Low degree points on modular curves and their quotients

Nikola Adžaga

University of Zagreb

Modular curves and Galois representations

21st September, 2023

- For $N \in \mathbb{Z}_{>0}$, the modular curve $X_1(N)$ classifies elliptic curves together with a point of order N.
- Similarly, X₀(N) classifies pairs (E, C_N) of elliptic curves E together with a cyclic subgroup C_N of order N. This point can also be viewed as an isogeny
 i: E → E' := E/C_N with cyclic kernel of order N.
- Mazur (1977): Computation of $X_1(p)(\mathbb{Q})$.
- Mazur (1978): Computation of $X_0(p)(\mathbb{Q})$.

- Kamienny-Merel-Oesterlé (1990's): Let [K : ℚ] = d > 5. Then X₁(p)(K) consists only of cusps if p > (3^{d/2} + 1)².
- Kamienny, Merel, Derickx-Kamienny-Stein-Stoll (2021): Computation of X₁(p)(K) for [K : Q] ≤ 7.
- Open problem: Computation of X₀(p)(K) for all p and <u>all K</u> quadratic?

Let *d* be a divisor of *N* with (d, N/d) = 1. The Atkin-Lehner involution w_d is given by

$$w_d\colon (E, C_N)\mapsto (E/C_d, (C_N+C_d)/C_d).$$

Consider the quotients

$$egin{aligned} X_0(N)^+ &:= X_0(N)/w_N, \ X_0(N)^* &:= X_0(N)/\langle w_d : (d,N/d) = 1
angle. \end{aligned}$$

Elkies' conjecture: there are only finitely many positive integers N such that $X_0(N)^*(\mathbb{Q})$ has an exceptional point (Rational points on $X_0(N)^*$ correspond to \mathbb{Q} -curves.)

The setup:

- Let g be the genus of X and r the Mordell–Weil rank of its Jacobian J
- 2. Use a basepoint $x_0 \in X(\mathbb{Q})$ to embed $X \hookrightarrow J, x \mapsto [x x_0]$.
- 3. Let p be a prime of good reduction for X.
- If r < g, we use the classical Chabauty-Coleman method: There exists an 0 ≠ ω ∈ H⁰(J_{Q_p}, Ω¹) such that

$$X(\mathbb{Q})\subseteq X(\mathbb{Q}_p)_1:=\left\{x\in X(\mathbb{Q}_p):\int_{x_0}^x\omega=0
ight\}\subseteq X(\mathbb{Q}_p).$$

► The set X(Q_p)₁ is finite and computable if we know a finite index subgroup G of J(Q).

The Quadratic Chabauty Method (QC)

Same setup.

► There is a global *p*-adic height *h*: X(Q_p) → Q_p, which decomposes into local heights

$$h=h_p+\sum_{\ell\neq p}h_\ell.$$

- $\rho = h h_p$ is locally analytic, and the h_ℓ have finite image on $X(\mathbb{Q})$ depending on the reduction at ℓ .
- If r = g, we use the quadratic Chabauty method (depending on modularity):

$$X(\mathbb{Q}) \subseteq X(\mathbb{Q}_p)_2 := \left\{ x \in X(\mathbb{Q}_p) : h(x) - h_p(x) \in T \right\} \subseteq X(\mathbb{Q}_p),$$

where $T = \{0\}$ if all $h_{\ell} = 0$ for $\ell \neq p$.

Input:

- ▶ a plane affine patch Y : Q(x, y) = 0 of a modular curve X/\mathbb{Q} that satisfies $r = g \ge 2$ and is monic in y
- a prime p of good reduction for X/Q (such that the Hecke operator T_p generates End(J) ⊗_Z Q).

On low genus $X_0^+(N)$ for prime levels N

The modular curve $X_0^+(N)$ parametrizes pairs of elliptic curves together with a cyclic isogeny of degree N.

- The \mathbb{Q} -rational points on $X_0^+(N)$ are
 - cusp
 - CM points
 - the exceptional points

The canonical models of $X_0^+(N)$ were found in Galbraith's thesis and his subsequent work. Crucial: $\Omega^1(X_0(N)) \cong S_2(\Gamma_0(N))$.

Curves $X_0^+(N)$ typically satisfy that the rank of their Jacobian r is equal to their genus g.

Genus 2 curves are hyperelliptic curves.

Genus 3 curve is a hyperelliptic curve or a smooth plane quartic.

The set of \mathbb{Q} -rational points on genus 2 and 3 curves $X_0^+(N)$ for prime N was provably determined by Balakrishnan–Dogra–Müller–Tuitman–Vonk [2].

(If not hyperelliptic:)

Genus 4 curve is an intersection of a quadric and a cubic in \mathbb{P}^3 .

(Each our) genus 5 curve is a complete intersection of 3 quadrics in $\mathbb{P}^4.$

(Each our) genus 6 curve is an intersection of 6 quadrics in \mathbb{P}^5 .

Start: the image of $X_0^+(N)$ in \mathbb{P}^{g-1} .

Goal: a suitable plane model.

We find two rational maps $\tau_x, \tau_y \colon X_0^+(N) \to \mathbb{P}^1$ such that the product

$$au_x imes au_y \colon X_0^+(N) o \mathbb{P}^1 imes \mathbb{P}^1$$

is a birational map onto its image.

Canonical model for $X_0^+(137)$ is

$$\begin{split} XY + WY + 2Y^2 + 2WZ + XZ + 6YZ + 3Z^2 &= 0, \\ X^3 + WX^2 + 6X^2Z - 2XY^2 - 5XYZ + XZW + 13XZ^2 + 2Y^3 \\ &+ 3WY^2 + W^2Y + 3WYZ - 6YZ^2 + ZW^2 - 4Z^2W + 14Z^3 = 0, \end{split}$$

The map we use is given by $x_1 = Z, x_2 = Y, y_1 = 42Z, y_2 = W + X + 2Y + Z,$ $\tau_x = [x_1 : x_2], \tau_y = [y_1 : y_2].$ Our model_equation_finder takes this map as an input, together with the canonical model.

The image curve is

$$y^{3} + (50x^{3} + 32x^{2} - 4x - 3)y^{2}$$

+ (966x⁶ + 1377x⁵ + 459x⁴ - 115x³ - 66x² + x + 2)y
+ (7056x⁹ + 16128x⁸ + 12744x⁷ + 2856x⁶
- 1239x⁵ - 678x⁴ - 35x³ + 28x² + 4x) = 0.

Classification of points on $X_0^+(137)$

Nine known rational points are

Cusp,
$$[1: 0: 0: 0]$$

 $D = -4$, $[2: -4: -3: 2]$
 $D = -7$, $[2: -1: -2: 1]$
 $D = -8$, $[1: -1: 0: 0]$
 $D = -11$, $[1: 1: -1: 0]$

$$D = -16, [2:0: -1:0]$$

$$D = -19, [1: -2: -1:1]$$

$$D = -28, [0:1:2: -1]$$

Exceptional, [19:2: -16:4]

Using the plane model Q = 0 and prime 5, QC confirms that the images of these 9 points are the only \mathbb{Q} -rational points outside the disk at infinity.

Theorem (A.-Arul-Beneish-Chen-Chidambaram-Keller-Wen) For prime level N, the only curves $X_0^+(N)$ of genus 4 that have exceptional rational points are $X_0^+(137)$ and $X_0^+(311)$. For prime level N, there are no exceptional rational points on curves $X_0^+(N)$ of genus 5 and 6. Bars and Gonzalez have determined the automorphism group of $X_0(N)^*$:

Theorem (Bars-Gonzalez, 2021)

Let N be a square-free integer such that the curve $X_0(N)^*$ has genus greater than 3 and is not bielliptic, i.e. $N \neq 370$. Then, the group $\operatorname{Aut}(X_0(N)^*)$ is not trivial if and only if $N \in \{366, 645\}$. (In both cases, the order of this group is 2 and the genus of the quotient curve by the non trivial involution is 2.)

For our (prime) levels, already Baker and Hasegawa (2003) determined this group.

Hyperelliptic curves $X_0(N)^*$

Theorem (Hasegawa, 1997)

There are 64 values of N for which $X_0(N)^*$ is hyperelliptic.

There are 7 values of N for which $X_0(N)^*$ is hyperelliptic with genus $g \ge 3$ (, namely

$$g = 3:$$
 136, 171, 207, 252, 315,
 $g = 4:$ 176,
 $g = 5:$ 279).

For the following levels N the curve $X_0(N)^*$ has genus 2:

67,	73,	85,	88,	93,	103,	104,	106,	107,	112,
115,	116,	117,	121,	122,	125,	129,	133,	134,	135,
146,	147,	153,	154,	158,	161,	165,	166,	167,	168,
170,	177,	180,	184,	186,	191,	198,	204,	205,	206,
209,	213,	215,	221,	230,	255,	266,	276,	284,	285,
286,	287,	299,	330,	357,	380,	390.			

Balakrishnan-Dogra-Müller-Tuitman-Vonk using quadratic Chabauty

Bars, González, and Xarles using elliptic curve Chabauty

rank is 0 or 1, we can use classical Chabauty techniques

Arul and Müller using quadratic Chabauty

There are 15 remaining levels, which we also address in our ANTS paper (joint with Chidambaram, Keller, Padurariu).

Theorem (Stoll, 2006)

Let C be a nice curve of genus $g \ge 2$. Let $r = \operatorname{rk} J_C(\mathbb{Q})$ and p a prime of good reduction for C. If r < g and p > 2r + 2, then

 $|C(\mathbb{Q})| \leq |C(\mathbb{F}_p)| + 2r.$

The levels where we had to compute annihilating differentials:

Ν	g	r	р	$\#X_0(N)^*(\mathbb{Q})$
171	3	1	5	6
176	4	1	3	5
279	5	2	5	6

This computation is done using an implementation by Balakrishnan-Tuitman called effective_chabauty.

lf

$$N \in \{134, 146, 206\},\$$

then the curves can be addressed using the observation

$$X_0(134)^* \cong X_0(67)^* = X_0(67)^+$$

 $X_0(146)^* \cong X_0(73)^* = X_0(73)^+$
 $X_0(206)^* \cong X_0(103)^* = X_0(103)^+$

Also,

$$X_0(266)^* \cong X_0(133)^*,$$

thus the remaining cases are

 $N \in \{133, 147, 166, 177, 205, 213, 221, 255, 287, 299, 330\}.$

Method	Levels N			
Classical Chabauty	88, 104, 112, 116, 117, 121, 135, 136, 153, 168, 171, 176, 180, 184, 198, 204, 276, 279, 284, 380			
Exceptional isomorphisms	134, 146, 206, 266			
Elliptic curve quotient	207, 252, 315			
Elliptic curve Chabauty	147, 255, 330			
Quadratic Chabauty	$G = \{133, 177, 205, 213, 221, 287, 299\}$			

Table: Levels N and methods we applied to determine $X_0(N)^*(\mathbb{Q})$

- Mordell–Weil Sieve: use local information for additional primes
- quotients: finding rank 0 elliptic curve which is a quotient of the starting curve
- Elliptic curve Chabauty: using higher genera coverings in hope of getting r < g</p>

Theorem 1 (A.-Chidambaram-Keller-Padurariu, 2022) Let N be such that $X_0(N)^*$ is hyperelliptic. Then $X_0(N)^*(\mathbb{Q})$ consists only of the known points of small height.

More precisely, let N be a square-free positive integer such that $X_0(N)^*$ is of genus 2. If $X_0(N)^*$ has no exceptional rational points, then $N \in \{67, 107, 146, 167, 205, 213, 390\}$.

For each of the remaining 32 levels $N \in \{73, 85, 93, 103, 106, 115, 122, 129, 133, 134, 154, 158, 161, 165, 166, 170, 177, 186, 191, 206, 209, 215, 221, 230, 255, 266, 285, 286, 287, 299, 330, 357\}$, there is at least one exceptional rational point.

- Exceptional rational points exist on most of the hyperelliptic curves X₀(N)*, but almost all of them arise as the image of a cusp or CM point under the hyperelliptic involution.
- ► The only curves that have an exceptional rational point not arising in this way are X₀(129)* and X₀(286)*.
- Furthermore, the curve $X_0(129)^*$ has automorphisms which explain all the exceptional rational points on this curve.

(WIP:) Padurariu and Voight are classifying exceptional isomorphisms. They show that there are only finitely many squarefree levels $N_1 \neq N_2$ with existing Atkin-Lehner subgroups W_1 and W_2 so that

$$X_0(N_1)/W_1 \cong X_0(N_2)/W_2$$

and are working on giving a complete list of such isomorphisms.

Computing quadratic points on $X_0(N)$

Quadratic isogenies conjecture: There exists a constant C such that if K is a quadratic field and N > C is an integer, then any $P \in X_0(N)(K)$ is either a cusp or a CM-point.

C does not depend on K.

The Modular Approach to Diophantine equations requires knowledge of quadratic points (Freitas–Siksek, Khawaja–Jarvis, Michaud-Jacobs). A pair of quadratic points gives rise to a rational point on the symmetric square of $X_0(N)$, i. e. an effective degree 2 divisor $Q + Q^{\sigma}$.

Abramovich–Harris: A smooth projective curve X/\mathbb{Q} of genus ≥ 2 has infinitely many quadratic points if and only if it is hyperelliptic over \mathbb{Q} or if it is bielliptic with a degree 2 morphism $X \to E$ where E/\mathbb{Q} is an elliptic curve of positive rank over \mathbb{Q} .

All quadratic points have been determined in the following cases.

- 1. Bruin–Najman: the hyperelliptic $X_0(N)$ with rk $J_0(N)(\mathbb{Q}) = 0$.
- 2. Ozman–Siksek: The non-hyperelliptic $X_0(N)$ with $g(X_0(N)) \leq 5$ and rk $J_0(N)(\mathbb{Q}) = 0$.
- 3. Box: The $X_0(N)$ with $g(X_0(N)) \leq 5$ and rk $J_0(N)(\mathbb{Q}) > 0$.
- 4. Najman–Vukorepa: The bielliptic $X_0(N)$ which have not been already dealt with in (1.)–(3.).

Two broad methods were used.

- Mordell–Weil sieve with different variations
- ▶ going-down method $(X_0(dM) \rightarrow X_0(M))$

In a joint work with Keller, Michaud-Jacobs, Najman, Ozman and Vukorepa we extend these methods with new techniques:

• simultaneously diagonalized models of $X_0(N)$

- faster computation of the equations for the *j*-map by improving on the known (Sturm) bound
- fast method for verifying nonsingularity at a given prime.

Our results

We provably find all the quadratic points on $X_0(N)$ of genus up to 8, and genus up to 10 with N prime.

Point	Field	<i>j</i> -invariant	СМ
 P_1	$\mathbb{Q}(\sqrt{-7})$	-3375	-7
P_2	$\mathbb{Q}(\sqrt{-7})$	-3375	-7
P_3	$\mathbb{Q}(\sqrt{-7})$	-3375	-7
P_4	$\mathbb{Q}(\sqrt{-7})$	16581375	-28
P_5	$\mathbb{Q}(\sqrt{-1})$	1728	-4
P_6	$\mathbb{Q}(\sqrt{-1})$	1728	-4
P_7	$\mathbb{Q}(\sqrt{-1})$	287496	-16
P_8	$\mathbb{Q}(\sqrt{-3})$	54000	-12
P_9	$\mathbb{Q}(\sqrt{-3})$	0	-3
P_{10}	$\mathbb{Q}(\sqrt{37})$	$-3260047059360000\sqrt{37}+19830091900536000$	-148

 $J_0(74)(\mathbb{Q}) \cong \mathbb{Z}^2 imes \mathbb{Z}/3\mathbb{Z} imes \mathbb{Z}/171\mathbb{Z}$

Low degree points on modular curves and their quotients

Box, Gajović and Goodman find all the cubic points on $X_0(N)$ for $N \in \{53, 57, 61, 65, 67, 73\}$, and all the quartic points on $X_0(65)$.

Possible future work:

• classifying points on hyperelliptic $X_0(N)^*$ for non-squarefree N

• higher genus $X_0(N)^*$ or

- J. Balakrishnan, N. Dogra, J. S. Müller, J. Tuitman, J. Vonk, Explicit Chabauty-Kim for the split Cartan modular curve of level 13, Annals of Mathematics 189-3, 885–944, 2019
- J. Balakrishnan, N. Dogra, J. S. Müller, J. Tuitman, J. Vonk, Quadratic Chabauty for modular curves: Algorithms and examples, Compositio mathematica 159-6, 1111–1152, 2023
- F. Bars, J. González, X. Xarles, <u>Hyperelliptic parametrizations of</u> <u>Q-curves</u>, The Ramanujan Journal 56-1, 103–120, 2021
- S. D. Galbraith, <u>Equations for Modular Curves</u>, PhD thesis, University of Oxford