Torsion groups of elliptic curves over quadratic fields $\mathbb{Q}(\sqrt{d})$ for |d| < 800

Barinder S. Banwait, Maarten Derickx

Boston University

Modular curves and Galois representations Zagreb, Croatia Thursday 21st September 2023 https://tinyurl.com/quadratic-torsion

Introduction	Results	$X_1(13)$ and $X_1(18)$
•00000000000		00000000000000

Todo

Introduction

Introduction

Results

X1(13) and X1(18)

X₁(16)

Todo 00

Mazur's Torsion Theorem

Theorem (Mazur, 1977)

 $E(\mathbb{Q})_{tors}$ is one of the following 15 groups:

$$\begin{split} \mathbb{Z}/N\mathbb{Z}, & 1 \leq N \leq 10 \text{ or } N = 12\\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}, & 1 \leq N \leq 4. \end{split}$$

Moreover, each group occurs infinitely often.

Barry C. Mazur

This was conjectured by Beppo Levi in 1908 (in his Rome ICM address), then again by Andrew Ogg in 1970.

Theorem (Kamienny-Kenku-Momose, 1992)

For K a quadratic field, $E(K)_{tors}$ is one of the following 26 groups:

 $\begin{array}{ll} \mathbb{Z}/N\mathbb{Z} & 1 \leq N \leq 16 \ \text{or } N = 18 \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z} & 1 \leq N \leq 6 \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3N\mathbb{Z} & 1 \leq N \leq 2 \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \end{array}$

Moreover, as K varies, each group occurs infinitely often.

Sheldon Kamienny

Monsur A. Kenku

Fumiyuki Momose

Question (Motivating question of the talk, v1)

For a fixed quadratic field, what possible groups arise as $E(K)_{tors}$?

i.e. which of the 26 groups from the KKM classification arise for a particular K?

Introduction

Results

X₁(16)

Todo 00

Quadratic Cyclotomic fields

Filip Najman

Theorem (Najman, 2011)

- Let E be an elliptic curve over Q(i). Then E(Q(i))_{tors} is isomorphic to one of the groups from Mazur's theorem, or Z/4Z ⊕ Z/4Z.
- Let E be an elliptic curve over Q(√-3). Then E(Q(√-3))_{tors} is isomorphic to one of the groups from Mazur's theorem, or Z/3Z ⊕ Z/3Z or Z/3Z ⊕ Z/6Z.

Introduction	Results	X1(13) and X1(18)	X1(16)	Todo
00000000000	0000	00000000000000000000000	000000	00

Question (Motivating question of the talk, v2)

For K a quadratic field that is not $\mathbb{Q}(i)$ or $\mathbb{Q}(\sqrt{-3})$, which of the 8 groups

$\mathbb{Z}/11\mathbb{Z}$	
$\mathbb{Z}/14\mathbb{Z}$	$\mathbb{Z}/13\mathbb{Z}$
$\mathbb{Z}/15\mathbb{Z}$	$\mathbb{Z}/16\mathbb{Z}$
$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/10\mathbb{Z}$	$\mathbb{Z}/18\mathbb{Z}$
$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/12\mathbb{Z}$	

arise as a possible torsion group over K?

Introduction	Results	X1(13) and X1(18)	X ₁ (16)	Todo
000000000000	0000	000000000000000000000000000000000000	000000	00

Question (Motivating question of the talk, v3)

For K a quadratic field that is not $\mathbb{Q}(i)$ or $\mathbb{Q}(\sqrt{-3})$, which of the 8 modular curves

genus 1	genus 2
V (11)	
$X_1(11)$	V (12)
$X_1(14) X_1(15)$	$X_1(13) X_1(16)$
$X_1(13)$ $X_1(2,10)$	$X_1(10) X_1(18)$
$X_1(2, 10)$ $X_1(2, 12)$	XI(10)
$\Lambda_1(2, 12)$	

admit a noncuspidal K-rational point?

Introduction	Results	X1(13) and X1(18)	X 1(16)	Todo
000000000000	0000	000000000000000000000000000000000000	000000	00
Elliptic cases				

Theorem (Kamienny-Najman, 2012)

Let $K \neq \mathbb{Q}(\sqrt{-7}), \mathbb{Q}(\sqrt{-15}), \mathbb{Q}(\sqrt{5})$ be a quadratic field. If any of the 5 genus 1 modular curves X from the motivating question admit a noncuspidal K-rational point, then $\operatorname{rk}(X(K))$ is positive.

SLOGAN

To deal with the 5 elliptic modular curves, you 'just' need to compute their rank over ${\cal K}$

Sheldon Kamienny

Filip Najman

Introduction	Results	X1(13) and X1(18)	X1(16)	To
0000000000000	0000	000000000000000000000000000000000000	000000	00

odo

Theorem

For E/\mathbb{Q} ,

$$\mathsf{rk}(E(\mathbb{Q}(\sqrt{d}))) = \mathsf{rk}(E(\mathbb{Q})) + \mathsf{rk}(E_d(\mathbb{Q})).$$

SLOGAN

To deal with the 5 elliptic modular curves, you 'just' need to compute the $\mathbb{Q}\text{-}\mathsf{rank}$ of their twists!

Introduction	Results	X1(13) and X1(18)	X 1(16)	Todo
0000000000000	0000	000000000000000000000000000000000000	000000	00
Genus 2 cases				

$$X_1(13): y^2 = f_{13}(x) := x^6 - 2x^5 + x^4 - 2x^3 + 6x^2 - 4x + 1$$

$$X_1(16): y^2 = f_{16}(x) := x(x^2 + 1)(x^2 + 2x - 1)$$

$$X_1(18): y^2 = f_{18}(x) := x^6 + 2x^5 + 5x^4 + 10x^3 + 10x^2 + 4x + 1$$

Writing X as any of these curves,

Theorem (Krumm, 2013)

If X admits a noncuspidal $\mathbb{Q}(\sqrt{d})$ -point, then the x-coordinate of that point is in \mathbb{Q} ; i.e. it yields a \mathbb{Q} -point on the d-twist X^d .

David Krumm

Introduction	Results	X1(13) and X1(18)	X1(16)	Todo
00000000000000	0000	000000000000000000000000000000000000	000000	00

More precisely,

Theorem (Krumm, 2013)

- $\ \, {\bf S} \ \, Y_1(13)(\mathbb{Q}(\sqrt{d})) \neq \emptyset \Longleftrightarrow X_1^d(13)(\mathbb{Q}) \neq \emptyset$
- Y₁(16)(Q(√d)) ≠ Ø ⇔ X^d₁(16)(Q) contains a point with nonzero y coordinate

$$\textbf{9} \hspace{0.1 cm} Y_1(18)(\mathbb{Q}(\sqrt{d})) \neq \emptyset \Longleftrightarrow X_1^d(18)(\mathbb{Q}) \neq \emptyset$$

SLOGAN

This reduces the problem to determining the existence of \mathbb{Q} -points on specific genus 2 curves over \mathbb{Q} (or for $X_1(16)$, determining all \mathbb{Q} -points).

Using a variety of methods (which we introduce and build on later in the talk), Krumm *almost* dealt with the 13 and 18 cases for all |d| < 1000.

The Quadratic Torsion Challenge

Fix B>0. For |d| < B, can you determine the torsion groups that occur over $\mathbb{Q}(\sqrt{d})?$

Definition

For B > 0 and $N \in \{13, 16, 18\}$, define

$$T_B(N) := \left\{ |d| < B \text{ squarefree } : \mathbb{Z}/N\mathbb{Z} \text{ is a torsion group over } \mathbb{Q}(\sqrt{d})
ight\}.$$

Theorem (Krumm, 2013)

 $\begin{aligned} \{17, 113, 193, 313, 481\} \subseteq & \mathcal{T}_{1000}(13) \subseteq \{17, 113, 193, 313, 481\} \cup \{257, 353, 601, 673\} \\ & \{33, 337, 457\} \subseteq & \mathcal{T}_{1000}(18) \subseteq \{33, 337, 457\} \cup \{681\} \,. \end{aligned}$

Theorem (Trbović, 2018)

$$\begin{split} \{ 10, 15, 41, 51, 70, 93 \} &\subseteq \ \textit{$\mathcal{T}_{100}(16) \cap \mathbb{Z}_{\geq 1} \subseteq \{ 10, 15, 41, 51, 70, 93 \} \\ &\cup \{ 26, 31, 47, 58, 62, 74, 78, 79, 82, 87, 94 \} \end{split}$$

Antonela Trbović

Statement of results

Theorem (B.-Derickx, 2023)

$T_{10,000}(13) = \{17, 113, 193, 313, 481, 1153, 1417, \\ 2257, 3769, 3961, 5449, 6217, 6641, 9881\}$

 $\mathcal{T}_{10,000}(18) = \{33, 337, 457, 1009, 1993, 2833, 7369, 8241, 9049\}$

Theorem (B.-Derickx, 2023)

$$\begin{split} \mathcal{T}_{800}(16) = \{-671, -455, -290, -119, -15, 10, 15, 41, 51, \\ 70, 93, 105, 205, 217, 391, 546, 609, 679\}\,. \end{split}$$

Introduction	Results	X1(13) and X1(18)	X1(16)	Todo
000000000000	000●	000000000000000000000000000000000000	000000	00

Corollary (B.-Derickx, 2023)

We solve the Quadratic Torsion Challenge for B = 800.

Introduction Results $X_1(13)$ and $X_1(18)$ $X_1(16)$ 000000000000000000000000000000000000	Introduction 0000000000000	Results 0000	X1(13) and X1(18) ●000000000000000000000000000000000000	X 1(16) 000000	
---	-------------------------------	-----------------	--	---------------------------	--

$X_1(13)$ and $X_1(18)$

Strategy

Basic idea

- Combine several necessary conditions for X^d(Q) to be nonempty. This reduces the list of ds. For the remaining ds:
- Search for points;
- If none found, try using Mordell-Weil sieve to prove there are none.

We're only going to show $X_1(13)$ because the two cases are basically identical.

Introduction	Results	X1(13) and X1(18)	X1(16)	Todo
000000000000	0000	000000000000000000000000000000000000	000000	00
ELS				

Lemma

If $X_1^d(13)(\mathbb{Q}) \neq \emptyset$, then it is everywhere locally soluble.

	tesults	X1(13) and X1(18) 000000000000000000000000000000000000	X ₁ (16) 000000	Todo 00
Krumm's filter				

Theorem (Krumm, 2013)

If $X_1^d(13)(\mathbb{Q}) \neq \emptyset$, and $d \neq -3$, then a d > 0; a $d \equiv 1 \pmod{8}$. First a preparatory lemma.

Lemma

For every quadratic field K, we have

$$J_1(13)(K)_{tors} = J_1(13)(\mathbb{Q})_{tors} \cong \mathbb{Z}/19\mathbb{Z}.$$

Proof.

For $p \ge 5$, $p \ne 13$, the torsion subgroup $J_1(13)(K)_{tors}$ injects into $\widetilde{J_1(13)}(\mathbb{F}_{p^2})$. By computing this latter group for p = 5 and 7, one sees that it must be a subgroup of $\mathbb{Z}/19\mathbb{Z}$. OTOH, the torsion over \mathbb{Q} is $\mathbb{Z}/19\mathbb{Z}$.

Introduction	Results	X1(13) and X1(18)	X 1(16)	Todo
000000000000	0000	000000000000000000000000000000000000	000000	00

Proposition

Let $K = \mathbb{Q}(\sqrt{d})$. If $X_1(13)(K) \neq X_1(13)(\mathbb{Q})$, then $J_1(13)(K)$ and hence $J_1^d(13)(\mathbb{Q})$ has positive rank.

Proof.

If *P* is a *K*-point of $X_1(13)$ that is not a \mathbb{Q} -point, then it embeds under the Abel-Jacobi map to a *K*-point of $J_1(13)$ that is not a \mathbb{Q} -point. Therefore by the previous lemma it must be of infinite order. The final part comes from $\operatorname{rk}(J_1(K)) = \operatorname{rk}(J_1(\mathbb{Q})) + \operatorname{rk}(J_1^d(\mathbb{Q}))$.

Introduction	Results	X1(13) and X1(18)	X 1(16)	Todo
0000000000000	0000	000000€000000000000000000000000000000	000000	00

Corollary

If $X_1^d(13)(\mathbb{Q}) \neq \emptyset$, then $J_1^d(13)$ has positive \mathbb{Q} -rank.

How to efficiently determine positive rank?

Determining whether the Jacobian of a modular curve has positive analytic rank or not can be done efficiently via a modular symbols computation involving the twisted winding element, a method that goes back to Johan Bosman's PhD thesis.

Johan Bosman

52

CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

The element $\sum_{\nu=0}^{l-1} \chi(-\nu) \{\infty, \frac{\nu}{\ell}\}$ of $\mathbb{M}_k(\Gamma_1(N)) \otimes \mathbb{Z}[\chi]$ or of some other modular symbols space where it is well-defined is called a twisted winding element or, more precisely the γ -twisted winding element. Because of formula (2.7), we can calculate the pairings of newforms in $S_2(\Gamma_1(N))$ with twisted winding elements quite efficiently as well.

Introduction	Results	X1(13) and X1(18)	X1(16)	Todo
0000000000000	0000	000000000000000000000000000000000000	000000	00
Two cover d	escent			

Let C/K be a nice curve of positive genus, with jacobian J.

Definition

An unramified cover of C is a nice curve D together with a finite étale morphism $D \rightarrow C$.

If C has a K-rational point P, we can use it to define the Abel-Jacobi map

$$AJ_P: C \hookrightarrow J$$

 $Q \mapsto [(Q) - (P)]$

and hence view C as a subvariety of J. Fix $n \ge 1$. Define the map

$$\pi: J \hookrightarrow J$$
$$Q \mapsto nQ + P.$$

The pullback $\pi^*(C)$ yields an unramified cover that has a rational point mapping to P.

Introduction	Results	X1(13) and X1(18)	X1(16)	Todo
000000000000	0000	000000000000000000000000000000000000	000000	00

Definition

An *n*-cover is any unramifed cover geometrically isomorphic to one of the above form.

Write $Cov^{(n)}(C/K)$ for the set of isomorphism classes of *n*-covers of *C*. Write $Sel^{(n)}(C/K) \subseteq Cov^{(n)}(C/K)$ for the set of ELS *n*-covers. This is a finite set.

Since a curve with a rational point admits a globally soluble n-cover, and hence an ELS n-cover,

$$\operatorname{Sel}^{(n)}(C/K) = \emptyset \Rightarrow C(K) = \emptyset$$

Introduction	Results	X1(13) and X1(18)	X1(16)	Todo
000000000000	0000	000000000€000000000000000000000000000	000000	00

We now set n = 2. Bruin and Stoll define a quotient of $\operatorname{Sel}^{(2)}(C/K)$, called the fake 2-Selmer set $\operatorname{Sel}_{fake}^{(2)}(C/K)$ for which the above all still applies. This is good because $\operatorname{Sel}_{fake}^{(2)}(C/K)$ can be algorithmically and explicitly constructed.

Nils Bruin

Michael Stoll

This gives us a way to compute the fake Selmer-set explicitly. **define** $\mathsf{FakeSelmerSet}(f)$:

1. A := k[x]/(f(x))2. Let S be the set of primes of k described above. 3. if $2 | \deg(f)$: 4. G := A(2,S)/k(2,S)5. else : 6. G := A(2, S)7. $W := \{g \in G : N_{A/k}(g) \in f_n k^{*2}\}$. if $W = \emptyset$: return \emptyset 8. $T := S \cup$ "small" primes, as in Lemma 4.3 9. for $p \in T$: $A_p := A \otimes k_p; H'_p := A_p^*/A_p^{*2}.$ 10. $W'_p := \mathsf{LocalImage}(f_p) \subset H'_p$ or, if $p \mid \infty$, use Section 5 to compute W'_p . 11. 12. if $2 \mid \deg(f)$: $H_p := H'_p / k_p^*; W_p := \text{image of } W'_p \text{ in } H_p$ 13.14. else : 15. $H_p := H'_p; W_p := W'_p$ 16.Determine $\rho_p: G \to H_p$. $W := \{ w \in W : \rho(w) \in W_p \}.$ 17.18. return W

Introduction	Results	X1(13) and X1(18)	X1(16)	Todo
000000000000	0000	00000000000€000000	000000	00

> R<x> := PolynomialRing(Rationals()); > //y^2=f is isomorphic to X_1(13) > f := R![1, 2, 1, 2, 6, 4, 1]; > d := 7; > C := HyperellipticCurve(d*f); > TwoCoverDescent(C); {}

Introduction	Results	X1(13) and X1(18)	X 1(16)	Todo
0000000000000	0000	000000000000000000000000000000000000	000000	00

Corollary

If $X_1^d(13)(\mathbb{Q}) \neq \emptyset$, then the fake 2-Selmer set is nonempty.

 $17, 113, 193, 313, 481, 673, 1153, 1417, 1609, 1921, 2089, 2161, \\2257, 3769, 3961, 5449, 6217, 6641, 8473, 8641, 9689, 9881$

Out of these values, we search for points; this then leaves the following list where it is likely that they don't have rational points:

673, 1609, 1921, 2089, 2161, 8473, 8641, 9689

These are dealt with via the Mordell-Weil sieve.

We assume we know a degree 1 divisor class on C (to define ι), and generators of $J(\mathbb{Q})$.

Basic Idea

If the images of α and $\tilde{\iota}$ do not intersect, then $X(\mathbb{Q})$ is empty.

These are infinite groups and sets, so the intersection can't be computed. Instead one works with a finite approximation.

Here N is a positive integer, and S a finite set of primes. Now we can compute the intersection. Heuristically, if $X(\mathbb{Q}) = \emptyset$, then the intersection will be empty if S and N are large enough.

Theorem (B.-Derickx, 2023)

$\begin{aligned} \mathcal{T}_{10,000}(13) = \{ 17, 113, 193, 313, 481, 1153, 1417, \\ & 2257, 3769, 3961, 5449, 6217, 6641, 9881 \} \end{aligned}$

 $\mathcal{T}_{10,000}(18) = \{33, 337, 457, 1009, 1993, 2833, 7369, 8241, 9049\}$

Introduction	Results	$X_1(13)$ and $X_1(18)$	>
			() () () () () () () () () ()

Toda

$X_1(16)$

The strategy is different here because every twist of $X_1(16)$ has a (cuspidal) rational point. So many of the filters from the previous section go out the window.

As before, it's only the positive rank cases we need to worry about.

Proposition (B.-Derickx, 2023)

Let $K = \mathbb{Q}(\sqrt{d})$. If $\mathbb{Z}/16\mathbb{Z}$ arises as a possible torsion group over K, then $\mathsf{rk}(J_1^d(16)) > 0$.

Introduction	Results	X1(13) and X1(18)	X 1(16)	Todo
000000000000	0000	000000000000000000000000000000000000	00●000	00

Using the twisted winding element method from before, we compute the squarefree values of d with |d| < 10,000 for which $rk(J_1^d(16)) > 0$; this yields 674 values.

We do a point search on these; 55 of them have extra points. How to deal with the remaining 619 values? Elliptic Curve Chabauty

 π

X

X

₽1

Results

Introduction

For simplicity assume $X : y^2 = f(x)$ with deg(f) = 5.

Theorem (Bruin-Stoll, souped-up version of Chevalley-Weil)

Every rational point on a hyperelliptic curve X lifts to a rational point on some $D \in TwoCoverDescent(X)$.

So if, for each D, we can work out $\pi(D(\mathbb{Q}))$, then we're done. **PROBLEM:** D has large genus, so computing $D(\mathbb{Q})$ is impossible B **IDEA:** Don't need to work with D directly; rather work with other quotients of D. Can construct elliptic curve quotients by taking degree 3 factors g of f over a number field L: $E_D: \gamma_D y^2 = g(x)$

X1(16)

Todo

 E_D

x

 π

x

So if, for each D, we can work out $\pi(D(\mathbb{Q}))$, then we're done.

PROBLEM: *D* has large genus, so computing $D(\mathbb{Q})$ is impossible B

IDEA: Don't need to work with D directly; rather work with other quotients of D.

Can construct elliptic curve quotients by taking degree 3 factors g of f over a number field L:

$$E_D: \gamma_D y^2 = g(x)$$

FACT: If $rk(E_D(L)) < [L : \mathbb{Q}]$, then $x(E_D(L)) \cap \mathbb{P}^1(\mathbb{Q})$ is finite and computable by an algorithm of Nils Bruin. SUMMARY: If, for every D, there is a degree 3 factor $g \in L[x]$ s.t. $E_D : \gamma_D y^2 = g(x)$ has $rk(E_D(L)) < [L : \mathbb{Q}]$, then we're done. For us, $f(x) = dx(x^2 + 1)(x^2 - 2x - 1)$, so L will always be quite small.

Todo 00

Running this on the 619 values of d, this successfully show that there are only the original two points on the twist 581 cases.

This includes some values where $rk(J_1^d(\mathbb{Q})) = 4$ (e.g. d = 679).

The remaining 38 values to be dealt with are:

 $\begin{array}{l} -8259, -7973, -7615, -7161, -7006, -6711, -6503, -6095, \\ -6031, -6005, -4911, -4847, -4773, -4674, -4371, -4191, \\ -4074, -3503, -3199, -1810, -1749, -815, 969, 1186, \\ 3215, 3374, 3946, 4633, 5257, 5385, 7006, 7210, \\ 7733, 8459, 8479, 8569, 9709, 9961 \end{array}$

Introduction	Results	X1(13) and X1(18)	X1(16)	Todo
0000000000000	0000	00000000000000000000000	000000	●○

Todo

Introduction	Results	X1(13) and X1(18)	X1(16)	Todo
0000000000000	0000	00000000000000000000000	000000	○●

- Deal with those values.
- Could nonabelian Chabauty methods be used on these vals?
- What about cubic torsion? i.e. for a fixed cubic field *K*, which of the 26 groups in the cubic torsion classification (due to Derickx-Etropolski, van Hoeij, Morrow, Zureick-Brown) arise as torsion subgroups for that *K*?