Torsion group Z/6Z, rank = 9


Klagsbrun (2020)

y2 + xy = x3 - 801598222309406030167646512525x 
	    + 1340218010187071010144873439749301626926500625

	Torsion points: 

O, [-1341797659453694, 670898829726847], 
[40442310512450, -36164425532426234145025], 
[40442310512450, 36164425491983923632575], 
[1985891276172650, 87064446031542861779975], 
[1985891276172650, -87064448017434137952625]

	Independent points of infinite order:

P1 = [790071801566192, 34642044937854378014327]
P2 = [-726457590523390, -39232179492604220813185]
P3 = [-1339807100575790, -3023236219045337181425]
P4 = [625652233410050, 32918110979399066318975]
P5 = [209151625439330, 34376032998628737907295]
P6 = [989978630755400, 38947259601397055558375]
P7 = [1119915446189750, 42977966010216237307475]
P8 = [3840854243430050, 234355065188019636758975]
P9 = [3153193539638450, 173676878795099877156575]

Some curves with torsion group Z/6Z and rank = 6, 7 or 8
High rank curves with prescribed torsion Andrej Dujella home page