Torsion group Z/2Z × Z/2Z, rank = 14


Elkies (2005)

y2 = x3 + x2 - 126805284556646749335939083075808898286800006041x
    + 6437933136993997783664151467830511224300392764380156814845149031129959	 

	Torsion points: 

O, [-379187943064907952152101, 0], 
[51870834651609429682821, 0], 
[327317108413298522469279, 0]

	Independent points of infinite order:

P1 = [-81970142887190856673101, 127598646111012566660826968605543800]
P2 = [-189841345734961210155471, 153847284398716351048583584847780100]
P3 = [-169978767562208206585641, 151924256617426548755962219254153720]
P4 = [330146201149265817802419, 23631234300896247709645396196927880]
P5 = [33932177644287702305715, 46628563736499124960967519990139912]
P6 = [5040642034464253787296671, 11288943893314536628860892480063576320]
P7 = [870039962976637951825425, 744785886114577052424857904897681972]
P8 = [-94766107666974777578601, 132679005282070753002699166761858600]
P9 = [36383241902220788682821, 43272482685006943024094711026446000]
P10 = [327328151981619918488919, 1466030136187066302988802308829880]
P11 = [-351953105333062185489054, 86433024924668666503453219833567375]
P12 = [8755000490564937382613510769/64, 819186508720383208130501627010616119714345/512]
P13 = [-214921905990474863361741, 154154524218964374569895225646078920]
P14 = [-306381817107001718214441, 128564230144636012650749795989468680]

Torsion group Z/2Z × Z/2Z, rank = 12


Eroshkin (2008)

y2 + xy = x3 - 1209873315556653510389989204544209972082084x
	   + 331058311839965956052748107957148273288865814054655695750098704	 

	Torsion points: 

O, [922497435957373507528, -461248717978686753764], 
[294808274612286630856, -147404137306143315428], 
[-4869222842278640553537/4, 4869222842278640553537/8]

	Independent points of infinite order:

P1 = [954313888714465110856, 6750361075472140689319787650972]
P2 = [-19227536967843022106, -18823232648923373557639136562398]
P3 = [7181676589197025172320, 601704020748289548363284118568708]
P4 = [-128930895710341262696, -22020561326941424170553666911796]
P5 = [5837278004406510341704, 438368588436251112531715221250204]
P6 = [2030263244364035071672, 79015054400461400817522323077804]
P7 = [983416510666458000520, 9608273788334829529339520513308]
P8 = [-477578685523836137672, -28283231850374324028595134427604]
P9 = [224964958024936465672, 8382393215379522545608441887004]
P10 = [7048140466716542287624/25, 439674172988024494810579430888108/125]
P11 = [-76496145458495433471695/64, -4271175174781071803481436995763861/512]
P12 = [-29781155673654532760, -19158896731680436660803850599908]

Dujella - Peral (2014)

y2 + xy + y = x3 + x2- 3303894515586689289541165506478574062530571840x 
      + 73094841061617585831898118162636503049865840051589473263026790881505

	Torsion points:

O, [132610937849047910347091/4, -132610937849047910347095/8], 
[-66371614633295279650987, 33185807316647639825493], [33218880171033302064213, -16609440085516651032107] 

	Independent points of infinite order:

P1 = [33151038590169230292533, 3383806319136974828197515435573]
P2 = [33572549493331599248623, 121816581295680995324783410946193]
P3 = [306898140977130394450588560992635047/4772009667049, 117297955335368625496935756522419248934592887731061701/10424421713600871157]
P4 = [663312755427770569872281935777290639422324457/18213625043836119697849, 2547480349937890638669455080011430165638996676394034418733554686709/2458071930829843203585073287528493]
P5 = [-712193533971690588014645351136074736233809/15532988823783777025, -693122825045313208461710102672700797001483167003820263668513599/61218480337628910973150997375]
P6 = [122651926797903792319957790063583887070687331/1871258819291879164225, 951371514898518992754176322085587627025719562592471973990962346049/80947006042793135757121742406625]
P7 = [6013502651596053841138141409884147136177610773/229180870931455389051361, 231937778928762559470466280458594449100579259187849401225463132980187/109715389249577439839351636705085359]
P8 = [35706349423016729694230265181288056637513231093/1534332810745912581121, 6747095426043638771880721487973735231172049790335232363868031089671563/60100676207335479804716326712831]
P9 = [1300755010066489922660496026380772430389606164277/49373592882931731480644449, 722626060793412996794913885431616092486161192981526261453879299624925019/346930192848834494466250798927552946543]
P10 = [837216331305021737653338857710554805515737/4027931342491193344, 739412171497654992075122480209756681574982936959687903290573821/8083940137656313939548700672]
P11 = [12927256930098224603475640419226809558579200868067/391005948216883172572584964, 292053656046622432560331635383168497445650930618179067223558962364956389/7731700922147623113559871775503099335688]
P12 = [10273017302992813299226865183478738340078733362319965193/298699314060535229834240411504896, 1976692760486127154940065850757723220759622263922329000687552515485771452866069117/5162396265435923784805436423041321159958636498944]

Torsion group Z/2Z × Z/2Z, rank = 11


Elkies (2005)

y2 + xy + y = x3 + x2 - 16343354562559064151871130832020659x
	       - 42639589563151841387449703830240754991749490260239	 

	Torsion points: 

O, [-2610074357776989, 1305037178888494], 
[129126182520511139, -64563091260255570], 
[-506064432650936605/4, 506064432650936601/8]

	Independent points of infinite order:

P1 = [130653317274865511, 7234420939567848633102594]
P2 = [-22186804067557677, 17579694740469962775028750]
P3 = [139775106390969155, 20093873983693962817243182]
P4 = [-25647634107593293, 18964644631530992733687630]
P5 = [328271798465596355, 173111658097482014177029902]
P6 = [37556087469341550939, 230153718733724867674760556670]
P7 = [-8335220673475395, 9644002299480703776331702]
P8 = [-168173352412951833/4, 191026199012339077271762783/8]
P9 = [-448462446268693391341/4225, 6117521820747245553485300994318/274625]
P10 = [142310393908805129683363/316969, 51449713188219030031744775657252370/178453547]
P11 = [46369806753984224395499/25, 9985111709083325589339263583856758/125]

Dujella - Kulesz (2006)

y2 = x3 - 315631503507622339923146392582227x 
      + 2072228053755856864158196203880686412361893003346

	Torsion points:

O, [-20422955991534194, 0], [11887382209472497, 0], [8535573782061697, 0] 

	Independent points of infinite order:

P1 = [-20230370204964983, -421816927565146336143480]
P2 = [-18385457713072919, -1288608689198829837436920]
P3 = [15615691751642497, -975349962521333965224000]
P4 = [301276352453444473/4, -161112473370726659001899595/8]
P5 = [33000572294573513/4, 1380268510109424490727725/8]
P6 = [6179239441242217, 598169974517352025641720]
P7 = [41142281826465527544193/2879809, 3381886289254955378457102713670240/4887035873]
P8 = [299042790321073687, -163248467182728124569159690]
P9 = [6486704984610865, 545676559760580599572704]
P10 = [204594166513207396346233/24039409, 5800730753279830273971505975698120/117865222327]
P11 = [-548808587980476047/64, 1042804094168807838620125065/512]

Aguirre - Dujella - Peral (2010)

y2 + xy = x3 - 73574518277152391654805918684486692802992607569057295x 
         + 7681347096250434784704271660546179938634013485442212852416929087393007502428025

	Torsion points:

O, [156339069543247893509361990, -78169534771623946754680995], 
[-1252832082037678783947311665/4, 1252832082037678783947311665/8], 
[156868950966171802477465926, -78434475483085901238732963] 

	Independent points of infinite order:

P1 = [-96490147198544316312605178, -3725883290848296167242298847189026772963]
P2 = [157045999711359776806728390, 7671864836708298150632180846298640605]
P3 = [156997883028776883959095590, 6319835063397019056722778710751189405]
P4 = [46698769733548625705560422, 2085029285874296056233476777571739979037]
P5 = [-308896882882315715474855610, -966532344180489061861271440873059295395]
P6 = [156136150103191936263340590, 8354116508674144913183660215852240005]
P7 = [156267757321845292813316826, 4486377025536891950549477651414740257]
P8 = [343825750096694436690459462, 4798988266425140641310061251070226699101]
P9 = [-739295378354559649250200650/361, -19195414211852131925770222856440783984142145/6859]
P10 = [-220105363296685351294652280, -3634857231341067718879240177092394435995]
P11 = [141495941651991315141372662765910/896809, 21063189699840212421691167743932058274169131615/849278123]

Aguirre - Dujella - Peral (2010)

y2 + xy = x3 + x2 - 85410148429528838113064973147497868527637x 
         + 9417959408910091992056619228397233938042315542716439821913629

	Torsion points:

O, [187730162413280809858, -93865081206640404929], 
[595956685687388521131/4, -595956685687388521131/8], 
[-336719333835127940142, 168359666917563970071]

	Independent points of infinite order:

P1 = [-88291577656194741642, -4033694058765621728866261579929]
P2 = [132528792265728660983, 652974346675488175822158820071]
P3 = [189017660415735476733, 164604668668583485247330704446]
P4 = [231479176857636247358, 1431973063223311302410325407571]
P5 = [-180297353866722177267, -4353875583289214026458585211554]
P6 = [909604797725054454039, 26159474457841141855998719225058]
P7 = [756047350491789564987/4, 1313753394405646302437152995393/8]
P8 = [55630593261979172358, 2199705816140670969296027170071]
P9 = [-1273208682650879588693/4, -16694920515417325034029558911307/8]
P10 = [1080524808274356861913, 34331901735067855866097775725846]
P11 = [204885642862796148902747/2209, 157250952026186871978974423595399558/103823]

Dujella - Peral (2014)

y2 = x3 - x2 - 29797021265017436449821856011551140x 
         + 1979714607796490905256544266377400528772910804668100

	Torsion points:

O, [-199322010981537695, 0], [99931595077156130, 0], [99390415904381566, 0] 

	Independent points of infinite order:

P1 = [1635170664867066994/9, 1367012517430167116484033520/27]
P2 = [4801548950187728127505/44944, 37789618017822058196180161162065/9528128]
P3 = [1441987883963814347705/10816, 21836052079526707962074209333875/1124864]
P4 = [51212457254422639753/144, 329521504537790114570319446819/1728]
P5 = [159263309184052522901186/96721, 63222455934640328170016207725064640/30080231]
P6 = [92243213779408575750337/913936, 593383405779682938739547907965433/873722816]
P7 = [10456416529466843265421825/87385104, 9225413026793955032809843534418269145/816875952192]
P8 = [13105214273528788108960542337/109881642256, 403034662539770654675464082423270984188953/36424006301587904]
P9 = [458541098155493436693560856857/4569487668496, 3379258894998752686987148704375575405602997/9767901341733115456]
P10 = [128311697709064629898695634/506565049, 1178456149617053271044446551664287699120/11401259557843]
P11 = [25543503174858602102085200705345/236001736073104, 17229429638555197348560541356131924702080613625/3625540798159177088192]

Dujella - Peral (2017)

y2 = x3 + x2 - 174258153488574589211899386409790816x 
         + 27756676145085235899292977120423523763162467559408820

	Torsion points:

O, [-481557415530090293, 0], [259081580478353122, 0], [222475835051737170, 0] 

	Independent points of infinite order:

P1 = [-35466797989096244, 184098998935230450190970526]
P2 = [189678220163764642, 39088488994282012946173920]
P3 = [222473647690393420, 237434476071108132209250]
P4 = [134978404950407284, 81821653717813796960012994]
P5 = [-196911027537259253, 233313114343097192019257400]
P6 = [214143573932293612, 16139855712475798887153570]
P7 = [-480359307836711708, 24953208402585559438804770]
P8 = [195006133672111879996/49, 2708736034275744821127185002542/343]
P9 = [259257208441353274, 2187588221159705993845944]
P10 = [-217114530079972958, 235278882160710356570303520]
P11 = [654563868068042332, 440617747407732849762768450]

Dujella - Peral (2017)

y2 = x3 + x2 - 3383044565362668792508854542324233x 
         + 75737263950801942103904570668638566598532431572663

	Torsion points:

O, [33569207139800813, 0], [-67161937901586997, 0], [33592730761786183, 0] 

	Independent points of infinite order:

P1 = [21966937543749263, 3467304529380020399592600]
P2 = [33560959657313363, 5137371389991712861800]
P3 = [34582038915915083, 319292566508771961823200]
P4 = [134483428957332077/4, 96800241541200000930525/8]
P5 = [31780818196317203, 566228347995386167907400]
P6 = [1413627031281777887/49, 502860429284713027048333800/343]
P7 = [9700355475181684787/289, 16274604587975225427493800/4913]
P8 = [33623189883813803, 12873137085655241194800]
P9 = [33548281734503453, 9678428398238096687400]
P10 = [173923494287946441475667/2809, 72533258254815185975583870670539600/148877]
P11 = [-2251179780875766539120038/34421689, 839055527133163935536879014270829625/201952049363]

Dujella - Peral (2017)

y2 = x3 - x2 - 50163588986898268948468352064401x 
         + 56737927985190239949496934742877437522545251185

	Torsion points:

O, [-7591907754445915, 0], [1162364791415103, 0], [6429542963030813, 0] 

	Independent points of infinite order:

P1 = [-484475637910219, 284477152446001008858672]
P2 = [822401256637789, 126647366250077572729312]
P3 = [-88753886282765, 247364998172561245002740]
P4 = [655741766959016, 155323966831302141321603]
P5 = [-5488330501674989, 408330803557522089307228]
P6 = [-212692404682652593/49, 150567701835014156375424720/343]
P7 = [7765644111643485, 368095491563641938713760]
P8 = [7319361658766048, 285819949391879004486615]
P9 = [6669922931624063, 137409361129262555031600]
P10 = [23004955806770853, 3328301870374901578219200]
P11 = [-3789712578770227, 438652434015468631229040]

Dujella - Peral (2017)

y2 = x3 + x2 - 7977969604102927092836990269613644680x 
         + 8553536385785243169364523949398289188905449283550594100

	Torsion points:

O, [1471642492697005494, 0], [-3256470147796170685, 0], [1784827655099165190, 0] 

	Independent points of infinite order:

P1 = [-984048142486506540, 3930819100635430521717292170]
P2 = [219865813990815990, 2609613406782334033646479200]
P3 = [198981032492693190, 2640823754547721254370236000]
P4 = [-523046431458595410, 3547293495901125966835824600]
P5 = [1912284366471788790, 538787101369161261182781600]
P6 = [1344208620899451150, 508258934492965396363625640]
P7 = [119178038488651140, 2757613161989370207496135050]
P8 = [-1285194642769862610, 4084604229675007831346026200]
P9 = [414364460128605390, 2306272930055777531757724200]
P10 = [558514518367003140, 2066868814798457862205063050]
P11 = [3112434946707344508, 3724723407453925712515593606]

Dujella - Peral (2017)

y2 = x3 + x2 - 1621126547570611447901153715482511450x 
         + 23851513456705965717588828081350863606218774264994743

	Torsion points:

O, [-462285056032426069, 0], [273944981028670887, 0], [188340075003755181, 0] 

	Independent points of infinite order:

P1 = [-5714769778455894, 157409540118993556876297725]
P2 = [-144813395183020629, 210453622806182761925599680]
P3 = [363708800700491181, 114028954933146099514668000]
P4 = [322612042172589741, 71617078089077958031533120]
P5 = [295175056500019631, 41448841131666940568196600]
P6 = [-390854057272601694, 165844330421969502629195625]
P7 = [-21222793176088569, 165173962555521029360250000]
P8 = [110074166094996098931, 1154849004975857549983750125000]
P9 = [731028307645895349/4, 144972752653065279671024625/8]
P10 = [146851413844943106, 56673990876326273794023225]
P11 = [3115351550792201586, 5454777187231038900363949665]

Dujella - Peral (2017)

y2 + xy + y = x3 - 440474450756994110470755811415987126x 
         + 112359700106827942022431270950796422996711199577222648

	Torsion points:

O, [371312081826959037, -185656040913479519], 
[-3064933201397142697/4, 3064933201397142693/8], 
[394921218522326637, -197460609261163319]

	Independent points of infinite order:

P1 = [-83834698092714168, -385613188183090474813206929]
P2 = [401385324022728537, 15065891830395937652029981]
P3 = [868269806925678012, 620073456836630055811410931]
P4 = [405323867587784637, 20359561954665515268295681]
P5 = [394921523865119673, 91491516624926721794857]
P6 = [324408915685454637, 60058527517639096320574681]
P7 = [78666748193455428297/121, 422560149937742892038202881651/1331]
P8 = [312484280266626033897/3481, 55696097314215749153564988126599/205379]
P9 = [410238599647675881, 26485355885556302980359901]
P10 = [-1712444706383958194507043/3083536, -2333342889415351179295310121678598979/5414689216]
P11 = [25523416744002046908417/52441, 1383419659065873235093739250155509/12008989]

Dujella - Peral (2017)

y2 = x3 + x2 - 18994872123691599212568265878179540233x 
         + 29136999095328082299683180266492926133473237614663660663

	Torsion points:

O, [1888547062005002333, 0], [-4984064938938782797, 0], [3095517876933780463, 0] 

	Independent points of infinite order:

P1 = [875382756532580153, 3630429310597183177708986900]
P2 = [1343403667993427219, 2458394537293674207439522416]
P3 = [1707167326846524554, 1298066681650456642925396781]
P4 = [5783205269785650707, 10616389853233654701153877968]
P5 = [1339509523181665913, 2469139497975686080704630900]
P6 = [-2941648019324076337, 7717401417348964921743147600]
P7 = [-1993020799864768817, 7686197552417191028211051600]
P8 = [111955265998625753, 5197290292003387681754643300]
P9 = [1694454830078034233, 1347637304444759326591233300]
P10 = [15169348224246468967/9, 37311547652856067006985307200/27]
P11 = [-3110667670876497523, 7623917970768635006408263128]

Torsion group Z/2Z × Z/2Z, rank = 10


Kulesz - Stahlke (2001)

y2 + xy + y = x3 - x2 - 1714604749904870754796311792512x
	       + 863987846305894182849576319611944263064789411	 

	Torsion points: 

O, [-6047860411049445/4, 6047860411049441/8],
[764694378197181, -382347189098591], [747270724565181, -373635362282591]

	Independent points of infinite order:

P1 = [28938350114721, 28537593568952503295929]
P2 = [-637831177169139, -41208351270686047267151]
P3 = [470288287017981, 12713908706455000970209]
P4 = [739467975814461, 665703362939606895649]
P5 = [743194936713661, 444536775384045149089]
P6 = [662227192376181, 4352732643753765396409]
P7 = [319642835865381, 18670434308982518434609]
P8 = [833269414637091, 3718964491188868456819]
P9 = [899477403080961, 7033522514292006656389]
P10 = [-87365822154179, -31829527996324779555551]

Dujella - Kulesz (2001)

y2 = x3 + x2 - 177811805092842843270403396x 
      + 908565466670939591164880997140344023104

	Torsion points:

O, [8113905279824, 0], [-15389878604789, 0], [7275973324964, 0] 

	Independent points of infinite order:

P1 = [7275481150736, 96710276948572560]
P2 = [6994209806714, 2657431313702542650]
P3 = [28957986627413/4, 6796589901911347881/8]
P4 = [-76626273303344/9, 1147194850000603770080/27]
P5 = [330481368118784, 6003052352837864856840] 
P6 = [-1020775285665845/81, 24699786707243866390172/729]
P7 = [12378192719054, 24579647949527544510]
P8 = [2470884588424004/361, 23933898459839013307200/6859]
P9 = [-5710474628265074/1089, 1480317346886703231882430/35937]
P10 = [106519546457641552/14641, 180289796523464571293952/1771561]

Dujella - Kulesz (2001)

y2 = x3 + x2 - 1773535921942955477718336x
      + 892419113191216158578012716419272964

	Torsion points: 

O, [852402965934, 0], [-1534620541669, 0], [682217575734, 0]

	Independent points of infinite order: 

P1 = [879730445262, 114155723149620048]
P2 = [888709182510, 134786983339820448]
P3 = [155666537634, 787471294356578700]
P4 = [246484957697976/289, 69149649256554891150/4913]
P5 = [116338786482, 829254308619428748]
P6 = [3414262679634, 5885389465456907700]
P7 = [110286793997136129/99856, 16723051335641584117067625/31554496]
P8 = [18166546926006879/21025, 217236971956647194216658/3048625] 
P9 = [1860239690354633839689/24641296, 
     80220658918990503622110222057075/122319393344]
P10 = [97633026878740853250/4923961, 962583308829785569066230795228/10926269459] 

Dujella - Kulesz (2001)

y2 + xy = x3 - 9035181921539049674277655x 
	   + 10331090455438547826922930169998866152

	Torsion points: 

O, [1579880391368, -789940195684], [1886468850644, -943234425322]
[-13865396968049/4, 13865396968049/8]

	Independent points of infinite order:

P1 = [-1192655789981, -4405732679347000322]
P2 = [-1535894425831, -4537073679302325922]
P3 = [1573951946219, 96634425169578503]
P4 = [-3046688303548, -3094860249041875702]
P5 = [659123427857, 2159199149931114113]
P6 = [-2519972651731, -4134852402819764947]
P7 = [1046346772519, 1422230454617674678]
P8 = [1504053209435011/25, 58258911526403305422326/125]
P9 = [7863439448351/4, 3263960924390316949/8]
P10 = [40714222883260469/26896, 1545195960311326667536447/4410944]

Dujella - Kulesz (2001)

y2 = x3 + x2 - 4606624676289246397190189696x 
      + 113598678161642896194701558402619903762180 

	Torsion points:

O, [46534348593022, 0], [-77879814564645, 0], [31345465971622, 0] 

	Independent points of infinite order: 

P1 = [-15090247413986, 423883828452966419376]
P2 = [-71642150261978, 275530107577406724000]
P3 = [-39074051985278, 483674093819629215300] 
P4 = [-19697719570286, 443504183666086856124]
P5 = [222003712421104, 3167413423656405436926] 
P6 = [1878093565229377/16, 69820844271189305236425/64]
P7 = [1419449833614206887/121, 1691113741998196935902568750/1331]
P8 = [3732300648948870348396658/2800208889,
     7201311058645710164287060305265973900/148178653779213]
P9 = [886482953733305572714421391481/3803028559690000,
     802390273911857071606703116093751381266195371/234527827338954703000000]
P10 = [651256496300027473958625664459259143/5586888520056836939769,
      449875231656415727585303190343504598798975136676833850/
      417594729152759612246176462211853] 

Dujella - Kulesz (2001)

y2 = x3 - 4292197293121987521684762003x 
    + 102563406884828594588366535559935065416802

	Torsion points: 


O, [44690115590821, 0], [-75206125411202, 0], [30516009820381, 0]

	Independent points of infinite order: 

P1 = [22594640844211, 130834692777220587090]
P2 = [44690290560091, 545298754337383410]
P3 = [25791249573811, 94964831925628318290]
P4 = [2157335941321, 305472970736872740900]
P5 = [26091503878798, 91300319199867878100]
P6 = [47066102144398, 69340363145729332020]
P7 = [530334366313441/256, 1253673805558980502358865/4096]
P8 = [28443761855507161, 4797106935767373757516740]
P9 = [851201222334569/4, 23766363023190689688995/8]
P10 = [25036684812851621/361, 2552344924324355292955840/6859]

Dujella - Kulesz (2001)

y2 = x3 - 165148751775900930482647947x  
    + 769509705521956124189618772191862664714

	Torsion points: 

O, [8834187458993, 0], [5908437769193, 0], [-14742625228186, 0]

	Independent points of infinite order: 

P1 = [106505058467318, 1091467859636811523500]
P2 = [-5832830289747, 39170784071317447220]
P3 = [8839656979089, 614881853659883920]
P4 = [729259097571701/25, 18016233420097643840676/125]
P5 = [4770420274733, 9499514442219135180]
P6 = [-10869593185623/4, 276922364209655320445/8]
P7 = [99632043884097/4, 880332200035664156375/8]
P8 = [8854347742843817/2209, 1361398265477517939653520/103823]
P9 = [733632783518854853/3481, 627230433907168813668036060/205379]
P10 = [301054395864809963/961, 165046827467757996625715730/29791]

Dujella - Kulesz (2001)

y2 = x3 + x2 - 7154303033322414272772961396x 
    + 207987888867609948871673404388414684413280 

	Torsion points: 

O, [35133404225852, 0], [61354372157192, 0], [-96487776383045, 0]

	Independent points of infinite order: 

P1 = [62060625997562, 54910717671858868170]
P2 = [-82375377984968, 488212519633005487320]
P3 = [433460770870934, 8862790727457788870826]
P4 = [28954500508082, 158470826494120214130]
P5 = [284646495230366/25, 44722413870743794074714/125]
P6 = [33235974157682, 83193218145911707470]
P7 = [483168558022626824/361, 335195310642093579760328784/6859]
P8 = [-20550896500938418/361, 4501807569182868717184230/6859]
P9 = [1161416228300178782/17161, 413202712276155539549327670/2248091]
P10 = [123335518261674818575681/1838351376, 
      13648621528659127397570995798116809/78821153597376]

Dujella - Kulesz (2001)

y2 = x3 + x2 - 95579963030600848576013536x 
    + 294629049317302418236572527320388001860 

	Torsion points:

O, [3551022402182, 0], [7504717403582, 0], [-11055739805765, 0] 

	Independent points of infinite order:

P1 = [7504732473506, 33254655409906164]
P2 = [-2554580193274, 22850051335823353824]
P3 = [-246707131390, 17838001349121918900]
P4 = [2233119045074, 9608526305192221836]
P5 = [10292222458232, 20028787225234753950]
P6 = [-143955446454391/16, 1321346629606249579629/64]
P7 = [7511140022032, 687194329353954450]
P8 = [1753605435180482, 73432968844243376603700]
P9 = [2916249747813993376/8649, 4978013910364951587254765798/804357]
P10 = [1405122649160548649/115600, 1197771072630973688504553507/39304000]

Dujella - Kulesz (2002)

y2 = x3 - 23406172222978952620352987816667x 
    + 35275722165104375010694416367459957873101998426 
 	
	Torsion points:

O, [3737286973865617, 0], [1727282927666041, 0], [-5464569901531658, 0]

	Independent points of infinite order:

P1 = [-463245560138918, 214520667244512317878590]
P2 = [328631406798037, 166190284289016193347180]
P3 = [479420752434187, 155449379456489770166970]
P4 = [-5453815505683334, 26642333054562291606150]
P5 = [3738205609187717, 4123145593125006428500]
P6 = [1511494401272965, 57884429406888054442836]
P7 = [4036081505849795, 80957304107655518862506]
P8 = [7165118232276445/121, 245026628721682067597794236/1331]
P9 = [2049516245180593/4, 1224219736293715538895375/8],
P10 = [5548856780496793/9, 3920047502266131355034720/27]

Dujella - Kulesz (2002)

y2 + xy = x3 - 1850530119008207127042731890x  
         + 22943233038968028247403054507391264079475 	

	Torsion points:

O, [34404364149230, -17202182074615],
[-192923830659041/4, 192923830659041/8], [13826593515530, -6913296757765]

	Independent points of infinite order:

P1 = [59164743598847, 347219380531931276972]
P2 = [-48229506944530, -2727465612667084855]
P3 = [496004341421914/9, 8025284813619971341289/27]
P4 = [8519781717181370/121, 654397656909552779709745/1331]
P5 = [35678881191827, 48342328081164373976]
P6 = [15510081677634085/16, 1929738913078097372153365/64]
P7 = [-1452833486098, -160089594909074690599]
P8 = [309669520911295/9, 64547913616059966295/27]
P9 = [467688127575264738425/2209, 10114269199785558686588769074170/103823]
P10 = [259353636576880655/3481, 112238015685035270100221215/205379]

Dujella - Kulesz (2002)

y2 = x3 - 459164104850925949083307023x  
    + 3721574285318517916249384572865336624978

	Torsion points:

O, [-24695407438858, 0], [13676892728759, 0], [11018514710099, 0]

	Independent points of infinite order:

P1 = [22375471102881, 68191661401827129166]
P2 = [14610015866069, 11477141162562814830]
P3 = [-21299294075401, 61958125894491867600]
P4 = [17927575390019, 35380239201055952280]
P5 = [11005002355269, 1135302093868119970]
P6 = [-21950631936883, 56780615018880018630]
P7 = [22860777684563, 71917415605198814976]
P8 = [384795994998389/49, 8402139316645731061938/343] 
P9 = [101902470831619549/9801, 8205520234055973728261050/970299]
P10 = [192496513433729414/10201, 43426133295599147645429280/1030301]

Dujella - Kulesz (2002)

y2 = x3 - x2 - 19613351862529095444140500x  
    + 32417180218045560823093188132585778852

	Torsion points:

O, [2183808720334, 0], [2912666336834, 0], [-5096475057167, 0]

	Independent points of infinite order:

P1 = [3013492508709, 823668580909281250]
P2 = [-2220108328736, 8063392356960348870]
P3 = [-5007963311516, 2245423496309241150]
P4 = [3738925387308, 3369401164461607990]
P5 = [32962572923769/16, 55587408935053070075/64]
P6 = [-7591682767, 5706669617723376120]
P7 = [118751937876781/9, 1228664171759974412050/27] 
P8 = [1594274253771181/484, 20066760097614444730425/10648]
P9 = [294657034603858, 5057389897199959832520]
P10 = [-239839870368159/49, 1145407301143481615800/343]

Elkies (2005)

y2 + xy + y = x3 + x2 - 221524013053903269535173188x  
               + 446695004412134084758084598242369075781

	Torsion points:

O, [-63218668159725/4, 63218668159721/8], 
[2055677392605, -1027838696303], [13748989647325, -6874494823663]

	Independent points of infinite order:

P1 = [-490313617331, 23562541906342172513]
P2 = [-15561673930275, 11201609122794149137]
P3 = [50999575489725, 348993888418180301137]
P4 = [70001671142605, 572681560892726953697]
P5 = [1633509373901, 9444163094253548513]
P6 = [1820977940001, 7024453137233309185]
P7 = [178292392757725, 2372454513920207781137] 
P8 = [64741483317005, 507411258000111894097]
P9 = [-2446756685925, 31209976650183073837]
P10 = [79599117281205, 697964956566483567697]

Dujella - Kulesz (2005)

y2 + xy = x3 + x2 - 256713612058275239239169224283x  
         + 50063495182088203255489466307435135598268937

	Torsion points:

O, [292721772794426, -146360886397213], 
[-2340204314958133/4, 2340204314958133/8], [292329305945106, -146164652972553]

	Independent points of infinite order:

P1 = [-161755542736436, 9346445095386927230501]
P2 = [293144175143249, 17385972755282025680]
P3 = [467566271403017281/1600, -421652576908287236403691/64000]
P4 = [3929697976168511816/12769, -656454755447106195383437205/1442897]
P5 = [65600161507000696/225, -94849165929965756920589/3375]
P6 = [290153737291994, 69926349480979202411]
P7 = [13523676452725451/25, -1042000530560426034240491/125]
P8 = [952165940916700639/3249, -2753611922118177707480339/185193]
P9 = [1252590148188177146/2209, -967388985715335857911159715/103823]
P10 = [2140236562044620231/7225, -67378055653943992687063759/614125]

Dujella - Kulesz (2005)

y2 = x3 - 141914560118510666842590063x  
    + 649593502561127362329127391346645108338

	Torsion points:

O, [7109340940819, 0], [6643736937559, 0], [-13753077878378, 0]

	Independent points of infinite order:

P1 = [9155606949533, 10851248377175915014]
P2 = [6611600560321, -570740477922978174]
P3 = [18305963323754, 64700779708783425130]
P4 = [79816181489674561/9409, 6840606222900417784126590/912673]
P5 = [15689789029693, -47805137774227113894]
P6 = [2369606516204803, 115347683077364742842376]
P7 = [162572150297338111/6889, 58431022418980962316835640/571787]
P8 = [106309810349629, -1089519308205289793370]
P9 = [1129744728094369/49, 33665972536603161782082/343]
P10 = [57327665626075021/5329, -7461453432103140527084790/389017]

Dujella - Kulesz (2005)

y2 + xy + y = x3 - 1201780089828535280941830929x  
             + 15930373701000492601648355896832051393456

	Torsion points:

O, [21324526097463, -10662263048732], 
[-160001753390425/4, 160001753390421/8], [18675912250143, -9337956125072]

	Independent points of infinite order:

P1 = [4351294318308, -103843447786589658737]
P2 = [25202302992258, -40621972483300322522]
P3 = [21355447066548, 2254666476564147343]
P4 = [97409979950890932/289, 30247339363430129154468959/4913]
P5 = [-228215434571678/9, 4684304690047320844781/27]
P6 = [-10547491753361831398/310249, 22856532911331474432475948899/172808693]
P7 = [25831101110826156118407/1211179204, 27964225295130036776858286343529/42151458657608]
P8 = [59927017782482091/3844, 7475515290643696522159901/238328]
P9 = [-167629774002571506283652532/4411516330321, 760222261040605884309612102018971173828/9265776851069345881]
P10 = [2721812273045400730395318/49920518041, 3740874270980625865843740877241035627/11153691425382589]

Dujella - Kulesz (2005)

y2 + xy + y = x3 - 11303247961627273626159263x  
             + 14522016996201389320585192293938087138

	Torsion points:

O, [2073786262623, -1036893131312], 
[-15516164954809/4, 15516164954805/8], [1805254976079, -902627488040]

	Independent points of infinite order:

P1 = [1455915619779, 1073093834384542660]
P2 = [682222211619, 2669871361846133380]
P3 = [32349447761979, 183035874577813973860]
P4 = [27046101035599719/11881, -992766016436500162882280/1295029]
P5 = [1472388782542291/3249, 570582527806390991276900/185193]
P6 = [-1313849330901, -5206227821359807280]
P7 = [9443484246324306/4489, 69501674655672127607155/300763]
P8 = [8326153144791/4, -903905644603571095/8]
P9 = [34874428006414797219/1038361, 204954652917717149364486117440/1058089859]
P10 = [-108149668526163189/27889, -930511084858193804143840/4657463]

Dujella - Kulesz (2005)

y2 = x3 + x2 - 15458107396493793445976576x  
    + 23265483073814739719758614652271227140

	Torsion points:

O, [2131803669982, 0], [-4537164894885, 0], [2405361224902, 0]

	Independent points of infinite order:

P1 = [-1123310385953, 6261973583280061290]
P2 = [1437080495746, 2004693886298575836]
P3 = [-1456566767768, 6533836227413221650]
P4 = [21725045120232, 99705424840471181550]
P5 = [1411301714536, 2064078871420636434]
P6 = [-2780337846014, 6689653063999189284]
P7 = [10927547193640, 34047301896526537710]
P8 = [2128741741840, 75139533281546370]
P9 = [114081239820373/4, 1207471302278126991945/8]
P10 = [1765882795390, 1214456151572860560]

Dujella - Kulesz (2005)

y2 = x3 + x2 - 51842480912718829051424450176x  
    + 4369264394238409935774766530920437221081524

	Torsion points:

O, [-261787336968149, 0], [151941793461434, 0], [109845543506714, 0]

	Independent points of infinite order:

P1 = [258476183232812, 2870190828771702046722]
P2 = [166552782500714, -595735438157294660400]
P3 = [1674442357423348/9, 29129652429728946122006/27]
P4 = [-236815277984998, -1834504189420282179072]
P5 = [701813310369934522/3721, 258872732974570601958703632/226981]
P6 = [-32330246679329206/169, -5930186113285865685078720/2197]
P7 = [19451679477980, 1835265910439861203038]
P8 = [-15099048625776988/961, 67802672827473451110235902/29791]
P9 = [-73764324880763684/729, 57651322943308177426460390/19683]
P10 = [-190570235560164610769/6880129, -43401851933433456984785773713750/18046578367]

Dujella - Kulesz (2006)

y2 + xy + y = x3 - 27576645475830145153904x  
             + 1729915126735191359803368719620106

	Torsion points:

O, [-765422362825/4, 765422362821/8], 
[106351309533, -53175654767], [85004281173, -42502140587]

	Independent points of infinite order:

P1 = [701564334429, 572439898182939937]
P2 = [202305800739, 66564890849359843]
P3 = [-182192216332, 26579710796451438]
P4 = [278734730043, 125295900226327393]
P5 = [162942170538, 39530360962167883]
P6 = [1485480872781/25, 2169098217958859489/125]
P7 = [57264035646, 18399526044504991]
P8 = [155600970168, 34732045952930518]
P9 = [-139942098681, 53370960528399307]
P10 = [617285342297925/5776, 807886298510133737857/438976]

Dujella - Kulesz (2006)

y2 = x3 - 1847328012902153498242621563x  
    + 29507539334265430770255537905996796279162

	Torsion points:

O, [-49438645846122, 0], [28486714006881, 0], [20951931839241, 0]

	Independent points of infinite order:

P1 = [292978291973601, 4963511570504551140960]
P2 = [115928557117919611/441, 38973001436437075457562190/9261]
P3 = [15513146436090459/361, 1177643512752581244089538/6859]
P4 = [100335192796907721/676, 30569649181074834692362515/17576]
P5 = [34973407349824749/121, 6471762075691854446667708/1331]
P6 = [3502702882341741/121, 22630872460498486608060/1331]
P7 = [36219358421974, 100561308505935484168]
P8 = [487430203045298041/13689, 150885385820957102294268784/1601613]
P9 = [-766912524462279/16, 5699540736493283718675/64]
P10 = [28586933662251, 7726797426561555510]

Dujella - Kulesz (2006)

y2 + xy + y = x3 - 2527427104077534556054022038x  
             + 47355671625689337837748701149990440355156

	Torsion points:

O, [33149032816225, -16574516408113], 
[-231381478322601/4, 231381478322597/8], [24696336764425, -12348168382213]

	Independent points of infinite order:

P1 = [35352434995060, 46778756374468748252]
P2 = [1824652408390058545/12544, 2332966625856584664267692561/1404928]
P3 = [43437587712481, 139747676813065838399]
P4 = [10987507793800, 144609873485512726787]
P5 = [43526726028341695/529, 7660909384024753073625019/12167]
P6 = [419169835396495, 8522762203297987688237]
P7 = [62245047921382, 362216653717779451928]
P8 = [2217036264204688249/55225, 1335638930533044585211794773/12977875]
P9 = [21290402126401084300/966289, 46189904590560418106744766769/949862087]
P10 = [60567006501967954/2809, 7995334784463820333245328/148877]

Dujella - Kulesz (2006)

y2 = x3 + x2 - 2095665816571588568797400x  
    + 1124962987529349713405567597055502500

	Torsion points:

O, [701601988450, 0], [-1664757539901, 0], [963155551450, 0]

	Independent points of infinite order:

P1 = [961248978649690/5041, 306276905122607136722160/357911]
P2 = [-27974846195/4, 8540235603969152235/8]
P3 = [7295460956775, 19342386334530745050]
P4 = [5767532982550/121, 1347653238826929852900/1331]
P5 = [642688629075, 208720106542837500]
P6 = [4296390926841430/961, 268309864661550292745580/29791]
P7 = [-411219864331520/361, 9782372921255366841630/6859]
P8 = [321470470377887400/458329, 3498396695445412509523950/310288733]
P9 = [2686255641325/4, 1144405381680090075/8]
P10 = [5368307441672215/5329, 73945254159228534130230/389017]

Dujella - Kulesz (2006)

y2 = x3 - 3100863785002943696173810803x  
    + 66427343005484655864100186401547159095602

	Torsion points:

O, [-64296256390802, 0], [31550344288681, 0], [32745912102121, 0]

	Independent points of infinite order:

P1 = [35309684865673, 30984052711401709920]
P2 = [39332750459602609/1024, 2070277890560288957452905/32768]
P3 = [-64067666039159, 46000964206630873440]
P4 = [-34536570365796359/625, 4105672576469455102371936/15625]
P5 = [5639646735631247187319/199459129, 103724040155573660563560464574930/2816961278867]
P6 = [1836963087158702/361, 1545639256734732259294012/6859]
P7 = [125459743157226097/3364, 10052861884739276244777135/195112]
P8 = [-211343209870289441/36481, 2021847117957383544294968358/6967871]
P9 = [10392958795177, 187943540125362248448]
P10 = [227658014566057, 3340597176320784412032]

Dujella - Kulesz (2006)

y2 = x3 - 6280507251241335798861762831x  
    + 186425809547577812432369910732392928652210

	Torsion points:

O, [39484794891035, 0], [51750402755279, 0], [-91235197646314, 0]

	Independent points of infinite order:

P1 = [54277502633183, 73753985212864731432]
P2 = [-75687001101403, 477706926466 126510326]
P3 = [63963204131018, 215398594373144567922]
P4 = [642014985539911214753/5276209, 13407493835528883204466071636378/12119452073]
P5 = [303352769631342767/289, 166615657515725784605946144/4913]
P6 = [-90720460435615, 97716986879616663930]
P7 = [2669902606744402451/75625, 1939741997899199565731206176/20796875]
P8 = [15908687661546227723753/405257161, 157643354109231062874003815058978/8158231908091]
P9 = [2337083594500582644954/1247689, 112882987246002303624589472927990/1393668613]
P10 = [-108921030276580834133417602761190135/5139093322454788671529, 
      205127115538038452816882283680266872236422889191269630/368408597214103805049338013192917]

Dujella - Kulesz (2006)

y2 + xy = x3 - 2670166555674217082947943798165685x  
         + 52878128871493544998260665592160035849161863056225

	Torsion points:

O, [-238555790682287761/4, 238555790682287761/8], 
[28218381634847970, -14109190817423985], [31420566035723970, -15710283017861985]

	Independent points of infinite order:

P1 = [-57995505071935180, 3559374439279487416453415]
P2 = [44227254929853216, 4614619939666569027467217]
P3 = [81765521253735855/4, 20919151206463255684118745/8]
P4 = [61680535740769182, 11083488293603533305500307]
P5 = [32029028543187150, 461025632815368879585135]
P6 = [25339126542208950, 1219822682588552502541215]
P7 = [27560262085920780, 470673132516620018439255]
P8 = [1652332882016576505/64, 548927671128600790594370055/512]
P9 = [632714276175357986870/19321, 2001142976684787975336601338785/2685619]
P10 = [26684108177440422, 792029979265052963324607]

Dujella - Kulesz (2006)

y2 + xy = x3 - 5506040231557883468932766850390x  
         + 4908472221374778356914283342498849265100430100

	Torsion points:

O, [-10822372890515041/4, 10822372890515041/8], 
[1478749843932180, -739374921966090], [1226843378696580, -613421689348290]

	Independent points of infinite order:

P1 = [1220491800283470, 2537742226864107247260]
P2 = [296018036421630857190/243049, 361766838810855827158639233870/119823157]
P3 = [2189709254943546, 57888868271374850580582]
P4 = [5198293274759312347428/896809, 347836487882959066297301779560906/849278123]
P5 = [-204653734737312845820/78961, 933036655679863226903706468510/22188041]
P6 = [230200501640281112130/64009, 2879757654326665300408692606270/16194277]
P7 = [143550928142322750/121, 9032602877238597803549940/1331]
P8 = [230589428143104825/256, 106791866943047036249057835/4096]
P9 = [5489708062823562, 374332298993260576360422]
P10 = [743968187078702340/289, 433737131220537594156315390/4913]

Dujella - Kulesz (2006)

y2 + xy + y = x3 - x2 - 54006420424320643845071809947713x  
             + 149350163573370676609380429389684902810993129617

	Torsion points:

O, [4750617860740103, -2375308930370052], 
[-33858622405682101/4, 33858622405682097/8], [3714037740680423, -1857018870340212]

	Independent points of infinite order:

P1 = [2886005944181117, 132381810707779150933242]
P2 = [3501662046952673, 56338618369474831204488]
P3 = [7473595143669035, 403934262719170848544788]
P4 = [-7427623090211833, 375114142636686076006140]
P5 = [7501325516633993, 407834698609299494770638]
P6 = [13498928796598350787/2601, 12480836932215545359294471840/132651]
P7 = [104326015458962253/16, 17459659140444357597500697/64]
P8 = [1906926548670716510823887/238733401, 1759780289282407054587696367904840772/3688669778851]
P9 = [-5371648021270504576342851/1100580625, 19887159956194199093715121045367186168/36511762234375]
P10 = [28076356766197917502493267/8107741849, 45340335683040311203640392035431145276/730045399309507]

Dujella - Kulesz (2006)

y2 = x3 + x2 - 1646798478200731455951780206240x  
    + 810450381726359418240260982572840154346977588

	Torsion points:

O, [-1481200902178293, 0], [777088719620146, 0], [704112182558146, 0]

	Independent points of infinite order:

P1 = [-1455770132153918, 11074533333029002627200]
P2 = [-1353954154553009, 23623765534623520228410]
P3 = [33077231011254964/49, 867426790517975865680910/343]
P4 = [1208680370588026, 24202654763635704877560]
P5 = [782888194315389181/36, 691527301306639562971931725/216]
P6 = [98002896970431113986/9025, 963704221172095704070185122784/857375]
P7 = [6565596286747367938/9409, 953135818403350483897924320/912673]
P8 = [389488530929448431788/564001, 675333211156762700495006184222/423564751]
P9 = [231015012120140119614882834/230329925329, 1431516891993488388806348851361896840800/110541550073370983]
P10 = [88146970794472357309223219284/23671367894329, 
      24785149475816658649630156259856255641055750/115168850657740453267]

Dujella - Kulesz (2006)

y2 = x3 - 166477435590420718988594907x  
    + 822409022576847684085477323335087731594

	Torsion points:

O, [7886478190013, 0], [7003451359613, 0], [-14889929549626, 0]

	Independent points of infinite order:

P1 = [1518938469935903, 59196312498916593686070]
P2 = [939753018175889/100, 9373460920049141092287/1000]
P3 = [-1165039360777, 31855618975719168630]
P4 = [21364925675596097/2704, 77250122641829136977505/140608]
P5 = [1422355918967431407/134689, 769028793494478490800548150/49430863]
P6 = [6362865919613, 4554427507047792000]
P7 = [387797438584301/49, 260423998413625837440/343]
P8 = [3298864965533, 17581876291583192160]
P9 = [219899218795061/25, 776757992213594514816/125]
P10 = [705059072322290618/89401, 75708400030084354499010/26730899]

Dujella - Kulesz (2006)

y2 + xy + y = x3 - 128138869724315629885857078x  
             + 555277284945263391493519434335136232756

	Torsion points:

O, [6924470940905, -3462235470453], 
[6138683567105, -3069341783553], [-52252618032041/4, 52252618032037/8]

	Independent points of infinite order:

P1 = [1089765713877995, 35972975803803938829807]
P2 = [3097744092155, 13713563551987534047]
P3 = [7054658858345, 1548875883096343707]
P4 = [7869584534420, 5851818570187614447]
P5 = [188046773760113977295/26822041, 170887047173205402781748942823/138911350339]
P6 = [15838416209585791871/1267876, 42923276124544332745762790379/1427628376]
P7 = [505487845549360415/68644, 59643068564319015237642051/17984728]
P8 = [512860020497067561905/1957201, 11603776457329541614854140656353/2738124199]
P9 = [1046489223400286866017755/22888361521, 1040413420813611142232171432001680493/3462757326150569]
P10 = [3286723573267846570775/16630084, 188125165940161755815887449528879/67817482552]

Dujella - Kulesz (2006)

y2 = x3 + x2 - 67610525824594003037372633360x  
    + 6765721856966365986971860849272847750385508

	Torsion points:

O, [148735703756686, 0], [151505549932486, 0], [-300241253689173, 0]

	Independent points of infinite order:

P1 = [287269769152486, 3324137367238106622000]
P2 = [181315914671368, 683887265104569185478]
P3 = [1498440378015382936, 1834252815835349581269039750]
P4 = [818208618809114506/5041, 93227346541702623592201860/357911]
P5 = [12897759064086586/81, 140716704208075401065660/729]
P6 = [145598385384058, 90898804190274285348]
P7 = [3839704814088406/25, 8465371013329012075104/125]
P8 = [148018466818426, 33483228868721251620]
P9 = [-366059418286222682486/1896129, 9276483361405155812859936829220/2610969633]
P10 = [11430505508830969/64, 318719033440949535713235/512]

Dujella - Kulesz (2006)

y2 = x3 + x2 - 125381643350820044555047895296x  
    + 15369896659737727744798583569349841806575604 

	Torsion points:

O, [255301005093554, 0], [-404232662039189, 0], [148931656945634, 0]

	Independent points of infinite order:

P1 = [538661793621514, 10204304558314702715880]
P2 = [323743339160804, 2951251107664831621650]
P3 = [3211745878308530, 180949814569917579618432]
P4 = [895329398652962, 24916285063224414841632]
P5 = [62146819104644508506/76729, 448434617228530372943257514760/21253933]
P6 = [134897095008524, 954479000052249084270]
P7 = [6374661846704714, 508191757702322077664280]
P8 = [87076813150753656842/201601, 585193431728004057900282054168/90518849]
P9 = [-885880855341120214/2209, 111585336965619266642092200/103823]
P10 = [3041037062347841649122/6497401, 127446031506164507280869512768032/16561875149]

Dujella - Kulesz (2006)

y2 = x3 - 3580337493699884709593350441412523x  
    + 82126769332530027586016964349828016686393237143722 

	Torsion points:

O, [36319566283980121, 0], [-69061691970712442, 0], [32742125686732321, 0]

	Independent points of infinite order:

P1 = [157316863139667409/4, 11727114790127068142913375/8]
P2 = [8931640493413819, 7131689595444004075814238]
P3 = [-13951755483315079, 11373787088040422406446800]
P4 = [32294383104405421, 427397440183627118505300]
P5 = [47564804161042739, 4409062767926226374941262]
P6 = [171110168988850454, 66928142045638986044235212]
P7 = [8097401269076060581/361, 24828689182315063846225124700/6859]
P8 = [30886012259579021, 1003992948205847349358700]
P9 = [20224952174351754829, 90955581859510169552227264788]
P10 = [-39099868672260158207/2304, 1299158197403764605396724657279/110592]

Dujella - Kulesz (2006)

y2 + xy = x3 - 90484566933849488551552142531x  
         + 10059776284195031930661353899532163975354720

	Torsion points:

O, [201227532432928, -100613766216464], [144570199566508, -72285099783254], 
[-1383190927997745/4, 1383190927997745/8]

	Independent points of infinite order:

P1 = [-40581773951367, -3696615620860607702979]
P2 = [-242563665166484, -4211447869324493069630]
P3 = [-302693482110612, -3116901492067387819614]
P4 = [-7227258761777, -3273126049568670706769]
P5 = [471770180549383, 8507195441429882225671]
P6 = [77555547944863, 1873147609483194844351]
P7 = [201647818346613, 114597573898274810601]
P8 = [577489814535349, 12263585211166164834601]
P9 = [19601688646692673, 2744033282395686066522106]
P10 = [5798932744770736/25, 155698791070001985480476/125]

High rank curves with prescribed torsion Andrej Dujella home page