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Mazur’s Torsion Theorem

Theorem (Mazur, 1977)

E (Q)tors is one of the following 15 groups:

Z/NZ, 1 ≤ N ≤ 10 or N = 12
Z/2Z⊕ Z/2NZ, 1 ≤ N ≤ 4.

Moreover, each group occurs infinitely often.

Barry C. Mazur

This was conjectured by Beppo Levi in 1908 (in his Rome ICM address),
then again by Andrew Ogg in 1970.
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Kamienny-Kenku-Momose Torsion Theorem

Theorem (Kamienny-Kenku-Momose, 1992)

For K a quadratic field, E (K )tors is one of the following 26 groups:

Z/NZ 1 ≤ N ≤ 16 or N = 18
Z/2Z⊕ Z/2NZ 1 ≤ N ≤ 6
Z/3Z⊕ Z/3NZ 1 ≤ N ≤ 2
Z/4Z⊕ Z/4Z

Moreover, as K varies, each group occurs infinitely often.

Sheldon Kamienny Monsur A. Kenku Fumiyuki Momose
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What about over particular quadratic fields?

Question (Motivating question of the talk, v1)

For a fixed quadratic field, what possible groups arise as E (K )tors?

i.e. which of the 26 groups from the KKM classification arise for a
particular K?
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Quadratic Cyclotomic fields

Filip Najman

Theorem (Najman, 2011)
1 Let E be an elliptic curve over Q(i). Then E (Q(i))tors is isomorphic

to one of the groups from Mazur’s theorem, or Z/4Z⊕ Z/4Z.
2 Let E be an elliptic curve over Q(

√
−3). Then E (Q(

√
−3))tors is

isomorphic to one of the groups from Mazur’s theorem, or
Z/3Z⊕ Z/3Z or Z/3Z⊕ Z/6Z.
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Question (Motivating question of the talk, v2)

For K a quadratic field that is not Q(i) or Q(
√
−3), which of the 8

groups

Z/11Z
Z/14Z Z/13Z
Z/15Z Z/16Z

Z/2Z⊕ Z/10Z Z/18Z
Z/2Z⊕ Z/12Z

arise as a possible torsion group over K?
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Question (Motivating question of the talk, v3)

For K a quadratic field that is not Q(i) or Q(
√
−3), which of the 8

modular curves

genus 1 genus 2

X1(11)
X1(14) X1(13)
X1(15) X1(16)
X1(2, 10) X1(18)
X1(2, 12)

admit a noncuspidal K -rational point?
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Elliptic cases

Theorem (Kamienny-Najman, 2012)

Let K ̸= Q(
√
−7),Q(

√
−15),Q(

√
5) be a quadratic field. If any of the 5

genus 1 modular curves X from the motivating question admit a
noncuspidal K -rational point, then rk(X (K )) is positive.

SLOGAN
To deal with the 5 elliptic modular curves, you ‘just’ need to compute
their rank over K

Sheldon Kamienny Filip Najman
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Theorem

For E/Q,
rk(E (Q(

√
d))) = rk(E (Q)) + rk(Ed(Q)).

SLOGAN
To deal with the 5 elliptic modular curves, you ‘just’ need to compute the
Q-rank of their twists!
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Genus 2 cases

X1(13) : y2 = f13(x) := x6 − 2x5 + x4 − 2x3 + 6x2 − 4x + 1

X1(16) : y2 = f16(x) := x(x2 + 1)(x2 + 2x − 1)

X1(18) : y2 = f18(x) := x6 + 2x5 + 5x4 + 10x3 + 10x2 + 4x + 1

Writing X as any of these curves,

Theorem (Krumm, 2013)

If X admits a noncuspidal Q(
√
d)-point, then the x-coordinate of that

point is in Q; i.e. it yields a Q-point on the d-twist X d .

David Krumm
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More precisely,

Theorem (Krumm, 2013)

1 Y1(13)(Q(
√
d)) ̸= ∅ ⇐⇒ X d

1 (13)(Q) ̸= ∅
2 Y1(16)(Q(

√
d)) ̸= ∅ ⇐⇒ X d

1 (16)(Q) contains a point with nonzero
y coordinate

3 Y1(18)(Q(
√
d)) ̸= ∅ ⇐⇒ X d

1 (18)(Q) ̸= ∅

SLOGAN
This reduces the problem to determining the existence of Q-points on
specific genus 2 curves over Q (or for X1(16), determining all Q-points).
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Using a variety of methods (which we introduce and build on later in the
talk), Krumm almost dealt with the 13 and 18 cases for all |d | < 1000.

The Quadratic Torsion Challenge

Fix B > 0. For |d | < B, can you determine the torsion groups that occur
over Q(

√
d)?

Definition

For B > 0 and N ∈ {13, 16, 18}, define

TB(N) :=
{
|d | < B squarefree : Z/NZ is a torsion group over Q(

√
d)

}
.

Theorem (Krumm, 2013)

{17, 113, 193, 313, 481} ⊆T1000(13) ⊆ {17, 113, 193, 313, 481} ∪ {257, 353, 601, 673}
{33, 337, 457} ⊆T1000(18) ⊆ {33, 337, 457} ∪ {681} .
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Theorem (Trbović, 2018)

{10, 15, 41, 51, 70, 93} ⊆ T100(16) ∩ Z≥1 ⊆ {10, 15, 41, 51, 70, 93}
∪ {26, 31, 47, 58, 62, 74, 78, 79, 82, 87, 94}

Antonela Trbović
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Statement of results
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Theorem (B.-Derickx, 2023)

T10,000(13) = {17, 113, 193, 313, 481, 1153, 1417,
2257, 3769, 3961, 5449, 6217, 6641, 9881}

T10,000(18) = {33, 337, 457, 1009, 1993, 2833, 7369, 8241, 9049}
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Theorem (B.-Derickx, 2023)

T800(16) = {−671,−455,−290,−119,−15, 10, 15, 41, 51,
70, 93, 105, 205, 217, 391, 546, 609, 679} .
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Corollary (B.-Derickx, 2023)

We solve the Quadratic Torsion Challenge for B = 800.
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X1(13) and X1(18)
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Strategy

Basic idea
1 Combine several necessary conditions for X d(Q) to be nonempty.

This reduces the list of ds. For the remaining ds:
2 Search for points;
3 If none found, try using Mordell-Weil sieve to prove there are none.

We’re only going to show X1(13) because the two cases are basically
identical.
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ELS

Lemma

If X d
1 (13)(Q) ̸= ∅, then it is everywhere locally soluble.



Introduction Results X1(13) and X1(18) X1(16) Todo

Krumm’s filter

Theorem (Krumm, 2013)

If X d
1 (13)(Q) ̸= ∅, and d ̸= −3, then

1 d > 0;
2 d ≡ 1 (mod 8).
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Rank filter

First a preparatory lemma.

Lemma
For every quadratic field K , we have

J1(13)(K )tors = J1(13)(Q)tors ∼= Z/19Z.

Proof.

For p ≥ 5, p ̸= 13, the torsion subgroup J1(13)(K )tors injects into

J̃1(13)(Fp2). By computing this latter group for p = 5 and 7, one sees
that it must be a subgroup of Z/19Z. OTOH, the torsion over Q is
Z/19Z.
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Proposition

Let K = Q(
√
d). If X1(13)(K ) ̸= X1(13)(Q), then J1(13)(K ) and hence

Jd1 (13)(Q) has positive rank.

Proof.

If P is a K -point of X1(13) that is not a Q-point, then it embeds under
the Abel-Jacobi map to a K -point of J1(13) that is not a Q-point.
Therefore by the previous lemma it must be of infinite order. The final
part comes from rk(J1(K )) = rk(J1(Q)) + rk(Jd1 (Q)).
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Corollary

If X d
1 (13)(Q) ̸= ∅, then Jd1 (13) has positive Q-rank.
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How to efficiently determine positive rank?

Determining whether the Jacobian of a modular curve has positive
analytic rank or not can be done efficiently via a modular symbols
computation involving the twisted winding element, a method that goes
back to Johan Bosman’s PhD thesis.

Johan Bosman
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Two cover descent

Let C/K be a nice curve of positive genus, with jacobian J.

Definition
An unramified cover of C is a nice curve D together with a finite étale
morphism D → C .

If C has a K -rational point P, we can use it to define the Abel-Jacobi
map

AJP : C ↪→ J

Q 7→ [(Q)− (P)]

and hence view C as a subvariety of J.
Fix n ≥ 1. Define the map

π : J ↪→ J

Q 7→ nQ + P.

The pullback π∗(C ) yields an unramified cover that has a rational point
mapping to P.
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Definition
An n-cover is any unramifed cover geometrically isomorphic to one of the
above form.

Write Cov (n)(C/K ) for the set of isomorphism classes of n-covers of C .
Write Sel(n)(C/K ) ⊆ Cov (n)(C/K ) for the set of ELS n-covers. This is a
finite set.
Since a curve with a rational point admits a globally soluble n-cover, and
hence an ELS n-cover,

Sel(n)(C/K ) = ∅ ⇒ C (K ) = ∅
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We now set n = 2. Bruin and Stoll define a quotient of Sel(2)(C/K ),
called the fake 2-Selmer set Sel(2)fake(C/K ) for which the above all still
applies. This is good because Sel

(2)
fake(C/K ) can be algorithmically and

explicitly constructed.

Nils Bruin Michael Stoll
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Corollary

If X d
1 (13)(Q) ̸= ∅, then the fake 2-Selmer set is nonempty.
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17, 113, 193, 313, 481, 673, 1153, 1417, 1609, 1921, 2089, 2161,
2257, 3769, 3961, 5449, 6217, 6641, 8473, 8641, 9689, 9881
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Out of these values, we search for points; this then leaves the following
list where it is likely that they don’t have rational points:

673, 1609, 1921, 2089, 2161, 8473, 8641, 9689

These are dealt with via the Mordell-Weil sieve.
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Mordell-Weil sieve

X (Q) J(Q)

∏
p X (Qp)

∏
p J(Qp)

ι

α α

ι̃

We assume we know a degree 1 divisor class on C (to define ι) , and
generators of J(Q).

Basic Idea

If the images of α and ι̃ do not intersect, then X (Q) is empty.

These are infinite groups and sets, so the intersection can’t be computed.
Instead one works with a finite approximation.
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X (Q) J(Q)/NJ(Q)

∏
p∈S X (Qp)

∏
p∈S J(Qp)/NJ(Qp)

ι

α α

ι̃

Here N is a positive integer, and S a finite set of primes. Now we can
compute the intersection. Heuristically, if X (Q) = ∅, then the
intersection will be empty if S and N are large enough.
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Theorem (B.-Derickx, 2023)

T10,000(13) = {17, 113, 193, 313, 481, 1153, 1417,
2257, 3769, 3961, 5449, 6217, 6641, 9881}

T10,000(18) = {33, 337, 457, 1009, 1993, 2833, 7369, 8241, 9049}
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X1(16)
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The strategy is different here because every twist of X1(16) has a
(cuspidal) rational point. So many of the filters from the previous section
go out the window.
As before, it’s only the positive rank cases we need to worry about.

Proposition (B.-Derickx, 2023)

Let K = Q(
√
d). If Z/16Z arises as a possible torsion group over K ,

then rk(Jd1 (16)) > 0.
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Using the twisted winding element method from before, we compute the
squarefree values of d with |d | < 10,000 for which rk(Jd1 (16)) > 0; this
yields 674 values.
We do a point search on these; 55 of them have extra points.
How to deal with the remaining 619 values?
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Elliptic Curve Chabauty

For simplicity assume X : y2 = f (x) with deg(f ) = 5.

Theorem (Bruin-Stoll, souped-up version of Chevalley-Weil)

Every rational point on a hyperelliptic curve X lifts to a rational point on
some D ∈ TwoCoverDescent(X).

D

X

P1

π

x

So if, for each D, we can work out π(D(Q)), then we’re
done.
PROBLEM: D has large genus, so computing D(Q) is
impossible
IDEA: Don’t need to work with D directly; rather work
with other quotients of D.
Can construct elliptic curve quotients by taking degree 3
factors g of f over a number field L:

ED : γDy
2 = g(x)
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D

ED X

P1

π

x x

So if, for each D, we can work out π(D(Q)), then we’re
done.
PROBLEM: D has large genus, so computing D(Q) is
impossible
IDEA: Don’t need to work with D directly; rather work
with other quotients of D.
Can construct elliptic curve quotients by taking degree 3
factors g of f over a number field L:

ED : γDy
2 = g(x)

FACT: If rk(ED(L)) < [L : Q], then x(ED(L)) ∩ P1(Q) is
finite and computable by an algorithm of Nils Bruin.
SUMMARY: If, for every D, there is a degree 3 factor
g ∈ L[x ] s.t. ED : γDy

2 = g(x) has rk(ED(L)) < [L : Q],
then we’re done.
For us, f (x) = dx(x2 + 1)(x2 − 2x − 1), so L will always
be quite small.
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Running this on the 619 values of d, this successfully show that there are
only the original two points on the twist 581 cases.

This includes some values where rk(Jd1 (Q)) = 4 (e.g. d = 679).

The remaining 38 values to be dealt with are:

− 8259,−7973,−7615,−7161,−7006,−6711,−6503,−6095,
− 6031,−6005,−4911,−4847,−4773,−4674,−4371,−4191,
− 4074,−3503,−3199,−1810,−1749,−815, 969, 1186,
3215, 3374, 3946, 4633, 5257, 5385, 7006, 7210,
7733, 8459, 8479, 8569, 9709, 9961
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Todo
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• Deal with those values.
• Could nonabelian Chabauty methods be used on these vals?
• What about cubic torsion? i.e. for a fixed cubic field K , which of

the 26 groups in the cubic torsion classification (due to
Derickx-Etropolski, van Hoeij, Morrow, Zureick-Brown) arise as
torsion subgroups for that K?
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