right)$.
- for a prime $p \nmid N$ and $f \in \mathrm{New}_{M}$, the characteristic polynomial of Frob ${ }_{p}$ acting in the Tate module of A_{f} is (by Eichler-Shimura)

$$
\prod_{: K_{f} \hookrightarrow \overline{\mathbb{Q}}} x^{2}-a_{p}\left(f^{\sigma}\right) x+p .
$$

- for $p \nmid N,\left|X_{0}(N)\left(\mathbb{F}_{p^{n}}\right)\right|=p^{n}+1-\sum_{i=1}^{2 g_{N}} \alpha_{i}^{n}$, where

$$
\prod_{i=1}^{2 g_{N}}\left(x-\alpha_{i}\right)=\prod_{M \mid N} \prod_{f \in \mathrm{New}_{M}}\left(x^{2}-a_{p}(f) x+p\right)^{\sigma_{0}(N / M)}
$$

$X_{0}^{*}(N)$, with N square-free

If N square-free:

- $J_{0}^{*}(N) \stackrel{\mathbb{Q}}{\sim} \prod_{M \mid N} \prod_{f \in \mathrm{New}_{M}^{*} \backslash G_{\mathbb{Q}}} A_{f}$.
- $\operatorname{End}_{\mathbb{Q}}\left(J_{0}^{*}(N)\right) \otimes \mathbb{Q}=\operatorname{End}_{\overline{\mathbb{Q}}}\left(J_{0}^{*}(N)\right) \otimes \mathbb{Q} \simeq \prod_{j} K_{j}$, with K_{j} totally real number fields.
- $\operatorname{Aut}\left(X_{0}^{*}(N)\right)=\operatorname{Aut}_{\mathbb{Q}}\left(X_{0}^{*}(N)\right) \hookrightarrow \prod_{j} K_{j} \Rightarrow \operatorname{Aut}\left(X_{0}^{*}(N)\right) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{m}$.

Let be E / \mathbb{Q} e.c. and $f_{E} \in \operatorname{New}_{M}$ the associated form to E. We say that (N, E) is bielliptic if E is \mathbb{Q}-isogeny to a bielliptic quotient of $X_{0}^{*}(N)$. Then, $\operatorname{cond}(E)=M \mid N, f_{E} \in \operatorname{New}_{M}^{*}$ and $\mathbb{Q} \sum_{d \mid N / M} d f_{E}\left(q^{d}\right) d q / q=$ pullback de $\Omega_{E / \mathbb{Q}}^{1}$.

Lemma

Assume (N, E) is bielliptic. For a prime $p \nmid N$, we have the following inequalities
(a) $\frac{\psi(N)}{2^{n}} \leq 12 \frac{2\left|E\left(\mathbb{F}_{p^{2}}\right)\right|-1}{p-1}$,
(b) $g_{N}^{*} \leq 2 \frac{\left|E\left(\mathbb{F}_{p^{2}}\right)\right|}{p-1}$,
(c) $g_{N} \leq 2^{n+1} \frac{\left|E\left(\mathbb{F}_{p^{2}}\right)\right|}{p-1}$.

Observe: $\left|E\left(\mathbb{F}_{p^{2}}\right)\right|=(p+1)^{2}-a_{p}\left(f_{E}\right)^{2} \leq(p+1)^{2}$.

Sieves, N square-free

With the lemma we obtain a finite set \mathcal{C} of possible N (Ogg argument).

- Second sieve (Cremona tables): Replace the set \mathcal{C} by the set \mathcal{P} of pairs (N, E), where $N \in \mathcal{C}$ and E / \mathbb{Q} is an e.c. such that $f_{E} \in \mathrm{New}_{M}^{*}$, for $M \mid N$. We apply the lemma with $\left|E\left(\mathbb{F}_{p^{2}}\right)\right|$.
- Third sieve (Cremona tables): If $N=M$, erase the pairs in \mathcal{P} such that the strong Weil parametrization of E does not divide 2^{n+1}.
- Fourth sieve: For $p \nmid N$, write

$$
P_{p}(n):=\bmod \left[\left(\sum_{d \mid n} \mu(n / d)\left|X_{0}^{*}(N)\left(\mathbb{F}_{p^{n}}\right)\right|\right) / n, 2\right]
$$

where $\bmod [r, 2] \in\{0,1\}$ (denotes the class modulo 2) and μ the Moebius function. If $X_{0}^{*}(N)$ has an involution u / \mathbb{Q}, then

$$
\sum_{n=0}^{k}(2 n+1) P_{p}(2 n+1) \leq 2 g_{N}^{*}+2, \forall k \geq 0
$$

We erase the pairs (N, E) when fails the inequality.

- Fifth sieve: erase the pairs such that

$$
\mid X_{0}^{*}(N)\left((\mathbb { F } _ { p ^ { n } }) | > 2 | E \left(\left(\mathbb{F}_{p^{n}}\right) \mid, \text { for some prime } p \nmid N .\right.\right.
$$

Hyperelliptic case, N square-free

Hasegawa, Hashimoto
$X_{0}^{*}(N)$ hyperellitic and N square-free $\Leftrightarrow g_{N}^{*}=2$.

Proposition
Assume N square-free and $g_{N}^{*}=2$. The curve $X_{0}^{*}(N)$ is bielliptic if, and only if, $J_{0}^{*}(N) \stackrel{\mathbb{Q}}{\sim} E_{1} \times E_{2}$ where $E_{1} E_{2}$ are bielliptic quotients. In such situation, if $\omega_{i} \in \Omega_{X_{0}^{*}(N) / \mathbb{Q}}^{1}, 1 \leq i \leq 2$, is the pulback of the regular differential of E_{i}, the functions $x=\omega_{1} / \omega_{2}$ and $y=d x / \omega_{2}$ satisfy the relation $y^{2}=P(x)$ with $P(t) \in \mathbb{Q}[t]$ of degree 6 . The automorphism group corresponds to $(x, y) \mapsto(\pm x, \pm y)$.

Proposition
For N square-free and $g_{N}^{*}=2 . X_{0}^{*}(N)$ is bielliptic if, and only if, $N \in\{106,122,129,158,166,215,390\}$. In such situation, $\operatorname{Aut}\left(X_{0}^{*}(N)\right)$ is the Klein group.

Non-hyperelliptic pairs, N square-free

After sieve, the remaining pairs (N, E), ordered by genus are, always $g_{N}^{*}>2$:

N	g_{N}^{*}	E
178	3	$89 a$
183	3	$61 a$
185	3	$37 a$
246	3	$82 a, 123 b$
249	3	$83 a, 249 b$
258	3	$43 a, 129 a$
282	3	$141 d$
290	3	$145 a$
303	3	$101 a$
310	3	$155 c$
318	3	$53 a, 106 b$
430	3	$43 a, 215 a$
455	3	$65 a$
462	3	$77 a, 154 a$
510	3	$102 a$

N	g_{N}^{*}	E
202	4	$101 a$
262	4	$131 a$
354	4	$118 a$
366	4	$61 a$,
		$122 a$
370	4	$185 c$,
		$370 a$
399	4	$57 a$
426	4	$142 b$
546	4	$91 a$
570	4	$57 a$,
		$190 b$,
		$285 b$

N	g_{N}^{*}	E
237	5	$79 a$
402	5	$201 c$
438	5	$219 a$
645	5	$129 a$ $215 a$
714	5	$238 b$
798	5	$399 a$
910	5	$91 a$,
		$455 a$
690	6	$138 a$
858	6	$143 a$,
		$286 c$
870	7	$145 a$,
		$290 a$

Petri's theorem

Fix an inmersion of K in \mathbb{C}. Denote by $K_{h}\left[x_{1}, \cdots, x_{g}\right]$ the homogenous polynomials of $K\left[x_{1}, \cdots, x_{g}\right]$.

Theorem of Petri (i)
Let X / K be a non-hyperelliptic curve with $g_{X}>2$ and $\omega_{1}, \cdots, \omega_{g}$ a basis of $\Omega_{X / K}^{1}$. The curve X is obtained by the common zeros of the polynomial in

$$
\mathcal{L}=\left\{Q \in K_{h}\left[x_{1}, \cdots, x_{g}\right]: Q\left(\omega_{1}, \cdots, \omega_{g}\right)=0\right\}
$$

Petri's theorem

For $i>1$, denote $\mathcal{L}_{i}=\{Q \in \mathcal{L}: \operatorname{deg} Q=i\}$, K-v.s.
Observe $\operatorname{dim} \mathcal{L}_{i} \leq \operatorname{dim} \mathcal{L}_{i+1}$, because $x_{j} \mathcal{L}_{i} \subseteq \mathcal{L}_{i+1} \forall j \leq g$.

Theorem of Petri

Let be X / K a non-hyperelliptic curve of $g_{X}>2$ and $\omega_{1}, \cdots, \omega_{g}$ a basis of $\Omega_{X / K}^{1}$. X corresponds to the common zeros of the polynomials in

$$
\mathcal{L}=\left\{Q \in K_{h}\left[x_{1}, \cdots, x_{g}\right]: Q\left(\omega_{1}, \cdots, \omega_{g}\right)=0\right\} .
$$

More precisely,

- If $g_{X}=3, \operatorname{dim} \mathcal{L}_{2}=\operatorname{dim} \mathcal{L}_{3}=0, \mathcal{L}_{4}=K \cdot Q\left(x_{1}, x_{2}, x_{3}\right) \neq\{0\}$ and, for $i \geq 4, \mathcal{L}_{i}$ are multiple of Q. The zeroes of \mathcal{L} are the one of Q (smooth plane quartic).
- If $g_{X}>3, \operatorname{dim} \mathcal{L}_{2}=(g-3)(g-2) / 2$ and the zeroes of \mathcal{L} are the ones in \mathcal{L}_{2} and \mathcal{L}_{3}. If X is not trigonal or is not a quintic smooth plane curve, the zeroes for all \mathcal{L} are the ones of \mathcal{L}_{2}.

If $g_{X}=4$ and X not hyperelliptic, its gonality is 3 . In this situation $\operatorname{dim} \mathcal{L}_{2}=1$ and $\operatorname{dim} \mathcal{L}_{3}=5$. Therefore, an quation for X is given by a polynomial $Q_{2} \in \mathcal{L}_{2}\left(Q_{2} \neq 0\right)$ and a polynomial of $Q_{3} \in \mathcal{L}_{3}$ which is not multiple of Q_{2}.

Non-hyperelliptic involutions

Let be $u \in \operatorname{Aut}_{K}(X)$ (X not hyperelliptic with $g_{X}>2$), then

$$
Q\left(u^{*}\left(\omega_{1}\right), \cdots, u^{*}\left(\omega_{g}\right)\right)=0, \quad \forall Q \in \mathcal{L} .
$$

If u is an involution and $\left\{\omega_{i}\right\}$ is a basis of eigenvectors, i.e. $u^{*}\left(\omega_{i}\right)=\varepsilon_{i} \omega_{i}$ with $\varepsilon_{i}= \pm 1$, then

$$
\begin{equation*}
Q\left(\varepsilon_{1} x_{1}, \cdots, \varepsilon_{g} x_{g}\right) \in \mathcal{L}, \quad \forall Q \in \mathcal{L} . \tag{1}
\end{equation*}
$$

Conversely, if the condition (1) is true, then the map

$$
u: \omega_{i} \mapsto \varepsilon_{i} \omega_{i} \quad \text { or } \quad v: \omega_{i} \mapsto-\varepsilon_{i} \omega_{i}, 1 \leq i \leq g, \text { is an involution of } X .
$$

For $X=X_{0}^{*}(N), J_{0}^{*}(N) \stackrel{\mathbb{Q}}{\sim} \prod A_{f_{i}}$. Because u acts in each $A_{f_{i}}$ by \pm Id, a basis of $\Omega_{X_{0}^{*}(N) / \mathbb{Q}}^{1}$ as union of basis of $\Omega_{A_{f_{i}} / \mathbb{Q}}^{1}$ are eigenvectors for u.

Proposition
Assume $X_{0}^{*}(N)$ is not hyperelliptic. Take $\omega_{1}, \cdots, \omega_{g_{N}^{*}}$ a basis of $\Omega_{X_{0}^{*}(N) / \mathbb{Q}}^{1}$ as previosly, such that ω_{1} is the differential associated to e.c. E. The pair (N, E) is bielliptic if, and only if,

$$
\begin{equation*}
Q\left(-x_{1}, x_{2}, \cdots, x_{g_{N}^{*}-1}, x_{g_{N}^{*}}\right) \in \mathcal{L}_{i} \forall Q \in \mathcal{L}_{i} \forall i \geq 2 \tag{2}
\end{equation*}
$$

Bielliptic involutions

The relation (2) is characterized by a X / \mathbb{Q} as follows

- If $g_{X}=3$ and $\mathcal{L}_{4}=\left\langle Q_{4}\left(x_{1}, x_{2}, x_{3}\right)\right\rangle$:

$$
Q\left(-x_{1}, x_{2}, x_{3}\right) \in \mathcal{L}, \forall Q \in \mathcal{L} \Leftrightarrow Q_{4}\left(x_{1}, x_{2}, x_{3}\right)=Q_{4}\left(-x_{1}, x_{2}, x_{3}\right)
$$

- If $g_{X}>3$

$$
\begin{gathered}
Q\left(-x_{1}, \cdots, x_{g}\right) \in \mathcal{L}_{2}, \forall Q \in \mathcal{L}_{2} \\
\mathbb{\Downarrow} \\
Q\left(x_{1}, \cdots, x_{g}\right)=\mathbb{Q}\left(-x_{1}, \cdots, x_{g}\right), \forall Q \in \mathcal{L}_{2}
\end{gathered}
$$

and

$$
\begin{gathered}
Q\left(-x_{1}, \cdots, x_{g}\right) \in \mathcal{L}_{3}, \forall Q \in \mathcal{L}_{3} \\
\Uparrow \\
Q\left(x_{1}, \cdots, x_{g}\right)-Q\left(-x_{1}, \cdots, x_{g}\right) \in x_{1} \cdot \mathcal{L}_{2}, \forall Q \in \mathcal{L}_{3} .
\end{gathered}
$$

Bielliptic curves by Petri's thm

Let us generalize the above criteria to determine when a non-hyperelliptic smooth curve X / K is bielliptic over K or not.

Proposition

Assume $\operatorname{Jac}(X) \stackrel{K}{\sim} E^{m} \times A$, with E an elliptic curve and A a.v. such that does not have E as a quotient defined over K. Let be $I_{g-m} \in M_{g-m}(K)$ identity matrix and $\left\{\omega_{i}\right\}$ a basis of $\Omega_{X / K}^{1}$ s.t. $\omega_{1}, \cdots, \omega_{m}$ and $\omega_{m+1}, \cdots, \omega_{g}$ are basis of the pullbacks of $\Omega_{E^{m / K}}^{1}$ and $\Omega_{A / K}^{1}$ resp. Then, the pair (X, E) is bielliptic over K if, and only if, exist a matrix $\mathcal{A} \in \mathrm{GL}_{m}(K)$ satisfying

$$
\begin{equation*}
Q\left(\left(-x_{1}, x_{2}, \cdots, x_{g}\right) \cdot \mathcal{B}\right) \in \mathcal{L}_{i}^{\prime} \forall Q \in \mathcal{L}_{i} \text { and } \forall i \geq 2 \tag{3}
\end{equation*}
$$

where \mathcal{B} is the matrix $\left(\begin{array}{c|c}\mathcal{A} & 0 \\ \hline 0 & I_{g-m}\end{array}\right) \in \mathrm{GL}_{g}(K)$ y
$\left.\mathcal{L}_{i}^{\prime}=\left\{Q\left(\left(x_{1}, x_{2}, \cdots, x_{g}\right) \cdot \mathcal{B}\right)\right): Q \in \mathcal{L}_{i}\right\}$.
Note: $\left(\omega_{1}^{\prime}, \cdots, \omega_{m}^{\prime}\right)=\mathcal{A}^{-1}\left(\omega_{1}, \cdots, \omega_{m}\right)$ is a basis by eigenvectors of u in $\Omega_{E^{m} / K}^{1}$, with $u\left(\omega_{1}^{\prime}\right)=\omega_{1}^{\prime}$ and $u\left(\omega_{j}^{\prime}\right)=-\omega_{j}^{\prime}$ for $j \neq 1$.

Bielliptic curves $X_{0}^{*}(N)$, and quadratic points, N square-free

Theorem

Let $N>1$ square-free integer. The modular curve $X_{0}^{*}(N)$ is bielliptic $\left(g_{N}^{*} \geq 2\right)$ if, and only if, N appears in the following table

g_{N}^{*}	N
2	$106,122,129,158,166,215,390$
3	$178,183,246,249,258,290,303,318,430,455,510$
4	370

For such values of $N, \operatorname{Aut}\left(X_{0}^{*}(N)\right)$ has order 2 if $g_{N}^{*}>2$ and is the Klein group when $g_{N}^{*}=2$.

Moreover, $\left|\Gamma_{2}\left(X_{0}^{*}(N), \mathbb{Q}\right)\right|=\infty$ if, and only if, N is the previous list or in

$$
\begin{aligned}
& \{67,73,85,93,103,106,107,115,122,129,133,134,146,154,158,161, \\
& 165,166,167,170,177,178,183,186,191,205,206,209,213,215,221 \\
& 230,246,249,255,258,266,285,286,287,290,299,303,318,330,357 \\
& 370,390,430,455,510\}
\end{aligned}
$$

N non square-free. Preliminary steps

Lemma [3]

Let p be a prime. If for an integer $k \geq 2, X_{0}^{*}\left(p^{k} \cdot M\right)$ is bielliptic, then $X_{0}^{*}\left(p^{k-2} \cdot M\right)$ is hyperelliptic, bielliptic or has genus ≤ 1.

Corollary [3]
Let $N>1$ s.t. $g_{N}^{*} \geq 2$. Let be M the biggest square-free integer s.t. $M \mid N$ and $\operatorname{val}_{p}(N)$ is odd for each prime $p \mid M$. If $X_{0}^{*}(N)$ is bielliptic, then $X_{0}^{*}(M)$ is bielliptic or $g_{M}^{*} \leq 2$.

Proposition [Daeyeol Jeon]
Let be $N=p^{k}$ with p prime, $k>1$ and $g_{N}^{*} \geq 2$. Then, $X_{0}^{*}(N)$ is bielliptic iff $N=121=11^{2}$, or $N=128=2^{7}\left(g_{121}^{*}=2\right.$ and $\left.g_{128}^{*}=3\right)$.

Lemma [2]
Let be (N, E) bielliptic over \mathbb{Q}. For a prime $p \nmid N$, the following results are satisfied:
(a) $\frac{\psi(N)}{2^{n}} \leq 12 \frac{2\left|E\left(\mathbb{F}_{p^{2}}\right)\right|-1}{p-1}$,
(b) $g_{N}^{*} \leq 2 \frac{\left|E\left(\mathbb{F}_{p^{2}}\right)\right|}{p-1}$,
(c) $g_{N} \leq 2^{n+1} \frac{\left|E\left(\mathbb{F}_{p^{2}}\right)\right|}{p-1}$.

N non-square free, $J_{0}^{*}(N) / \mathbb{Q}$ and $\Omega^{1}\left(X_{0}^{*}(N)\right)$

- One main difference with N square-free is on the decomposition of $J_{0}^{*}(N)$ over \mathbb{Q}.

For N general, $M \mid N$ and $f \in \operatorname{New}_{M}$, write $H_{f}=\left\langle f\left(q^{d}\right): d \mid N / N\right\rangle$.

- N square-free and $H_{f}^{B(N)} \neq\{0\} \Leftrightarrow f \in \mathrm{New}_{M}^{*}$. In this situation, $\operatorname{dim} H_{f}^{B(N)}=1$ and

$$
H_{f}^{B(N)}=\left\langle\sum_{d \mid N / M} w_{d}(f(q))\right\rangle=\left\langle\sum_{d \mid N / M} d f\left(q^{d}\right)\right\rangle
$$

- If N is not square-free and $H_{f}^{B(N)} \neq\{0\}$, may occur $n_{f}:=\operatorname{dim} H_{f}^{B(N)}>1$.

Thus in the decomposition of $J_{0}^{*}(N)$,

$$
J_{0}^{*}(N) \stackrel{\mathbb{Q}}{\sim} \prod_{M \mid N} \prod_{f \in \operatorname{New}_{M} / G_{\mathbb{Q}}} A_{f}^{n_{f}}
$$

may appear $n_{f}>1$. We need to determine a basis of $H_{f}^{B(N)}\left(\forall f \in \mathrm{New}_{M}\right.$ and $\left.\forall M \mid N\right)$ to determine a basis of $\Omega^{1}\left(X_{0}^{*}(N)\right)$ (to apply Petri's theorem), main source Atkin-Lehner paper "Hecke operators...".

N not square-free, $J_{0}^{*}(N) / \mathbb{Q}$ and $\Omega^{1}\left(X_{0}^{*}(N)\right)$

For an integer $d>0, B_{d}$ denote the operator

$$
B_{d}: S_{2}\left(\Gamma _ { 0 } (M) \rightarrow S _ { 2 } \left(\Gamma_{0}(M \cdot d), \quad f \mapsto f\left(q^{d}\right)\right.\right.
$$

Proposition [3]

For a prime $p \nmid M$ and $i \geq 0$, let be $f \in S_{2}\left(\Gamma_{0}\left(p^{i} \cdot M\right)\right)^{B(M)}$ s. t. $w_{p^{i}}(f)=\varepsilon \cdot f(\varepsilon=1$ if $i=0$). For $k>i$, let be \mathcal{S}_{f} the v.s. of $S_{2}\left(\Gamma_{0}\left(p^{k} \cdot M\right)\right)$ generated by the $k-i+1 \mathrm{I}$. i. $\left\{f, B_{p}(f), \cdots, B_{p}^{k-i}(f)\right\}$. Then,
(i) The following modular forms are a basis of \mathcal{S}_{f} :

$$
g_{j}=\left(1+p B_{p}\right)^{k-i-j}\left(1-p B_{p}\right)^{j} f, \quad 0 \leq j \leq k-i
$$

and eigenvector for $w_{p^{k}}: w_{p^{k}}\left(g_{j}\right)=(-1)^{j} \varepsilon g_{j}$.
(ii) The dimension s_{f} of the v.s. $\mathcal{S}_{f}^{B\left(p^{k} \cdot M\right)}$ is

$$
s_{f}=\left\{\begin{array}{cc}
\frac{k-i+1}{2} & \text { if } k-i \text { is odd } \\
\frac{k-i+1+\varepsilon}{2} & \text { if } k-i \text { is even. }
\end{array}\right.
$$

Bielliptic curves, may be not over \mathbb{Q}.

- The other main difference when N non-square free is $\operatorname{End}_{\mathbb{Q}}\left(J_{0}^{*}(N)\right) \neq \operatorname{End}_{\overline{\mathbb{Q}}}\left(J_{0}^{*}(N)\right)$.

Lemma [Silverman-Harris]
Let be X_{K} with $g_{X} \geq 6$. If X is bielliptic, then there exist an unique bielliptic involution and defined over K.

Lemma [Baker,González-Jiménez,González,Poonen=BGGP]
Let A be an a.v. defined over \mathbb{Q} s.t. $A \stackrel{\mathbb{Q}}{\sim} \prod_{i=1}^{m} A_{f_{i}}^{n_{i}}$ for some $f_{i} \in \operatorname{New}_{N_{i}}$, with
$A_{f_{i}}{ }^{\mathbb{Q}} \sim A_{f_{j}}$ for $i \neq j$. Then $\operatorname{End}(A)=\operatorname{End}_{\mathbb{Q}}(A)$ iff for all quadratic Dirichlet character $\chi, f_{i} \otimes \chi \neq f_{j}^{\sigma}$ for all $\sigma \in G_{\mathbb{Q}}$ and for all i and j.

Lemma [Pyle]
Let be $f \in \operatorname{New}_{M}$ without CM and s.t. $\operatorname{dim} A_{f}>1$. If exists a prime p s.t. $a_{p}(f)^{2} \notin \mathbb{Z}$, then A_{f} does not have an elliptic quotient over $\overline{\mathbb{Q}}$.

Lemma [BGGP]
Let be $f \in \operatorname{New}_{M}$ and χ_{D} the quadratic character associated to $K=\mathbb{Q}(\sqrt{D})$. Exists an isogeny between A_{f} and $A_{f \otimes \chi_{D}}$ defined over K.

N non square-free. Sieves

- By a morphism $X_{0}^{*}(N=M L) \rightarrow X_{0}^{*}(M)$ with M square-free (and L with certain properties) we are reduced to certain values of N.
- When the pair (N, E) is studied over \mathbb{Q} (the general case if $g_{N}^{*} \geq 6$), we apply the inequality lemma counting over finite fields and similar sieves than when N was square-free,
execpt than the pairs (N, E) are now $f_{E} \in \mathrm{New}_{M}$ and

$$
n_{f_{E}}=\operatorname{dim}\left\langle f_{E}\left(q^{d}\right): d \mid N / M\right\rangle^{B(N)} \geq 1
$$

We determined list of N with $2 \leq g_{N}^{*} \leq 5$.

- For $g_{N}^{*} \leq 5$, only appears possible pairs (N, E) with E / \mathbb{Q} but with involution defined over a quadratic field extension K^{\prime} (associated to a Dirichlet character χ).
- When $8 \mid N$ or $9 \| N$ there are involutions coming from the normalizer of $\Gamma_{0}^{*}(N)$.

g_{N}^{*}	N
2	$88,104,112,116,135,153,168,180,184,198,204,276,284,380$
3	$136,144,152,162,164,171,189,196,207,234,236,240,245,248,252$, $270,294,312,315,348,420,476$.
4	$148,160,172,176,200,224,225,228,242,260,264,275,280,300,306,308$, $342,350$.
5	$192,208,212,216,316,364,376,378,396,414,440,444,495,572,630$.

Example $g_{N}^{*} \leq 5: X_{0}^{*}(160)$, $g_{160}^{*}=4$

$X_{0}^{*}(160)$ is not-hyperelliptic. The decomposition of $J_{0}^{*}(160)$ is $J_{0}^{*}(160) \stackrel{\mathbb{Q}}{\sim} A_{f_{1}}^{2} \prod_{i=3}^{4} A_{f_{i}}$ with $A_{f_{1}} \stackrel{\mathbb{Q}}{\sim} E 20 a, A_{f_{3}} \stackrel{\mathbb{Q}}{\sim} E 80 b, A_{f_{4}} \stackrel{\mathbb{Q}}{\sim} E 160 a$, $f_{1} \in \operatorname{New}_{20}^{w_{5}}, f_{3} \in \mathrm{New}_{80}^{w_{5}}, f_{4} \in \mathrm{New}_{160}^{*}$ and $f_{3}=f_{1} \otimes \chi_{-1}$.

Because
$\left(1-2 B_{2}\right)\left(1+2 B_{2}\right)^{2}=1+2 B_{2}-4 B_{2}^{2}-8 B_{2}^{3},\left(1-2 B_{2}\right)^{3}=1-6 B_{2}+12 B_{2}^{2}-8 B_{2}^{3}$,
A basis of $\Omega_{X_{0}^{*}(160) / \mathbb{Q}}^{1}: \omega_{i}=h_{i}(q) d q / q, 1 \leq i \leq 4$ with

$$
\begin{array}{rr}
h_{1}(q)= & f_{1}(q)+2 f_{1}\left(q^{2}\right)-4 f_{1}\left(q^{4}\right)-8 f_{1}\left(q^{8}\right), \\
h_{2}(q)= & f_{1}(q)-6 f_{1}\left(q^{2}\right)+12 f_{1}\left(q^{4}\right)-8 f_{1}\left(q^{8}\right), \\
h_{3}(q)= & f_{3}-2 f_{3}\left(q^{2}\right), \\
h_{4}(q)= & f_{4}(q) .
\end{array}
$$

Recall $\operatorname{dim} \mathcal{L}_{2}=1, \operatorname{dim} \mathcal{L}_{3}=5$.
Computing $Q_{i}(x, y, z, t) \in \mathcal{L}_{i}$ with $Q_{i}\left(h_{1}, h_{2}, h_{3}, h_{4}\right)=0, i=2,3$:

Example $g_{N}^{*} \leq 5: X_{0}^{*}(160)$, $g_{160}^{*}=4$

$X_{0}^{*}(160)$ is not-hyperelliptic. The decomposition of $J_{0}^{*}(160)$ is $J_{0}^{*}(160) \stackrel{\mathbb{Q}}{\sim} A_{f_{1}}^{2} \prod_{i=3}^{4} A_{f_{i}}$ with $A_{f_{1}} \stackrel{\mathbb{Q}}{\sim} E 20 a, A_{f_{3}} \stackrel{\mathbb{Q}}{\sim} E 80 b, A_{f_{4}} \stackrel{\mathbb{Q}}{\sim} E 160 a$, $f_{1} \in \operatorname{New}_{20}^{w_{5}}, f_{3} \in \mathrm{New}_{80}^{w_{5}}, f_{4} \in \mathrm{New}_{160}^{*}$ and $f_{3}=f_{1} \otimes \chi_{-1}$.

Because
$\left(1-2 B_{2}\right)\left(1+2 B_{2}\right)^{2}=1+2 B_{2}-4 B_{2}^{2}-8 B_{2}^{3},\left(1-2 B_{2}\right)^{3}=1-6 B_{2}+12 B_{2}^{2}-8 B_{2}^{3}$,
A basis of $\Omega_{X_{0}^{*}(160) / \mathbb{Q}}^{1}: \omega_{i}=h_{i}(q) d q / q, 1 \leq i \leq 4$ with

$$
\begin{array}{rr}
h_{1}(q)= & f_{1}(q)+2 f_{1}\left(q^{2}\right)-4 f_{1}\left(q^{4}\right)-8 f_{1}\left(q^{8}\right), \\
h_{2}(q)= & f_{1}(q)-6 f_{1}\left(q^{2}\right)+12 f_{1}\left(q^{4}\right)-8 f_{1}\left(q^{8}\right), \\
h_{3}(q)= & f_{3}-2 f_{3}\left(q^{2}\right), \\
h_{4}(q)= & f_{4}(q) .
\end{array}
$$

Recall $\operatorname{dim} \mathcal{L}_{2}=1, \operatorname{dim} \mathcal{L}_{3}=5$.
Computing $Q_{i}(x, y, z, t) \in \mathcal{L}_{i}$ with $Q_{i}\left(h_{1}, h_{2}, h_{3}, h_{4}\right)=0, i=2,3$:

$$
Q_{2}=-48 t^{2}+8 t x+3 x^{2}-8 t y+6 x y-y^{2}+36 x z+12 y z-8 z^{2} .
$$

$Q_{3}=20 t^{2} x-12 t x^{2}-3 x^{3}-20 t^{2} y-4 t y^{2}+3 x y^{2}-9 x^{2} z+6 x y z+3 y^{2} z+16 t z^{2}+6 x z^{2}-6 y z^{2}$

$X_{0}^{*}(160)$ is not bielliptic over \mathbb{Q}

The pairs $(160, E 80 b)$ and $(160, E 160 a)$ need to study if they are bielliptic or not over \mathbb{Q}.
They are not because Q_{2} is not even in z, also not in t.
The pair $(160, E 20 a)$ should be bielliptic over \mathbb{Q} iff exist $\mathcal{A}=\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{Q})$ such that the polynomials

$$
R_{2}:=Q_{2}\left(a_{1} x+a_{2} y, b_{1} x+b_{2} y, z, t\right), \quad R_{3}:=Q_{3}\left(a_{1} x+a_{2} y, b_{1} x+b_{2} y, z, t\right)
$$

satisfy

$$
R_{2} \text { is even with } x \text { and } R_{3}(x, y, z, t)-R_{3}(-x, y, z, t)=\lambda x R_{2} \text {, for } \lambda \in \mathbb{Q} \text {. }
$$

We can consider the situations with $a_{1}=0$ and $a_{1}=1$, to conclude
Not exist matrix \mathcal{A} making R_{2} even with respect x.
$X_{0}^{*}(160)$ is not bielliptic over \mathbb{Q}.

$X_{0}^{*}(160)$ is bielliptic over

The pair $(160, E)$ may only become bielliptic over $K^{\prime}=\mathbb{Q}(i)$, with $E \stackrel{K^{\prime}}{\sim} E 20 a$.
This will happen iff exist $\mathcal{A}=\left(\begin{array}{ccc}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right) \in \mathrm{GL}_{3}(K)$ s.t.

$$
\begin{aligned}
R_{2} & :=Q_{2}\left(a_{1} x+a_{2} y+a_{3} z, b_{1} x+b_{2} y+b_{3} z, c_{1} x+c_{2} y+c_{3} z, t\right) \\
R_{3} & :=Q_{3}\left(a_{1} x+a_{2} y+a_{3} z, b_{1} x+b_{2} y+b_{3} z, c_{1} x+c_{2} y+c_{3} z, t\right)
\end{aligned}
$$

R_{2} is even in x and $R_{2} \mid\left(R_{3}(x, y, z, t)-R_{3}(-x, y, z, t)\right)$.
Take $\mathcal{A}=\left(\begin{array}{rrr}i & i & 1 \\ 1 & -3 & 0 \\ 0 & -4 i & 1\end{array}\right)$, and we obtain

$$
\begin{array}{rr}
R_{2}= & 6 t^{2}+(2-6 i) x^{2}-4 t y+3 y^{2}-4 i t z+6 i y z-(1-6 i) z^{2} \\
R_{3}= & 4 t x^{2}+10 t^{2} y+(6-6 i) x^{2} y-6 t y^{2}+3 y^{3}+10 i t^{2} z+(6+6 i) x^{2} z \\
& -12 i t y z+9 i y^{2} z+10 t z^{2}-(3-6 i) y z^{2}-(6-3 i) z^{3}
\end{array}
$$

Now R_{2} and R_{3} are even in x, therefore $X_{0}^{*}(160)$ is bielliptic over $\mathbb{Q}(i)$.

Remaining pairs (N, E), with $g_{N}^{*}>5$

g_{N}^{*}	(N, E)
6	$(244,61 a),(272,34 a),(332,83 a),(332,166 a),(336,42 a),(336,112 a)$,
	$(564,94 a),(620,62 a),(780,65 a),(780,130 c)$
7	$(320,32 a),(324,27 a),(360,20 a),(360,30 a),(450,15 a),(450,75 b)$,
	$(456,57 a),(456,76 a),(456,152 a),(492,123 b),(504,21 a),(504,36 a)$, $(504,42 a),(550,55 a),(550,275 a),(550,550 a),(558,558 a),(636,53 a)$, $(660,110 b),(924,77 a),(924,462 a)$
8	$(408,102 a),(468,26 b),(468,234 b),(468,234 c),(480,20 a),(480,24 a)$,
	$(480,80 b),(480,160 a),(540,45 a),(540,54 b),(990,66 a),(990,99 a)$,
	$(1020,102 a)$
9	$(560,56 a),(560,70 a),(560,280 a),(1140,190 b),(1140,285 b)$
10	$(840,20 a),(840,140 b),(840,210 d),(1050,175 b)$
11	$(672,112 c),(672,224 a)$
13	$(1260,21 a),(1260,70 a),(1260,90 b),(1260,210 d)$

Example $g_{N}^{*}>5: X_{0}^{*}(558), g_{558}^{*}=7$

$X_{0}^{*}(558)$ is not-hyperelliptic, not trigonal and $\operatorname{dim} \mathcal{L}_{2}=10$. The decomposition of $J_{0}^{*}(558) / \mathbb{Q}$:
$\prod_{i=1}^{3} A_{f_{i}} \times A_{f_{5}}, A_{f_{1}} \stackrel{\mathbb{Q}}{\sim} 186 c, A_{f_{2}} \stackrel{\mathbb{Q}}{\sim} E 558 a, f_{1} \in \operatorname{New}_{186}^{B(62)}, f_{2} \in \mathrm{New}_{558}^{*}$, $f_{3} \in \mathrm{New}_{93}^{*}, \operatorname{dim} A_{f_{3}}=2, f_{5} \in \mathrm{New}_{93}^{B(31)}, \operatorname{dim} A_{f_{5}}=3$, $g_{1}=f_{1}, g_{2}=f_{2},\left\{g_{3}, g_{4}\right\}$ y $\left\{g_{5}, g_{6}, g_{7}\right\}$ basis of $\left\langle f_{3}^{\sigma}: \sigma \in G_{\mathbb{Q}}\right\rangle \cap \mathbb{Z}[[q]]$ and $\left\langle f_{5}^{\sigma}: \sigma \in G_{\mathbb{Q}}\right\rangle \cap \mathbb{Z}[[q]]$ resp.

Take $\left(1+2 B_{2}\right)\left(1 \pm 3 B_{3}\right)=1+2 B_{2} \pm B_{3} \pm 6 B_{6}$, a basis of $\Omega_{X_{0}^{*}(558) / \mathbb{Q}}^{1}: \omega_{i}=h_{i}(q) d q / q, 1 \leq i \leq 7$ with

$$
\begin{array}{lr}
h_{1}(q)= & f_{1}(q)-3 f_{1}\left(q^{3}\right), \\
h_{2}(q)= & f_{2}(q), \\
h_{3}(q)= & g_{3}(q)+2 g_{3}\left(q^{2}\right)+3 g_{3}\left(q^{3}\right)+6 g_{3}\left(q^{6}\right), \\
h_{4}(q)= & g_{4}(q)+2 g_{4}\left(q^{2}\right)+3 g_{4}\left(q^{3}\right)+6 g_{4}\left(q^{6}\right), \\
h_{5}(q)= & g_{5}(q)+2 g_{5}\left(q^{2}\right)-3 g_{5}\left(q^{3}\right)-6 g_{5}\left(q^{6}\right), \\
h_{6}(q)= & g_{6}(q)+2 g_{6}\left(q^{2}\right)-3 g_{6}\left(q^{3}\right)-6 g_{6}\left(q^{6}\right), \\
h_{7}(q)= & g_{7}(q)+2 g_{7}\left(q^{2}\right)-3 g_{7}\left(q^{3}\right)-6 g_{7}\left(q^{6}\right) . .
\end{array}
$$

Example $g_{N}^{*}>5: X_{0}^{*}(558), g_{558}^{*}=7$

Let be $Q \in \mathbb{Q}_{h}\left[x_{1}, \cdots, x_{7}\right]$ of degree 2 (28 coefficients):

$$
\begin{aligned}
& a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{3}^{2}+a_{4} x_{4}^{2}+a_{5} x_{5}^{2}+a_{6} x_{6}^{2}+a_{7} x_{7}^{2}+a_{8} x_{1} x_{2}+a_{9} x_{1} x_{3}+ \\
& a_{10} x_{1} x_{4}+a_{11} x_{1} x_{5}+a_{12} x_{1} x_{6}+a_{13} x_{1} x_{7}+a_{14} x_{2} x_{3}+a_{15} x_{2} x_{4}+ \\
& a_{16} x_{2} x_{5}+a_{17} x_{2} x_{6}+a_{18} x_{2} x_{7}+a_{19} x_{3} x_{4}+a_{20} x_{3} x_{5}+a_{21} x_{3} x_{6}+ \\
& a_{22} x_{3} x_{7}+a_{23} x_{4} x_{5}+a_{24} x_{4} x_{6}+a_{25} x_{4} x_{7}+a_{26} x_{5} x_{6}+a_{27} x_{5} x_{7}+a_{28} x_{6} x_{7}
\end{aligned}
$$

$Q\left(h_{1}, \cdots, h_{7}\right)=0$, we obtain a_{1}, \cdots, a_{28} as linear combination of (recall $\mathcal{L}_{2}=10$) $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{9}, a_{10}, a_{11}$.

More concretely one obtains, $a_{8}=a_{14}=a_{15}=a_{16}=a_{17}=a_{18}=0$.
Therefore, $Q\left(x_{1}, \cdots, x_{7}\right)$ is even in the variable $x_{2} \forall Q \in \mathcal{L}_{2}$.
$X_{0}^{*}(558)$ is bielliptic over \mathbb{Q} and the class of \mathbb{Q}-isogeny of the bielliptic quotient is $E 558 a$.

Results, N non square-free

Theorem[B-González][3]

Let be $N>1$ a non-square free integer with $g_{N}^{*} \geq 2$. Then,

- The curve $X_{0}^{*}(N)$ is bielliptic over $\mathbb{Q} \Leftrightarrow N$ appears in the next table

g_{N}^{*}	N
2	$88,112,116,121,153,180,184,198,204,276,284,380$
3	$128,144,152,164,189,196,207,234,236,240,245,248,252$,
	$294,312,315,348,420,476$
4	$148,172,200,224,225,228,242,260,264,275,280,300,306,342$
5	$364,444,495$
7	558

The curve $X_{0}^{*}(N)$ is bielliptic over $\overline{\mathbb{Q}}$, but not over $\mathbb{Q} \Leftrightarrow N=160$.

- $\Gamma_{2}\left(X_{0}^{*}(N), \mathbb{Q}\right)=\infty \Leftrightarrow N$ appears in the following list
$88,104,112,116,117,121,125,128,135,136,147,148,152,153,164$
$168,171,172,176,180,184,198,204,207,224,225,228,234,236,240$
$248,252,260,264,276,279,280,284,312,315,342,348,364,380,420$
444, 476, 495, 558.

Results for $X_{0}^{W_{N}}(N)$, with N square-free

Theorem [B.-González-Kamel]
Let $N>1$ be square-free integer. Suppose that the genus of $X_{0}(N) / W_{N}$ is ≥ 2 for a non-trivial subgroupl W_{N} of $B(N)$ not equal to $\left\langle w_{N}\right\rangle$. The quotient modular curve $X_{0}(N) / W_{N}$ is bielliptic if and only if, exists $v \in B(N) \backslash W_{N}$ satisfying that the genus of $X_{0}(N) /\left\langle W_{N}, v\right\rangle$ is 1 , except for the following quotient bielliptic modular curves of genus 4: $X_{0}(154) /\left\langle w_{2}, w_{77}\right\rangle, X_{0}(285) /\left\langle w_{3}, w_{95}\right\rangle$ and $X_{0}(286) /\left\langle w_{2}, w_{143}\right\rangle$.

$$
\operatorname{End}_{\overline{\mathbb{Q}}}\left(J_{0}^{W_{N}}(N)\right)=\operatorname{End}_{\mathbb{Q}}\left(J_{0}^{W_{N}}(N)\right)
$$

$J_{0}(N)^{W_{N}} \sim A_{i}^{n_{i}} \times \ldots$ with $n_{i} \geq 2$.

Results, $X_{0}^{W_{N}}(N), N$ non square-free

Theorem [B-Kamel-Schweizer]

Let $N>1$ be a no square-free integer. Assume that the genus of $X_{0}(N) / W_{N}$ is ≥ 2 for a non-trivial subgroup W_{N} of $B(N)$ not equal to $\left\langle w_{N}\right\rangle$. The quotient curve $X_{0}(N) / W_{N}$, denoted as a pair $\left(N, W_{N}\right)$ is bielliptic if and only if appears in the table bellow:
(1) It is a pair $\left(N, W_{N}\right)$ with $\left|W_{N}\right|=2$ and N in the set

$$
\{40,48,52,63,68,72,75,76,80,96,98,99,100,108,124,188\}
$$

or is a pair $\left(N, W_{N}\right)$ with $\left|W_{N}\right|=4$ and N in the set

$$
\{84,90,120,126,132,140,150,156,220 .\}
$$

All such quotient modular curves are bielliptic over \mathbb{Q} with a elliptic quotient given by $X_{0}^{*}(N)$, which has genus 1 ,
(2) or is one of the following 29 pairs, listed by its genus:

Genus	$\left(N, W_{N}\right)$
2	$\left(44,\left\langle w_{4}\right\rangle\right),\left(60,\left\langle w_{20}\right\rangle\right),\left(60,\left\langle w_{4}, w_{3}\right\rangle\right)$
3	$\left(56,\left\langle w_{8}\right\rangle\right),\left(60,\left\langle w_{4}\right\rangle\right)$
4	$\left(60,\left\langle w_{3}\right\rangle\right),\left(60,\left\langle w_{5}\right\rangle\right),\left(112,\left\langle w_{7}\right\rangle\right),\left(168,\left\langle w_{3}, w_{56}\right\rangle\right)$
5	$\left(84,\left\langle w_{4}\right\rangle\right),\left(88,\left\langle w_{11}\right\rangle\right),\left(90,\left\langle w_{9}\right\rangle\right)$
	$\left(117,\left\langle w_{9}\right\rangle\right),\left(120,\left\langle w_{15}\right\rangle\right),\left(126,\left\langle w_{63}\right\rangle\right),\left(168,\left\langle w_{8}, w_{7}\right\rangle\right)$,
	$\left(168,\left\langle w_{7}, w_{24}\right\rangle\right),\left(180,\left\langle w_{4}, w_{9}\right\rangle\right),\left(184,\left\langle w_{23}\right\rangle\right),\left(252,\left\langle w_{4}, w_{63}\right\rangle\right)$
6	$\left(104,\left\langle w_{8}\right\rangle\right),\left(168,\left\langle w_{8}, w_{3}\right\rangle\right)$
7	$\left(120,\left\langle w_{24}\right\rangle\right),\left(136,\left\langle w_{8}\right\rangle\right),\left(252,\left\langle w_{9}, w_{7}\right\rangle\right)$
9	$\left(126,\left\langle w_{9}\right\rangle\right),\left(171,\left\langle w_{9}\right\rangle\right),\left(252,\left\langle w_{4}, w_{9}\right\rangle\right)$
10	$\left(176,\left\langle w_{16}\right\rangle\right)$

Steps for the determination if $X_{0}^{W_{N}}(N)$ is bielliptic or not

Some "steps":

- Consider the morphism $X_{0}^{W_{N}} \rightarrow X_{0}^{*}(N)$, to reduce to the set N where $X_{0}^{*}(N)$ is bielliptic, hyperelliptic or has genus ≤ 1.
- Break the set N by the number of prime numbers that divides N (only 2,3 or 4 primes).
- Ad-hoc modifications of the programme for $X_{0}^{*}(N)$ to obtain Jacobian decomposition, in order to apply for $X_{0}^{W_{N}}(N)$.
- Sieves using the number of fixed points by no Atkin-Lehner involutions, when 4 or 9 divides N.

Further sieves

Castellnuovo, Unramified Criterium

Let be $\phi: X \rightarrow Y$ a degree d morphism. If X has a bielliptic involution v, them

$$
g(X) \leq d g(Y)+d+1
$$

or the morphism ϕ factorizes through X / v.
In particular: An hyperelliptic curve o genus $g \geq 4$ is not bielliptic. A trigonal curve of genus >4 is not bielliptic. A curve of genus $g \geq 6$ has at most a bielliptic involution.
Let be w an involution of X with more than 8 fixed points. Then, or w is a bielliptic involution or X is not bielliptic.
Let be X a genus g curve with a bielliptic involution v and let be G a subgroup of Aut (X) such that $Y=X / G$ has genus $h \geq 2$.
(a) If the map $\phi: X \rightarrow Y$ is ramified, i.e. if $g-1>|G|(h-1)$, and $g \geq 6$, then Y is hyperelliptic and v induces the hyperelliptic involution in Y.
(b) (Unramified covering criteria) If Y is not hyperelliptic, then should be bielliptic and the map $\phi: X \rightarrow Y$ should be unramified, i.e.

Fixed number of points by involutions

Searching bielliptic involutions

Let be G a subgroup of $\operatorname{Aut}\left(X_{0}(N)\right)$ such that any non-trivial element is an involution. Then the fixed points of such involutions are disjoint and the genus of $X_{0}(N) / G$ follows by

$$
|G|\left(2 g\left(X_{0}(N) / G\right)-2\right)+\sum_{w \in G} \#\left(w, X_{0}(N)\right)=2 g\left(X_{0}(N)\right)-2 .
$$

Take $N=2^{\alpha} M$ with $\alpha \geq 2$ and M odd.
(a) Then S_{2} is an involution of $X_{0}(N)$, defined over \mathbb{Q}, and commutes with all the AL involutions w_{r} with r odd. Also, $V_{2}=S_{2} w_{2^{\alpha}} S_{2}$ is an involution of $X_{0}(N)$, defined over \mathbb{Q}, and commutes with all w_{r} with $r \| M$.
(b) If $\alpha \geq 3$, then V_{2} also commutes with $w_{2^{\alpha}}$. Therefore, $V_{2} w_{2^{\alpha}}$ is an involution, and $S_{2} w_{2^{\alpha}}$ has order 4. In fact, $\left\langle S_{2}, w_{2^{\alpha}}\right\rangle \cong D_{4}$.
(c) If $\alpha=2$, then $\left\langle S_{2}, w_{4}\right\rangle$ is non-abelian of order 6 with $V_{2}=S_{2} w_{4} S_{2}=w_{4} S_{2} w_{4}$ as the third involution and $S_{2} w_{4}$ and $w_{4} S_{2}$ are of order 3.

Involutions
If $N=2^{\alpha} M$ with $\alpha \geq 2$ and M odd, then

$$
X_{0}(N) / w_{2^{\alpha}} S_{2} w_{2^{\alpha}}=X_{0}(N / 2)
$$

Let u and v be two involutions such they commute in the curve X. Then $u v$ is an involution and

$$
\#(u v, X)=2 \#(u, X / v)-\#(u, X)
$$

Let be $N=2^{\alpha} M$ with $\alpha \geq 2$ and M odd. And let be $r \| M$.
(a) $\#\left(V_{2}, X_{0}(N)\right)=\#\left(w_{2^{\alpha}}, X_{0}(N)\right)$ and

$$
\#\left(V_{2} w_{r}, X_{0}(N)\right)=\#\left(w_{2^{\alpha}} w_{r}, X_{0}(N)\right)
$$

(b) $\#\left(S_{2}, X_{0}(N)\right)=\#\left(w_{2^{\alpha}} S_{2} w_{2^{\alpha}}, X_{0}(N)\right)=\left(2 g\left(X_{0}(N)\right)-2\right)-2\left(2 g\left(X_{0}(N / 2)\right)-2\right)$.
(c) $\#\left(S_{2} w_{r}, X_{0}(N)\right)=\#\left(w_{2^{\alpha}} S_{2} w_{2 \alpha} w_{r}, X_{0}(N)\right)=$ $2 \#\left(w_{r}, X_{0}(N / 2)\right)-\#\left(w_{r}, X_{0}(N)\right)$.
(d) If $\alpha \geq 3$, then

$$
\begin{gathered}
\#\left(V_{2} w_{2^{\alpha}}, X_{0}(N)\right)=2 \#\left(S_{2}, X_{0}(N / 2)\right)-\#\left(S_{2}, X_{0}(N)\right) \text { and } \\
\#\left(V_{2} w_{2 \alpha} w_{r}, X_{0}(N)\right)=2 \#\left(S_{2} w_{r}, X_{0}(N / 2)\right)-\#\left(S_{2} w_{r}, X_{0}(N)\right) .
\end{gathered}
$$

Take $9 \| N$ and $S_{3}=\left(\begin{array}{cc}1 & 1 / 3 \\ 0 & 1\end{array}\right)$.
(a) S_{3} normalizes $\Gamma_{0}(N)$ and induces an automorphism in $X_{0}(N)$ of order 3 defined over $\mathbb{Q}(\sqrt{-3})$. Its Galois conjugate is S_{3}^{2}. Moreover, S_{3} commute with the Atkin-Lehner involutions w_{r} with $r \equiv 1 \bmod 3$, and for the $r \equiv 2 \bmod 3$ we have that $w_{r} S_{3}=S_{3}^{2} w_{r}$ and $w_{9} S_{3}$ has order 3 .
(b) $\quad V_{3}=S_{3} w_{9} S_{3}^{2}$ is an involution in $X_{0}(N)$. With respect AL-involutions we have
$w_{r} V_{3}=\left\{\begin{array}{c}V_{3} w_{r} \\ V_{3} w_{9} w_{r}\end{array} \quad\right.$ if $r \equiv \begin{array}{c}1 \bmod 3 \text { or } r=9 \text { and } \\ i f r \equiv 2 \bmod 3\end{array}$
Moreover, if $r \equiv 2 \bmod 3$ then $\left\langle V_{3}, w_{r}\right\rangle \cong D_{4}$ and $V_{3} w_{r}$ have order 4 with $\left(V_{3} w_{r}\right)^{2}=w_{9}$.
(c) $\quad V_{3}$ as involution in $X_{0}(N)$ is defined over $\mathbb{Q}(\sqrt{-3})$. Its $\operatorname{Gal}(\mathbb{Q}(\sqrt{-3}) / \mathbb{Q})$-conjugate is $V_{3} w_{9}$. In particular, V_{3} and $V_{3} w_{9}$ have the same number of fixed points in $X_{0}(N)$.
(d) More in general, we have

$$
\#\left(V_{3} w_{9}, X_{0}(N)\right)=\#\left(V_{3}, X_{0}(N)\right)=\#\left(w_{9}, X_{0}(N)\right)
$$

and for $r \equiv 1 \bmod 3$ we also have

$$
\#\left(V_{3} w_{9} w_{r}, X_{0}(N)\right)=\#\left(V_{3} w_{r}, X_{0}(N)\right)=\#\left(w_{9} w_{r}, X_{0}(N)\right)
$$

(e) $\quad V_{3}$ as involution in $X_{0}(N) / W$ is defined over \mathbb{Q} if and only if $w_{9} \in W$.

Involutions

Suppose $4 \| N$ and write $N=4 M$. Let be W^{\prime} a subgroup of $B(N)$ generated by $w_{4}, w_{m_{1}}, \ldots, w_{m_{s}}$ with $m_{i} \| M$. Then,

$$
X_{0}(N) / W^{\prime} \cong X_{0}(N) /\left\langle S_{2} w_{4} S_{2}, w_{m_{1}}, \ldots, w_{m_{s}}\right\rangle=X_{0}(N) /\left\langle w_{4} S_{2} w_{4}, w_{m_{1}}, \ldots, w_{m_{s}}\right\rangle
$$

$$
=X_{0}(2 M) /\left\langle w_{m_{1}}, \ldots, w_{m_{s}}\right\rangle .
$$

Therefore, if $A \in G L_{2}(\mathbb{R})$ is a bielliptic involution of $X_{0}(2 M) /\left\langle w_{m_{1}}, \ldots, w_{m_{s}}\right\rangle$, then $S_{2} A S_{2}$ normalizes in $\left\langle\Gamma_{0}(N), W^{\prime}\right\rangle$ and induces a bielliptic involution in $X_{0}(N) / W^{\prime}$.
Suppose $9 \| N$. And W^{\prime} a subgroup of $B(N)$ generated by $w_{n_{1}}, \ldots, w_{n_{t}}\left(n_{i} \| N\right)$ and denote $W^{\prime \prime}=\left\langle\left\{w_{n_{i}} w_{9}^{e\left(n_{i}\right)}\right\}_{i \in\{1, \ldots, t\}}\right\rangle$ where $e(m)=0$ if $m \equiv 1 \bmod 3$ or if $9 \| m$ and $m / 9 \equiv 1 \bmod 3$, and $e(m)=1$ otherwise. Then V_{3} induces an isomorphism

$$
X_{0}(N) / W^{\prime} \cong X_{0}(N) / W^{\prime \prime}
$$

Quotient modular curves of genus ≥ 6

$g_{W_{N}}$	$\left(N, W_{N}\right)$	(w, E)	$\mathbb{Q}-$ Jacobiandecomp.
6	$\begin{gathered} \hline\left(104,\left\langle w_{8}\right\rangle\right) \\ \left(156,\left\langle w_{4}, w_{13}\right\rangle\right) \\ \left(168,\left\langle w_{8}, w_{3}\right\rangle\right) \\ \left(220,\left\langle w_{5}, w_{44}\right\rangle\right) \\ \left(220,\left\langle w_{11}, w_{20}\right\rangle\right) \end{gathered}$	$\begin{gathered} \left(V_{2} w_{104}, E 26 a\right) \\ \left(w_{3}, E 26 b=X_{0}^{*}(156)\right) \\ \left(V_{2} w_{168}, E 14 a\right) \\ \left(w_{4}, E 110 b=X_{0}^{*}(220)\right) \\ \left(w_{4}, E 110 b\right) \end{gathered}$	$\begin{gathered} (E 26 a)^{2} \times E 26 b \times E 52 a \times A_{f, 104} \\ (E 26 b)^{2} \times A_{f, 39}^{2} \\ (E 14 a)^{2} \times E 42 a \times E 56 b \times E 84 b \times E 168 b \\ E 11 a \times E 20 a \times A_{f} \times 110 b \times 110 c \\ E 44 a \times E 55 a \times E 110 b \times A_{f} \times E 220 a \\ \hline \end{gathered}$
7	$\begin{gathered} \left(120,\left\langle w_{24}\right\rangle\right) \\ \left(124,\left\langle w_{4}\right\rangle\right) \\ \left(136,\left\langle w_{8}\right\rangle\right) \\ \left(252,\left\langle w_{9}, w_{7}\right\rangle\right) \\ \hline \end{gathered}$	$\begin{gathered} \left(V_{2} w_{40}, E 15 a\right) \\ \left(w_{31}, E 62 a=X_{0}^{*}(124)\right. \\ \left(V_{2} w_{136}, E 17 a\right) \\ \left(V_{3} w_{7}, E 36 a\right) \end{gathered}$	$\begin{gathered} (E 15 a)^{2} \times(E 20 a)^{2} \times E 30 a \times E 40 a \times E 120 a \\ \left(A_{f_{1}, 31}\right)^{2} \times E 62 a \times A_{f_{3}, 62} \\ (E 17 a)^{2} \times E 34 a \times A_{f_{3}, 64} \times A_{f_{4}, 136} \\ (E 21 a)^{3} \times E 36 a \times(E 42 a)^{2} \times E 84 b \\ \hline \end{gathered}$
8	$\left(220,\left\langle w_{4}, w_{5}\right\rangle\right)$	$\left(w_{11}, E 110 b=X_{0}^{*}(220)\right)$	$(E 11 a)^{2} \times A_{f}^{2} \times E 110 b \times E 110 c$
9	$\left(126,\left\langle w_{9}\right\rangle\right)$ $\left(171,\left\langle w_{9}\right\rangle\right)$ $\left(252,\left\langle w_{9}, w_{4}\right\rangle\right)$	$\begin{gathered} \left(V_{3} w_{7}, E 14 a\right) \\ \left(V_{3} w_{171}, E 19 a\right) \\ \left(V_{3} w_{7}, E 14 a\right) \\ \hline \end{gathered}$	$\begin{gathered} (E 14 a)^{2} \times(E 21 a)^{2} \times E 42 a \times\left(A_{f, 63}\right)^{2} \\ (E 19 a)^{2} \times E 57 a \times E 57 b \times E 57 c \times A_{f, 171}, \operatorname{dim}\left(A_{f}\right)=4 \\ (E 14 a)^{2} \times(E 21 a)^{2} \times E 42 a \times\left(A_{f, 63}\right)^{2} \end{gathered}$
10	$\left(176,\left\langle w_{16}\right\rangle\right)$	$\left(V_{3} w_{176}, E 11 a\right)$	$(E 11 a)^{3} \times E 44 a \times E 88 a \times A_{f_{1}, 88} \times E 176 a \times A_{f_{2}, 176}$
11	$\left(188,\left\langle w_{4}\right\rangle\right)$	$\left(w_{47}, X_{0}^{*}(188)=E 94 a\right)$	$A_{f_{1}}^{2} \times E 94 a \times A_{f_{3}}, \operatorname{dim}\left(A_{f_{1}}\right)=4$

Table, $g_{W_{N}} \geq 6$ Bielliptic

Quotient modular curves not defined over \mathbb{Q}

No morphism of degree two to an elliptic curve over \mathbb{Q}

$\left(252,\left\langle w_{4}, w_{63}\right\rangle\right)$	$\left(V_{3}, E 14 a\right)$
	$\left(V_{3} w_{7}, E 14 a\right)$
$\left(126,\left\langle w_{65}\right\rangle\right)$	$\left(V_{3}, E 14 a\right)$
	$\left(V_{3} w_{9}, E 14 a\right)$

Bielliptic quotient curves, with elliptic quotient not defined over \mathbb{Q}
$\left(63\left\langle w_{9}\right\rangle\right)$, genus 3. $J_{0}^{W_{N}} \sim_{\mathbb{Q}} X_{0}^{*}(63) \times A_{f, 63}$, with $\operatorname{dim}\left(A_{f, 63}\right)=2$ and

$$
A_{f, 63} \sim_{\mathbb{Q}(\sqrt{-3})} E^{2}
$$

with

$$
E: Y^{2}=-(26+6 \sqrt{-3}) X^{3}-27 X^{2}+6 \sqrt{-3} X+1
$$

We have $\left(w_{7}, X_{0}^{*}(63)=E 21 a\right)$ is a bielliptic pair over \mathbb{Q}.
BUT, we have two more bielliptic involutions not defined over \mathbb{Q} with bielliptic quotient E (one conjugation of the other).

Bibliography

0 Bars, F.; Magma codes for quotient modular curves. https://github.com/FrancescBars/Magma-functions-on-Quotient-ModularCurves
1 Bars, F.; González Rovira, J.: Bielliptic modular curves $X_{0}^{*}(N)$ with square-free levels. Math. Comp. 88 (2019), no. 320, 2939-2957.
2 Bars, F.; González Rovira, J.: Bielliptic modular curves $X_{0}^{*}(N)$,Journal of Algebra 559, 726-759, (2020).
3 Badr,E.;Bars,F.: Bielliptic smooth plane curves and quadratic points. International Journal of Number Theory 17 (04), 1047-1066 (2021).
4 F Bars, J González, M Kamel : Bielliptic quotient modular curves with N square-free. Journal of Number Theory 216, 380-402, (2020).
5 F.Bars, M.Kamel, A. Schweizer: Bielliptic quotient modular curves. Mathematics of Computation AMS Vol. 92, (2023), Pages 895-929

