Trivial torsion group, rank ≥ 24


Martin - McMillen (2000)

y2 + xy + y = x3 - 120039822036992245303534619191166796374x  
   + 504224992484910670010801799168082726759443756222911415116 

	Independent points of infinite order: 

P1 = [3502708072571012181, -11257670164631151518489335553]
P2 = [11465667352242779838, -25202826667219277795892445007] 
P3 = [6951643522366348968, 2385693027174105606130508908] 
P4 = [6842515151518070703, -1793695589360325441804548897]
P5 = [23955263915878682727/4, 2805297464980080287550445769/8]
P6 = [5864879778877955778, 1392498205227920842788918853]
P7 = [6823803569166584943, -1685950735477175947351774817]
P8 = [7041412654828066743, -2845842051256635140361736127]
P9 = [-11451575907286171572, -19419747674718296285486720657]
P10 = [5286988283823825378, -4166419593080076325026508232] 
P11 = [7272142121019825303, -3982296007591042639036779647] 
P12 = [27180522378120223419/4, 12121319673349150123720345031/8]
P13 = [5922188321411938518, 1015584426986431591450648873] 
P14 = [26807786527159569093, -128653945656298111235863658717] 
P15 = [111593750389650846885/16, -160322556110976332323392746507/64] 
P16 = [5949539878899294213, 799559054881091588285834743]
P17 = [-1829928525835506297, -26791071611061724689080247647] 
P18 = [475656155255883588, 21147929659213114930930400743] 
P19 = [50628679173833693415/4, 254569647036364982820112668281/8]
P20 = [1500143935183238709184/225, 1735159461835399557099533978893/3375] 
P21 = [265757454726766017891/49, -1223019553062786210915696315251/343]
P22 = [2005024558054813068, -16480371588343085108234888252]
P23 = [2607467890531740394315/9, 133052240936299149963329377671769/27] 
P24 = [-5811874164190604461581/625, 446442624731664835883722248391897/15625] 

High rank curves with prescribed torsion Andrej Dujella home page