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CONTENTS 3IntroductionThe following notes have been written out of the course that professorJean-Fran�cois Mestre taught at McGill and Concordia universities as partof the Number Theory Seminar in april-may 1995.Generally speaking, the course dealt with points on curves and relatedproblems. The focus was drawn to rational points on elliptic curves or onjacobian of curves.The �rst chapter consists of a certain number of tricks to �nd curveswith as many points as possible.Chapter two through six examine elliptic curves of high rank, review-ing the basics and exploring new results also under algebraic constraints(constant j-invariant) or via analytic methods (Weil's explicit formulas).As an application of the previous chapters, chapter seven explains howto construct quadratic �elds with large p-rank.Chapters eight and nine study hyperelliptic curves (especially of genus2), mostly from the elegant viewpoint of the theory of invariants.These notes are essentially self contained provided you don't set o� tocross examine every statement in them (in which case you might also �ndinaccuracies locally...). Since so much is yet to be done on the subject, theaim is for the most to give a taste of the methods used up to date and toleave the door open to new suggestions and improvements.}}}Les notes qui suivent ont �et�e r�edig�ees �a partir du cours que le professeurJean-Fran�cois Mestre donna �a McGill et �a Concordia en avril-mai 1995, dansle cadre du S�eminaire de th�eorie des nombres du Qu�ebec et du Vermont.L'objet du cours �etait principalement l'�etude de courbes d�e�nies sur Qayant beaucoup de points rationnels, et plus particuli�erement l'obtention decourbes elliptiques de rang �elev�e.Le premier chapitre pr�esente plusieurs m�ethodes simples pour construiredes courbes avec le plus possible de points rationnels.Les chapitres deux �a six �etudient, apr�es quelques rappels, les courbeselliptiques de rang �elev�e pour arriver �a de nouveaux r�esultats en faisant aussiusage de m�ethodes analytiques (formules explicites de Weil). De nouveaux



4 CONTENTStravaux concernant les courbes elliptiques de rang �elev�e et invariant constanty sont aussi pr�esent�es.Les r�esultats des chapitres pr�ec�edents s'appliquent pour construire descorps quadratiques ayant un p-rang �elev�e, ce qui est l'objet du chapitre sept.Les chapitres huit et neuf sont consacr�es aux courbes hyperelliptiques(surtout de genre 2), en grande partie par le biais de la th�eorie des invariants.Ces notes de cours se su�sent �a elles-mêmes si le lecteur fait acte defoi pour certaines a�rmations. Il est possible cependant que des r�esultatsinexacts s'y soient gliss�es . . . En fait, vu que beaucoup reste �a d�ecouvrir,l'objectif de ces notes est surtout de familiariser le lecteur avec les m�ethodesemploy�ees jusqu'�a aujourd'hui et de lui laisser la voie libre pour aller plusloin.
Jean-Fran�cois MestreFrancesco Sica



Chapter 1Curves with many pointsThe main goal of this course is to present a range of di�erent topics relatedto curves and points on them de�ned over certain number �elds. The scopeof this chapter is to introduce a certain number of "tricks" to cope withconjectures giving information about the number of points on curves de�nedover a number �eld.1.1 General problems and general statementsThe starting point is Faltings' theorem (ex Mordell conjecture):Theorem 1 (Faltings, 1983) Let C be a curve of genus g � 2 over anumber �eld K. Then C(K) the set of K-rational points of C is �nite.>From this theorem many questions arise:1. E�ectivity:� There is an e�ective bound on the number of points on C(K)(Parshin).� There is no e�ective bound on the height of points of C(K).2. C/Q �xed: Suppose we are given a sequence of number �elds : : : �Kn � Kn+1 � : : :. How does #C(Kn) grow?3. K, g �xed: De�ne B(g;K) = supC=K of genus g#C(K)Then 5



6 CHAPTER 1. CURVES WITH MANY POINTSConjecture 1 B(g;K) <1 if g > 1.It is not even known whether B(2;Q) <1.4. g �xed: It is trivially false that supKB(g;K) <1 . Nonetheless thereis a conjecture:Conjecture 2 There exists a positive constant N = N(g) such thatfor any number �eld K, there exist a �nite number of C=K of genus gwith #C(K) > N(g).A generalization of Faltings' theorem to higher dimensional varieties wasformulated by Lang and Vojta:Conjecture 3 (Lang, Vojta) Let K be a number �eld and V=K a varietyof "general type". Then1) V (K) is not Zariski dense in V (K).2) Moreover 9 W=K, Zariski closed, W � 6= V such that for any number�eld L � K we have V (L)�W (L) is �nite.We have the remarkable result connecting these conjectures to the previousones:Theorem 2 (Caporaso, Harris, Mazur) Lang's �rst conjecture impliesconjecture 1. Lang's second conjecture implies conjecture 2.We give an indication of the proof in the case we have a family of curveswith one parameter.Let V = f(x; y; t) 2 Q3 : f(x; y; t) = 0g for a given f 2 Q[x; y; t] bea surface of general type such that the �ber Vt in t is given by curves ofgenus at least 2. Lang-Vojta's �rst conjecture says that there exists a curveC � V de�ned over Q such that #V (Q) � #C(Q) < 1. This impliesthat C is not vertical, i.e. is not contained in any Vt, otherwise #V (Q) =#fV (Q)�C(Q)g+#C(Q) would be �nite, the �rst term of the sum being�nite by the above, the second by Faltings' theorem. Thus B(g;K) wouldbe trivially �nite for this family of curves.We may therefore suppose that C "depends" on t. Again by Faltings,C(Q)TVt is �nite. We then consider the map �:C �! Q(x; y; t) 7�! t



1.2. HOW TO OBTAIN LOWER BOUNDS ON B(G;K) AND N(G)? 7Clearly B(g;K) over this family of curves is then bounded by deg � +#fV (Q)� C(Q)g. 21.2 How to obtain lower bounds on B(g;K) andN(g)?This section is by no way conventional. We will work through several ex-amples to construct curves with many points. Let's begin with a generalexample:1. Plane curve of degree n: Let xn+ a1xn�1y+ � � � be the equation ofa general curve of degree n. Then we have (n+2)(n+1)=2 parameters(coe�cients) associated to such a curve. We can therefore construct acurve C of degree n which passes through (n + 2)(n + 1)=2 � 1 givenpoints, and C can be expected to be nonsingular if the points are ingeneral position. Hence the genus of C is (n � 1)(n � 2)=2 and wehave produced a family of curves of genus g with g rational pointsapproximately.2. Curves with many automorphisms: Consider the curve C givenin a�ne coordinates by f(x; y) 2 C2 : y2 = f(x)g where f 2 Q[x]is separable of degree 2g + 2. This curve has 2g + 4 coe�cients (onecoming from y), therefore we can choose 2g + 3 general points whichwill lie on such a curve. Since (x; y) 2 C ) (x;�y) 2 C we obtainthat C has 4g + 6 rational points.3. Let P , Q and R be polynomials in one variable of degree � g + 1.Consider the curve C given by the equation y2P + yQ+ R = 0. Thiscurve is birationally equivalent to Y 2 = Q2 � 4PR which is a curve ofgenus g in general. This time we can �x 3(g + 2) � 1 points to lie onC. Since again we have an involution of C we obtain a total of 6g+10rational points on C.This suggests that maybe B(g;K)=g <1. . . At least we can say:Theorem 3 1. We have the following lower bounds on B(g;Q):



8 CHAPTER 1. CURVES WITH MANY POINTS� B(g;Q) � 8g + 16� g � 1 (mod 4)) B(g;Q) � 8g + 24� g � 3 (mod 4)) B(g;Q) � 8g + 40� g � 2 (mod 3)) B(g;Q) � 8g + 322. N(g) � 16(g + 1)We will make wide use of the following lemma:Lemma 1 Let K be any �eld with char K 6= 2. Let p 2 K[x] be monicof degree 2n. Then there exist two unique polynomials q and r in K[x], qmonic, deg q = n, deg r � n� 1, such that p = q2 � r.Proof: In writingp(x) = x2n + a2n�1x2n�1 + � � � = (xn + bn�1xn�1 + � � �)2 � r(x)we see that a2n�i = 2bn�i+ polynomial terms involving only bn�j for j < i,this holding for i � n. Therefore the result is clear. 2Let's apply this lemma to the construction of our curves:1. Writing the degree of polynomials as subscripts, we let, as in lemma 1:p4g+4(x) = 4g+4Yi=1 (x� ai) = q2 � r2g+1where ai 2 Q. Consider then the curve C given by the equationy2 = r2g+1(x). In general, C will be of genus g and we readily checkthat the points (ai;�q(ai)) 2 C(Q). C has therefore (at least) 8g + 8rational points.2. Now take p2g+4(x2) = 2g+4Yi=1 (x2 � a2i ) = q2g+2(x2)� rg+1(x2)and the curve C given by y2 = rg+1(x2) of general genus g. Then thepoints (�ai;�rg+1(a2i )) 2 C(Q), showing 4(2g + 4) = 8g + 16 rationalpoints on C, which is the lower bound for a general curve given intheorem 3.



1.2. HOW TO OBTAIN LOWER BOUNDS ON B(G;K) AND N(G)? 9We can now generalize this idea further: suppose we take an hyperellipticcurve C given by y2 = f(x) where f 2 Q[x]. We are looking for curves whichare stable under certain groups of automorphisms G to obtain from k pointson the curve another (k � 1) jGj points. On C we have a unique canonicalinvolution w, given in our coordinates by w(x; y) = (x;�y). Moreover, itis a well-known result that if g : C �! C is an automorphism of C, theng�w = w�g. By writing g as (x; y) 7�! (u(x; y); v(x; y)), for (u; v) 2 Q(x; y)2,we then see that u(x; y) = u(x;�y), i.e. u does not depend on y and thereforeu 2 Aut(P1(Q)). Hence if g 2 ~G � Aut(C), then u 2 Aut(P1(Q)). Also, ifwe know u we can recover g modulo w.We now want to characterize the possible �nite ~G that can occur. Bythe above we need examine only the �nite subgroups G � PGL2(Q).Remark: � 2 G) ord� � 6. This results after examining the compati-bility of Galois action on the two eigenvalues of �. Indeed if �n = �Id thennpj�j is quadratic over Q (or rational), hence the eigenvalues of � are npj�jtimes a root of unity (at most 12-th root). Rule out the impossible cases toarrive to the the result.By Klein's theorem and by the remark the only possible G's are1;Z=2Z;Z=3Z;Z=4Z;Z=2Z�Z=2Z;Z=6Z; D3 ;D4;D6 and these indeed oc-cur as we show in the table below (we also write the corresponding invariantfunction, i.e. a generator of Q(x)G).Z=2Z < x 7! �x > s2 = x2Z=3Z < x 7! 11�x > s3 = x3 � 3x+ 1x(x� 1)Z=4Z < x 7! x+11�x > s4 = x4 � 6x2 + 1x(x� 1)(x+ 1)Z=2Z� Z=2Z < x 7! 1x ; x 7! �x > ~s4 = x4 + 1x2Z=6Z < x 7! 33�x > ~s6 = (x3 � 6x2 + 9x� 3)(x3 � 9x+ 9)x(x� 1)(2x � 3)(x� 2)(x� 3)D3 < x 7! 11�x ; x 7! 1x > s6 = x2 � x+ 1x2(x� 1)2D4 < x 7! x+11�x ; x 7! �x > s8 = s24



10 CHAPTER 1. CURVES WITH MANY POINTSD6 < x 7! 33�x ; x 7! 3x > s12 = ~s6(x)~s6( 3x )Let's apply this characterization to our context:1. Take p2n(x) = q2(x) � rn�1(x). Let C be the curve given by y2 =rn�1(s8(x)). Let G �= D4 be a group de�ned over Q associated to s8.Pick 2n general values x1; : : : ; x2n of x to get 16n di�erent values (g �xi) (g 2 G). Note that C is birationally equivalent to an hyperellipticcurve of degree 8(n� 1) because deg s8 = 8. Therefore if we choose gsuch that 2g + 2 = 8n� 8, g = 4n� 5 we get that the genus of C isg. In taking p2n(x) = 2nYi=1(x� s8(xi))we get 2 � 16n = 8g + 40 rational points on C, which is the boundgiven in theorem 3 for g � 3 (mod 4).2. Consider the group Cn =< x 7! �nx >, cyclic of order n. It is de-�ned over K = Q(�n), and has xn as invariant function. Choose fourdi�erent points xn1 ; : : : ; xn4 and letp4(x) = (x� xn1 ) � � � (x� xn4 ) = q2(x)� (�x+ �)Take the curve C: y2 = �xn + �, and suppose n = 2g + 2 so thatC has genus g. Then as before C passes through the 8n = 16(g + 1)points (�jnxi;�q(xni )) (1 � i � 4; 1 � j � n). Therefore there existin�nitely many curves de�ned over K with at least 16(g + 1) pointsover K, which is the lower bound for N(g).The bound for N(g) in theorem 3 is the best one for g > 6 and g 6=9; 10; 45. For small values of g, we have the following: long ago Brumerfound B(2;Q) � 144 and B(3;Q) � 72. This was improved recently byKeller and Kulesz to B(2;Q) � 588 and B(3;Q) � 176 (cf [KK]). We referto the paper of Elkies for an account of various methods to tackle theseproblems. In class we just mentioned the method of slicing surfaces. If S isa smooth surface of P3(Q) of degree d with R lines then a generic plane sliceof S is a nonsingular curve of degree d with at least R points, thus makingN((d� 1)(d � 2)=2) � R. We end by an example:Example: Let P 2 Q[X;Y ] be a homogeneous polynomial of degreed, and suppose that its zeros in CP1 are left invariant by a subgroup



1.2. HOW TO OBTAIN LOWER BOUNDS ON B(G;K) AND N(G)? 11G � PGL2(C) of order M . Let S be the surface P (X;Y ) = P (Z; T ).Then, for any (�; �; ; �) 2 G we have:P (�X + �Y; X + �Y ) = �P (X;Y )Since we have d di�erent determinations for �1=d, we getMd lines on S givenby the general equation:X = X; Y = Y; Z = �X + �Y�1=d ; T = X + �Y�1=dAlso we have d2 more linesfX � aiY = 0g\fZ � ajT = 0gwhere the ak (1 � k � d) are the roots of P . Hence S contains at leastd(M + d) lines and it is a theorem that this is the exact number of lines onS. The problem of �nding P maximizing M is explained in Elkies' paper[Elk] and is related to the existence of regular polyhedra inscribed in theRiemann sphere whose vertices are the zeros of P .



12 CHAPTER 1. CURVES WITH MANY POINTS



Chapter 2Rank of elliptic curvesThe purpose of chapters 2 and 3 is to construct families of elliptic curves ofrank (at least) 8 and 11. Let's recall some general facts about cubics andelliptic curves.2.1 General FactsLet C=K be a nonsingular cubic with a point O 2 C(K). Then we can endowC(K) with an associative law + to make it a commutative group in whichO is the identity. If O is an inexion point then the cubic is isomorphic toa plane cubic of the formy2 + a1xy + a3y = x3 + a2x2 + a4x+ a6This is the Weierstra� model of the elliptic curve in which O is the onlypoint at in�nity (therefore an inexion point). In this case, for given pointsP and Q in C(K), we can compute P +Q by noticing that P , Q and �P �Qlie on the same line.A cubic is determined by 9 points in general position (no three on thesame line or six on the same conic). Therefore by 8 points in general positionthere passes a pencil of cubics �C1 + �C2. Then there exists a ninth pointwhich lies on all the cubics of the pencil (Tate produced a proof of theassociativity of the addition law based on this fact).Theorem 4 (Mordell, Weil) Let K be a number �eld or a function �eld,E=K an elliptic curve. Then E(K) is �nitely generated i.e.E(K) ' Zr � T13



14 CHAPTER 2. RANK OF ELLIPTIC CURVESwhere T is a torsion group and r is called the rank of E=K.We can ask ourselves if there is a way of �nding an explicit system of gener-ators. Regarding the torsion, we have the famousTheorem 5 (Mazur) If K = Q then T is one of the following groups:Z=nZ n = 1; : : : ; 10; 12Z=2nZ� Z=2Z n = 1: : : : ; 4and each of these can occur.Recently Merel [Mer] generalized this result:Theorem 6 For any d there exists a constant M(d) such that for all K with[K : Q] = d and all elliptic curves E=K we have jTorE(K)j �M(d).Now we can ask ourselves:� K �xed: is r bounded?� Let E=K be an elliptic curve andK � K1 � : : : � Kn � : : : a sequenceof number �elds. How does rank(E(Kn)) grow with respect to n?2.2 Independence of points on an elliptic curveConsider the general problem: given P1; : : : ; Ps points in E(K), how can weprove that they are linearly independent (over Z)?1. One method is to look at the reduction modulo 2, that is to observethat if the images of the Pi's are independent in E(K)=2E(K), thena fortiori they are independent in E(K). A case by case veri�cationinvolves 2s computations, which makes the method unsuitable for larges.2. Over number �elds we have the notion of height ĥ , that is a positivede�nite quadratic form de�ned over E(K)=Tor(E(K)). Furthermore ĥis uniquely de�ned by the extra condition that for any P , h(P )�ĥ(P ) =O(1), where h is the "naive" Weil height (N�eron, Tate, cf [Silv] pages277 and following). Then, after calling < : ; : > the bilinear pairingassociated to ĥ we have that the Pi's are independent if and only if thematrix (< Pi; Pj >)1�i;j�s is nonsingular.



2.2. INDEPENDENCE OF POINTS ON AN ELLIPTIC CURVE 15How can we compute ĥ(P )?N�eron gives the formula (valid for K = Q):ĥ(P ) =X�p(P ) + �1(P )where the sum runs over primes p dividing the denominator of the abscissax(P ) of P and bad p's. �p(P ) is equal to log p� (a rational number withdenominator dividing 12). The archimedean part is more complicated andinvolves trascendental numbers. Putting z 2 E(C) corresponding to P wehave: �1(P ) = � log �(z) + Re(z�(z))=2This formula is fast to converge but involves two transcendental functions.On the other hand, Tate gave in 1968 an alternative formula which is simplerbut also slower:�1(P ) = �12 log jx(P )j+ 18Xn log jZ(2nP )j4nwhere Z is a certain rational function.Remark: We see that in order to apply N�eron's formula we have to com-pute z with high precision. A good way to do this is by Landen's transform(1788) whose precision is quadratic (the precision is twice as good at eachstep, cf [BM]). Zagier gave an elegant but slower method. We give here abrief review of his method. Suppose for instance that E is given in Legendreform y2 = f(x) and that f has three real roots. Then its a�ne graph inR2 has two connected components. Call E1 the "right" (unbounded) one.Also E(C) can be viewed as a rectangle in C whose lower edge (0; !1) cor-responds to E1. Furthermore, the interval (0; !1=2) corresponds exactly tothe "lower" part of E1, i.e. toE12 = fP 2 E1 : y(P ) < 0gTherefore if z corresponds to P 2 E1 then, writing z=!1 in binary base:P 2 E12 () z!1 = 0:0 : : :We can then proceed inductively by de�ning Pn = 2nP . We can write:z!1 = Xn�1 �n2n



16 CHAPTER 2. RANK OF ELLIPTIC CURVESwhere �n = 0 , Pn�1 2 E12 . Also recall that there is a quadratic algorithmto compute !1 by the arithmetic-geometric mean (cf theorem 50).We conclude this section by mentioning a theorem of Tate about heights:Theorem 7 (Tate) ĥ(P ) = limn h(2nP )4n2.3 Elliptic Curves of High RankMost of the cases where it is proven that there exist in�nitely many curvesof rank r come by specialization in accordance with the followingTheorem 8 (N�eron 1952) Given an elliptic curve E=Q(t1; : : : ; tn) ofrank r and non constant j-invariant, there exist in�nitely many (t1; : : : ; tn) 2Qn such that the specialization of the curve has rank at least r.Proof: CallK = Q(t1; : : : ; tn). We will prove that there are points P1; : : : ; Prin E(K) such that their reductions modulo 2 are independent for in�nitelymany (t1; : : : ; tn) 2 Qn. Note that since E(K) is of rank r we have that[E(K)=2E(K)]NF2 F2 has dimension r over F2 so that we can pickP1; : : : ; Pr independent in E(K)=2E(K). Now to say that P1; : : : ; Pr areindependent in E(K)=2E(K) means that 2r quadratic polynomials (withcoe�cients depending on (t1; : : : ; tn)) have no root in K, therefore they areirreducible over K. By Hilbert's irreducibility theorem for in�nitely manyspecializations (t1; : : : ; tn) 2 Qn the polynomials obtained will remain irre-ducible over Q, so that the specializations of the points P1; : : : ; Pr will beindependent in E(K)=2E(K) and a fortiori in E(K). 2Moreover N�eron produced elliptic curves over Q(t) of rank at least 10 and,for any g, curves of genus g (over Q(t)) with Jacobian of rank at least 3g+6,hence the followingTheorem 9 (N�eron) 1. There exist in�nitely many elliptic curves ofrank at least 10 over Q .2. There exist in�nitely many curves of genus g such that their Jacobianhas rank r � 3g + 6.



2.4. N�ERON'S METHOD AS EXPLAINED BY SHIODA 17Similarly, working with curves de�ned over the function �eld of an ellipticcurve of positive rank over the rationals, he �ndsTheorem 10 (N�eron) 1. There exist in�nitely many elliptic curves ofrank at least 11 over Q .2. There exist in�nitely many curves of genus g such that their Jacobianhas rank r � 3g + 7.Silverman and Tate say more. Suppose we are given an elliptic surface S withbase B (= P1 or an elliptic curve of rank at least one) de�ned over a �eldk. Then we can view S as an elliptic curve over the global �eld K = k(B).If we take a point P 2 E(K) we can consider its N�eron-Tate height ĥ(P ).Also we can consider for nearly any �ber Eb the N�eron-Tate height of thespecialisation Pb, namely ĥk(Pb) . Finally we can speak also of the heighth(b) of elements of B. Call also < : ; : > and < : ; : >k the �rst and secondN�eron-Tate height, respectively. We then have the following theorem:Theorem 11 (Silverman, Tate) We have the following equivalent facts:1. 8P 2 E(K) lim b2B(k)h(b)!+1 ĥk(Pb)h(b) = ĥ(P )2. 8P;Q 2 E(K) lim b2B(k)h(b)!+1< Pb; Qb >kh(b) =< P;Q >Corollary 1 � For any P 2 E(K) � E(K)tor there exist �nitely manyb 2 B(k) such that Pb is a torsion point.� If P1; : : : ; Pn are independent sections of S, then there are �nitely manyb 2 B(k) such that their specializations are dependent.2.4 N�eron's method as explained by ShiodaShioda ([Shio 1]) describes in an elegant fashion N�eron's method for con-structing a family of elliptic curves de�ned over Q of rank (at least) 11.



18 CHAPTER 2. RANK OF ELLIPTIC CURVESStart with the curve C1 de�ned over Q by y2 = x3. Since (0; 0) issingular, this is not an elliptic curve. Nevertheless C1 � (0; 0) can be givenan abelian group structure by de�ning a morphism:(Q;+) �! (C1 � (0; 0);+)u 7�! P (u) = (u�2; u�3)Also P (u1); P (u2); P (u3) are collinear if and only if u1 + u2 + u3 = 0.De�ne also L(u) to be the line passing through P (u) and tangent toC1 � (0; 0), i.e. passing through P (�u=2). We can then verify that L(u1),L(u2), L(u3) are concurrent if and only if u�11 + u�12 + u�13 = 0.Now take ui 2 Q (1 � i � 8) such that8Xi=1 ui = 0and 1u1 + 1u2 + 1u3 = 0 (2.1)Consider the pencil of cubics passing through the eight points P0 = (1;1),Pi = P (ui) (1 � i � 7). Then it is not di�cult to see that the ninth base-point of the pencil is P8 = P (u8). The pencil of cubics can also be seen asan elliptic surface S over Q(t) (i.e. the base is P1(Q)). An element of thepencil can be written asCt = f(x; y) 2 Q2 : Xi+j�3 aijxiyj � t(y2 � x3) = 0g (2.2)Suppose further that8i; j; k ui + uj + uk 6= 0Then S is an elliptic surface in the sense of [Shio 2], all the �bers are irre-ducible and except for a �nite number of them, they are nonsingular (henceelliptic curves) (easy exercise). Moreover P1; : : : ; P8 are independent overQ(t), as we will see further in chapter 3.3.Construction of 3 more points:We have that Ct\L(u1) = fP1;M1;M 01gand the mapM1 7! t is rami�ed at1 by construction, therefore there existsone other rami�ed value of t, say t1 2 Q. The �eld Q(t)(M1) is then a



2.4. N�ERON'S METHOD AS EXPLAINED BY SHIODA 19quadratic extension of Q(t) rami�ed at 1 and t1, therefore its discriminantis of the form �1 = a1(t� t1) with a1 2 Q. Do the same with u2 and u3.Then Mi 2 Ct (and therefore M 0i) is de�ned over Q if and only if �i is asquare. In general the new points Mi are de�ned over Q(p�1;p�2;p�3).Consider then the curve B de�ned by8><>: y21 = �1 = a1(t� t1)y22 = �2 = a2(t� t2)y23 = �3 = a3(t� t3)Then B is easily seen to be an intersection of two quadrics. Indeed afterreplacing t in the second and third equations, we get( y22 = b1y21 + b2y23 = b3y21 + b4After parametrizing the �rst equation (a cylinder) in w, we replace y21 inthe second equation to get an expression of the type Y 2 = f(w) where fis a polynomial of degree 4, i.e. B is a curve of genus 1. If we can showthat B(Q) 6= ; then B is an elliptic curve de�ned over Q and for anyQ = (y1; y2; y3) 2 B(Q) we have an elliptic curve Ct=Q over Q with 11rational points P1; : : : ; P8;M1;M2;M3.Claim: B(Q) 6= ;.Indeed by assumption (2.1) L(u1); L(u2) and L(u3) are concurrent inR 2 Q2. Since fCtg is a pencil, we can choose t0 2 Q such that R 2 Ct0 .Since then R 6= Pi and fR;Pig � L(ui)\Ct0and all the points are rational we must have that ai(t0 � ti) is a square fori = 1; 2; 3, that is our claim.Note that in general as soon as B(Q) 6= ; there is more than one rationalpoint on B and it will be of in�nite order (cf [Shio 1] for an example that isall we need), so that we can apply the theory of elliptic surfaces that followsup to prove the independence of the 11 points thus constructed.



20 CHAPTER 2. RANK OF ELLIPTIC CURVES



Chapter 3Elliptic SurfacesWe want now to prove the independence "in general" of the eleven pointsP1; : : : ; P8;M1;M2;M3. We will do this through the theory of elliptic sur-faces, as explained in [Shio 2].Now we suppose the ground �eld k is an algebraic closed �eld of arbi-trary characteristic. Let C be a smooth projective curve over k, to say Sis an elliptic surface over C will always mean the following: S is a smoothprojective surface with a relatively minimal elliptic �brationf : S �! Cthat is, f is a surjective morphism such that1. almost all �bres are elliptic curves and2. no �bres contain an exceptional curve of the �rst kind (i.e. a smoothrational curve with self-intersection number -1).Throughout the chapter, we assume that f has a global section O and thatf is not smooth, i.e. there is at least one singular �bre.If we call E the generic �bre if f and K = k(C), we then have that E isan elliptic curve de�ned over the global �eld K with a distinguished pointO. We can therefore take O as the identity of E(K). Viceversa any E=Kwe can substantially viewed as an elliptic surface by adding a �nite numberof singular �bres.Example 1: In the notations of chapter 2 we see that the cubic Ct isde�ned over Q and that if f(x; y; t) = 0 is the equation of Ct, then byletting also t vary we see thatf(x; y; t) 2 Q3 : f(x; y; t) = 0g21



22 CHAPTER 3. ELLIPTIC SURFACESis the a�ne part of a smooth projective surface S that is an elliptic surfaceover P1 (for example, the discriminant � of the generic �ber E is a polyno-mial in t, therefore the only singular �bers correspond to the zeros of � andto1). Furthermore, the surface is rational because, except for the nine basepoints P0; : : : ; P8, given x and y, you can recover t such that (x; y; t) 2 Suniquely (just look at equation 2.2). In fancier terms, S is the blow-up ofP2 at the nine base points. The �bration is the trivial one: (x; y; t)! t.Let us return to the general context. The points in E(K) correspond toglobal sections of S. From this viewpoint, we shall de�ne a positive de�nitebilinear pairing on E(K)=E(K)tor by means of intersection theory of divisorson a surface.We can also attach to a surface its arithmetic genus � 2 N (Euler-Poincar�e characteristic), which is shown to be positive in the case of anelliptic surface.Example 2: Consider the case of S over P1 given by y2 = x3+a(t)x+b(t)where a; b 2 Q(t) and suppose that 1 is not a singular value. This impliesthat � = �4a(t)3 � 27b(t)2and deg� � 0 (mod 12) so that� = deg�12Remark: We take for granted the fact thatLemma 2 S is rational if and only if � = 1.Finally, call R = fv 2 C : the �ber f�1(v) is reduciblegLet us state now the main theorem of this chapter:Theorem 12 (Main Theorem) Let S be an elliptic surface over C ofgenus g(C) as at the beginning. Then1. rkE(K) � 12�� 4 + 2g(C)



232. There exists a positive de�nite bilinear pairing (denoted by < : ; : >)over E(K)=E(K)tor such that< P;Q >= �+ (O:P ) + (O:Q)� (P:Q)�Xv2R contrv(P;Q)where (P:Q) : : : is the intersection number of the sections correspond-ing to P and Q on S, and contrv(P;Q) is a rational number withdenominator � 12.Remarks:1. The bilinear pairing in the theorem is essentially the N�eron-Tate pair-ing seen in chapter 2.2. contrv(P;Q) depends on the intersection numbers of the componentsof the reducible �bres and uses a classi�cation into Kodaira types(cf [Shio 2]).3. Let us continue with our example related to Shioda's constructionwhere we have a pencil of cubics. In this situation, C = P1 so thatg(C) = 0, � = 1 and therefore rkE(Q(t)) � 8. We cannot hope to goto 11 when C = P1, that's why the N�eron-Shioda construction involvesC = B an elliptic curve of positive rank.4. Note also that since a relation of linear dependence in E(Q(t)) givesa relation of algebraic dependence on the coe�cients of the points, wehave rkE(Q(t)) = rkE(C(t)) by Hilbert's Nullstellensatz.5. This implies in example 2 that if deg� = 12, then rkE(Q(t)) � 8.About intersection numbers: Let D and D0 be two algebraic curveson S. If they meet transversally (i.e. if the tangent spaces of D and D0 arenot the same at their common points), then (D:D0) = #DTD0 by de�nition.Recall that two curves D1 and D2 are said to be algebraically equivalentif there exists an algebraic surface � � Cn and t1; t2 2 C such that�ti = f(x1; : : : ; xn�1; ti) 2 �g = Difor i = 1; 2.Then (D:D0) is de�ned in general up to algebraic equivalence and wecan always �nd curves ~D � D and ~D0 � D0 such that ~D and ~D0 meettransversally.



24 CHAPTER 3. ELLIPTIC SURFACESIn conclusion the intersection number is de�ned on the N�eron-SeverigroupNS(S), which is de�ned as the group of divisors on S modulo algebraicequivalence. Since in this case NS(S) is a free group of �nite rank � itbecomes with the intersection pairing an integral lattice.Theorem 13 (Hodge index theorem) The intersection pairing onNS(S) is an inde�nite bilinear form of signature (1; �� 1).In our context if P = (x(t); y(t)) and Q = (w(t); z(t)), then (P:Q) isequal to the number of solutions (counted with multiplicities) of( x(t) = w(t)y(t) = z(t)If P = Q then it is "known" that (P:P ) = ��. Also, since by de�nition anytwo �bres of S are algebraically equivalent we have that (D:D) = 0 if D iscontained in a �bre. This suggests the following terminology:De�nition 1 A vertical divisor is a divisor contained in a �ber. A horizon-tal divisor is a divisor which is not vertical.3.1 Idea of the proof of Main TheoremLet Dver be the image of the vertical divisors in NS(S) and similarly forDhor. We then have Dhor +Dver = NS(S)Now as in [Shio 2] we write, for a reducible �bre Fv:Fv = f�1(v) = �v;0Smv�1[i=1 ��v;iv;iwhere �v;i (0 � i � mv � 1) are the irreducible components of Fv , �v;itheir multiplicity, mv their number, such that �v;0 is the unique componentof Fv meeting the zero section (it appears with multiplicity one because ofthe minimality of the �bration).If D 2 NS(S) we can write D = Dhor +Dver and if we view the generic�ber E as a curve on S the intersection product Dhor:E is a well-de�ned K-rational 0-cycle whose degree is (Dhor:E) = (D:E). We then de�ne D:E =Dhor:E.



3.1. IDEA OF THE PROOF OF MAIN THEOREM 25Shioda then shows that one can de�ne a surjective homomorphism : NS(S) �! E(K)D 7�! Pwhere P is de�ned via the Abel-Jacobi map so thatP �O lin� Dhor:E � (Dhor:E)OTheorem 14 (Shioda)  is surjective. Let T = ker . Then T is free andgenerated by (O); F; �v;i (1 � i � mv � 1; v 2 R)where F stands for any �ber. Also T = Dver +Z(O) so that Dver is free andrk(T ) = 2 +Xv2R(mv � 1)If � =  �1, then �(P ) = (P ) (mod T ) (to a point it associates the globalsection on S modulo T ).Corollary 2 We haverk(E(K)) � 12�� 4 + 2g(C)�Xv2R(mv � 1)to account for the �rst part of Main Theorem.Proof of corollary: By de�nition, we have that12� = b2 � 2b1 + 2 = b2 � 2g(C) + 2 (3.1)where bi is the i-th Betti number of S. Since NS(S) injects into H2(S;Z)we have that � � b2 so that� � 12�� 2 + 2g(C)On the other hand, theorem 14 implies thatrk(E(K)) = rk(NS(S)) � rk(T ) = �� rk(T )and this implies the corollary.



26 CHAPTER 3. ELLIPTIC SURFACES2Remark: In the case where S is rational we haveb2 = � (3.2)Theorem 15 (Shioda) T is an integral sublattice of NS(S). If we setL = T?, then L is a negative de�nite even integral lattice of rank equal tork(E(K)) and determinant given bydetL = detNS(S) [NS(S) : L+ T ]2detTThere exists a map (again called �)� : E(K) �! NS(S)Q = NS(S)OQsubstantially the same as the previous one, with kernel precisely E(K)tor,which enables us to inject E(K)=E(K)tor into NS(S). FurthermoreIm� � LQ = LOQso that we can make E(K)=E(K)tor into a positive-de�nite lattice (not nec-essarily integral) by de�ning, for P and Q in E(K), the height pairing< P;Q >= �(�(P ):�(Q))Remark: L is called the essential sublattice of NS(S). These facts followfrom a direct knowledge of � which also accounts for the explicit formula inpart 2 of Main Theorem. We shall see that L is negative-de�nite. Indeed wecan write, by theorem 14: T = ULMv2R Tvwhere we set U = Z(O)MZFand Tv =< �v;i j (1 � i �mv � 1) > (v 2 R)Then U is a unimodular inde�nite integer lattice with intersection matrix �� 11 0 !



3.2. APPLICATION TO RATIONAL ELLIPTIC SURFACES 27Therefore, on W = U? � L, the intersection product is negative de�nite bythe Hodge index theorem ( 13).Next we ask ourselves whether it is possible to �nd a sublattice ofE(K)=E(K)tor which is integral. For this purpose we introduce the sub-group of E(K):E(K)0 def= fP 2 E(K) : (P ) meets �v;0 8v 2 Rg (3.3)Then E(K)0 is of �nite index in E(K). Moreover it is torsion-free so thatit can be viewed as a sublattice of E(K)=E(K)tor. Also, the de�nition ofcontrv(P;Q) implies that, for P or Q in E(K)0, we have< P;Q > = �+ (P:O) + (Q:O)� (P:Q) (3.4)< P;P > = 2�+ 2(P:O) (3.5)Finally, it can be proven that the lattice E(K)0 is even. Let us summarizeall this:Theorem 16 E(K)0 de�ned by 3.3 is a positive-de�nite integral even latticeof same rank as E(K)=E(K)tor. The height pairing on E(K)0 is given bythe formulas 3.4 and 3.5.3.2 Application to Rational Elliptic SurfacesLet us apply now the theory to the special case of rational elliptic surfacesand more precisely to the pencil of cubics considered by Shioda.� = 10: Follows easily from lemma 2 , formulas 3.1 and 3.2 becauseC = P1 here.Therefore from theorem 14 we get:rk(E(K)) = rk(E(K)0) = 8�Xv2R(mv � 1) (3.6)Now suppose that we take Shioda's pencil of cubics. We have already seenin chapter 2 that all the cubics of the pencil are irreducible, therefore wehave in this case R = ; and from 3.3, 3.6:E(K) = E(K)0rk(E(K)) = rk(E(K)0) = 8Remark: By integral lattice theory (cf [Ser]) we can say that E(K) =E(K)0 �= E8.



28 CHAPTER 3. ELLIPTIC SURFACES3.3 Computation of the height matrix of P1; : : : ; P8Since Pi 2 E(K) = E(K)0, the height pairing is given by the formulas 3.4,3.5. Since (Pi)T(Pj) = ; if i 6= j we have(Pi:Pj) = 0 (i 6= j)(Pi:Pj) = �� = �1 (i = j)and hence < Pi; Pj > = �+ (P0:Pi) + (P0:Pj)� (Pi:Pj)= ( 1 (i 6= j)2 (i = j)Now the determinant of the height matrix is equal todet(< Pi; Pj >)1�i;j�8 = 9 6= 0which proves the linear independence of P1; : : : ; P8 (also, they generate asubgroup of E(K) of index 3).We refer to [Shio 2] page 113, for the slighty more di�cult computationof the height matrix of the eleven points P1; : : : ; P8;M1;M2;M3.



Chapter 4Explicit formulas and ellipticcurvesRiemann in his celebrated 1859 paper �rst showed the connection betweenthe distribution of the zeros of an L function and the asymptotic behaviourof prime numbers. In view of the standard conjectures connecting algebraicproperties of elliptic curves and more generally of abelian varieties to theorder of vanishing of the associated L functions, we can recover informationabout the former by analysing the latter via the \explicit formulas". Werefer to [Mes 5] for details.Let M and M 0 be two non negative integers, A and B two positivereal numbers, (ai)1�i�M and (a0i)1�i�M two sequences of non negative realnumbers such that PMi=1 ai =PMi=1 a0i. Finally, let (bi)1�i�M and (b0i)1�i�Mbe two sequences of complex numbers with non negative real part.Suppose we are given two meromorphic functions �1 and �2 verifyingthe following conditions:1. There exists a w 2 C� such that �1(1� s) = w�2(s).2. �1 and �2 have only a �nite number of poles.3. For i = 1 or 2 �i without its singular terms is bounded inside anyvertical strip of the form�1 < �0 � Re(s) � �1 < +129



30 CHAPTER 4. EXPLICIT FORMULAS AND ELLIPTIC CURVES4. There exists c � 0 such that, for Re(s) > 1 + c we have:�1(s) = As MYi=1�(ais+ bi)Yp M 0Yi=1(1� �i(p)p�s)�1�2(s) = Bs MYi=1�(a0is+ b0i)Yp M 0Yi=1(1� �i(p)p�s)�1where p runs over all the prime numbers and where �i(p) and �i(p)are complex numbers of modulus � pc.In what follows we putL1(s) = Yp M 0Yi=1(1� �i(p)p�s)�1L2(s) = Yp M 0Yi=1(1� �i(p)p�s)�1Let F : R �! Rbe a function satisfying the following:1. There exists � > 0 such thatF (x) exp((1=2 + c+ �)x)is summable and has bounded variation (etc.).2. (F (x) � F (0))=x has bounded variation.We also de�neI(a; b) = a Z +10 (F (ax)e�(a=2+b)x=(1� e�x)� F (0)e�x=x)dxJ(a; b) = a Z +10 (F (�ax)e�(a=2+b)x=(1� e�x)� F (0)e�x=x)dxand �(s) = Z +1�1 F (x)e(s�1=2)xdx



4.1. APPLICATION TO MODULAR FORMS 31Theorem 17 In the previous notations we have the formula:X� �(�)�X� �(�) + MXi=1 I(ai; bi) + MXi=1 J(a0i; b0i) =F (0) log(AB)� Xp;i;k�1(�ki (p)F (k log p) + �ki (p)F (�k log p)) log ppk=2where � (resp. �) runs over the zeros (resp. the poles) of �1 in the criticalstrip �c � Re(z) � 1 + c, each of them counted with multiplicity.4.1 Application to modular formsLet f(z) =Pn�0 ane2�inz be a modular form for �0(N) of weight k. In thecase where f is a newform, we can apply theorem 17 because it is knownthat the L function associated to f has an Euler product expansion:L(s; f) = YpjN(1� app�s)�1 Yp6 jN(1� app�s + pk�1�s)�1It is known for this function that if�(s) = (pN=2�)s�(s)L(s)then �(s) = C�(k � s)where C = �1. Moreover � is an entire function, so that after translation,we set L1(s) = L2(s) = L(s+ k � 12 )�1(s) = �2(s) = �(s+ k � 12 )Also, in view of Deligne's and Atkin-Lehner results, since japj � 2p(k�1)=2,we have that c = 0 so that the critical strip is S = [0; 1] � iR.If we choose an even function F satisfying the properties listed aboveand if we set ( b(pm) = (ap)m if pjNb(pm) = �mp + �0pm if p 6 jNwhere �p and �0p are the roots of T 2 � apT + pk�1, theorem 17 then readsas:



32 CHAPTER 4. EXPLICIT FORMULAS AND ELLIPTIC CURVESX� �(�) + 2Xp;m b(pm)F (m log p) log ppmk=2= F (0)(logN � 2 log 2�)� 2IF (4.1)where IF = I(1; (k � 1)=2) and � runs over the zeros of L translated backby (k � 1)=2.4.2 Bounding the order of L at k=2Formula 4.1 of the preceding section can be applied to estimate the order rof vanishing of L at k=2. Indeed take an even F as before, such that Re�is positive in the critical strip S. Then F (0) is positive and can be assumedto be equal to 1. After rewriting formula 4.1 and dropping all zeros except1=2 we obtain:r�(12) < log(k2N)� 2 log 4� + 2 Z +10 (1� F (x))=(ex � 1)dx+ 4Xp;m F (m log p)pm=2 log pFor example we may take( F (x) = 1�jx= log 3jcosh(x=2) for x 2 [� log 3; log 3]F (x) = 0 elsewhereThis gives the following explicit bound:1:072r < log(k2N)� 1:97In particularTheorem 18 Let f be a newform of weight k for �0(N), and L its associatedL-function. Then the order r of vanishing of L at k=2 is bounded byr < log k2NAssuming the generalized Riemann hypothesis (GRH) we can say more:GRH means that all the zeros of L in the critical strip have real part equal



4.2. BOUNDING THE ORDER OF L AT K=2 33to k=2 (or, after normalizing, to 1=2). Therefore since on the line Re(s) = 1=2we have �(t) = �(12 + it) = Z +1�1 F (x)eitxdxwe need look for functions F having positive Fourier transform.More precisely, take F positive, even, with support contained in [�1; 1]such that F (x) � 1 and F (0) = 1. For � > 0, set F�(x) = F (x=�). If ��(t)is the corresponding � we have ��(t) = ��(�t).As before a little computation shows that�r�(0) < log(k2N) + 8e�=2 log 3� 2 log 4�+ 2 Z +10 (1� F (x))=(ex � 1)dx (4.2)Choosing � = 2 log log(k2N) we see thatTheorem 19 Under GRH, in the notations of theorem 18, we haver = O( log(k2N)log log(k2N))where the constant involved in O(: : :) is absolute.Suppose now that � is positive in [�1; 1] and negative elsewhere (thiscan be done). Then if t0 > 0 is the �rst zero of L on the line Re(s) = 1=2distinct from 1=2 and if � = 1=t0, then we obtain the lower bound:�r�(0) > log k2N �O(e�=2)which together with theorem 19 givesTheorem 20 If t0 is as before, we havet0 = O( 1log log k2N )where again the constant involved in O(: : :) is absolute.



34 CHAPTER 4. EXPLICIT FORMULAS AND ELLIPTIC CURVES4.3 Application to elliptic curvesThe results of the preceding section apply well to �nd upper bounds onthe rank of an elliptic curve over Q because of the Taniyama-Shimura-Weilconjecture saying that the L-function of an elliptic curve over Q arises as theL-function attached to a certain modular form of weight 2 and level equal tothe conductor N of the elliptic curve E=Q, and the Birch and Swinnerton-Dyer conjecture that tells us that r is precisely the rank of E(Q).However, given E=Q, we can re�ne our estimate of b(pm) for that spe-ci�c curve and obtain better results using formula 4.1. Indeed, put in thatformula as F the Odlysko function (cf [Mes 5]). In particular, since the maincontribution comes from b(p) = ap = p+ 1�Np, we need only compute thenumber Np of points of the reduced curve mod p for p � e�.Example: For the curve 11B we get the estimate 0 = r � 0:0014, for189F 0 = r � 0:430, for 200C 1 = r � 1:011. Here we took � = log 23 whichis pretty small!Notice also that if we proceed as in the previous section, where we madethe crude estimate jb(pm)j � 2pm=2, we still obtain with � = log 100r < 0:268 logN + 1:03which is not bad for small N .The precision of such an estimate seems to arise from the fact that inthe best examples we have t0 � 1= logN , so that the �rst non-real zero of Lin the critical strip is \su�ciently far" from k=2. We now turn to indicate asu�cient condition under which this holds.Let f be a newform of weight k for �0(N). Then f is real on iR+, sothat the following de�nition makes sense:De�nition 2 (Mazur, Swinnerton-Dyer) A critical fundamental pointof odd order (cfpoo) of f is a complex number of the form it with t positivesuch that f changes sign.Theorem 21 (Mazur, Swinnerton-Dyer) If h is the number of cfpoo'sof f we have r � h and r � h (mod 2)Actually among all curves with conductor � 430, only 17 fail to have r = hfor their associated L-function. This leads us to the following:



4.3. APPLICATION TO ELLIPTIC CURVES 35Theorem 22 Suppose in the above that r = h. Then if s is a zero of Ldistinct from k=2, we havejs� (k=2)j > 110 log(kN)Remark:1. Notice that the theorem is unconditional of GRH.2. The experimental results of Fermigier show that there is a strong evi-dence that the �rst non-real zero has an ordinate of C= logN (case ofelliptic curves, k = 2). Moreover, C seems to grow as the rank grows.Question: does C go to in�nity as the rank grows?4.3.1 Twists with high rankLet E=Q be an elliptic curve. It seems reasonable to ask ourselves if for anyM > 0, there exists a quadratic twist E� of E such that rank(E�(Q)) > M .We can at least bring an evidence of a�ermative answer.Theorem 23 Let f be a newform of weight k for �0(N). Then, for anyM , there exists a quadratic twist f� of f such that M is smaller than thenumber of cfpoo's of f�.4.3.2 Curves with high rankExamining formula 4.1, we see that in order for E(Q) to possibly have ahigh rank, we should require that �b(p) = �ap be as large as possible, i.e.we want Np as large as possible (N2 = 5; N3 = 7; N5 = 10 : : :). If we go upto p = 41, we get a curve of rank 14, namely the curve whose coe�cients inWeierstra� form are[0; 2597055; 357573631;�549082;�19608054]In general, the most e�ective method to �nd elliptic curves over Q withexceptionally high rank is this one, applied to the curves of rank at least 11obtained in 5.1 and following. Fermigier ([Ferm 1]) thus �nds a curve of rank19, while Kouva and Nagao ([KN]) go up to 21 and Fermigier (unpublished)obtains 22 (May 1996).



36 CHAPTER 4. EXPLICIT FORMULAS AND ELLIPTIC CURVES4.4 An interesting questionTake the curve y2 = x3 + x+ tover Q(t). It has rank 0. By specialisation, we �nd that the proportion ofcurves having rank 0 is 0.40, rank 1 is 0.35, rank 2 is 0.1 etc.Question: Is there a positive proportion for each rank?Also the curve over Q(t) y2 = x3 + x+ t2is of rank 1. Again by specialisation, there are 40% of curves of rank 1, 35%of curves of rank 2, 10% of rank 3 etc.The generalisation is clear.Question 1 Let y2 = x3+a(t)x+b(t) be an elliptic curve over Q(t) of rankr. Then by specialisation roughly 40% of curves are of rank r, roughly 35%of rank r + 1, roughly 10% of rank r + 2 etc.We refer to [Ferm 2] for numerical results concerning this question.4.5 An application to algebraic varietiesLet A=Q be an algebraic variety of dimension d and conductor N . We canattach to it an L-function L. If we assume that L sati�es the standardconjectures then by the aforementioned methods we �nd a lower bound forits conductor.Theorem 24 Suppose that L has analytic continuation to an entire functionand that the function �(s) = N s=2((2�)�s�(s))dL(s)satis�es the functional equation �(s) = ��(2 � s) and is entire of order 1.Then we have the lower bound N > 10:32d. In particular, A cannot havegood reduction everywhere.This raises the question of the minimality of the conductor for an abelianvariety over Q of dimension d. For d = 1 (elliptic curve) the theorem saysthat N > 10 and indeed for N = 11 we have X0(11). For d = 2 we have



4.5. AN APPLICATION TO ALGEBRAIC VARIETIES 37that X0(11) �X0(11) has conductor 112 = 121. The bound of the theoremgives N � 109 but so far we don't know of any A such that 109 � N < 121.In general, does there exist an A of dimension d such that 10:32d � N <11d ? And if not, is (X0(11))d the minimal one ? :wq



38 CHAPTER 4. EXPLICIT FORMULAS AND ELLIPTIC CURVES



Chapter 5Curves of high rankIn this chapter we will exhibit elliptic curves of rank 11 and 12 over Q(t).5.1 Curves of rank 11We begin with a lemma analogous to lemma 1.Lemma 3 Let k be a �eld with char k 6= 3 and p a monic polynomial ofdegree 3n in k[x]. Then there exists a unique triplet (g; r; s) 2 (k[x])3 with gmonic of degree n, deg r � n� 1 and deg s � n� 1 such thatp = g3 + rg + sProof: Again this is proved in the same way as in lemma 1. Another way ofseeing it is that g is the polynomial part of p1=3 which is computed using thebinomial expansion (1+x)1=3 = 1+x=3+ � � � valid in characteristic di�erentfrom 3. Then a rapid computation shows that deg p � g3 � 2n � 1 whichproves the theorem (uniqueness again follows from the binomial expansion).2Now take in the preceding lemma n = 4. As in chapter 1 we take apolynomial p(x) = 12Yi=1(x� xi) (xi 2 k)39



40 CHAPTER 5. CURVES OF HIGH RANKDe�ne (g; r; s) as in lemma 3. Then the curve C given byy3 + yr(x) + s(x) = 0has Pi = (xi; g(xi)) 2 C(k) but its genus is 3 in general. However if deg r � 2then C is a cubic therefore in general of genus 1.Therefore we want to take k = Q(t) and p such that:1. deg r � 2.2. C is a non singular cubic of non-constant modular invariant.3. The points Pi are linearly independent in Pic(C).Then choosing P12 for example as the origin we �nd an elliptic curve overQ(t) of rank � 11.Call r5 = r5(x1; : : : ; x12) the coe�cient of degree 3 of r. Then sincep is a homogeneous polynomial in x; x1; : : : x12, it is easy to see that r5 isa homogeneous symmetrical polynomial of degree 5 in the xi's. Call X =(x1; : : : ; x12).Lemma 4 1. If u is a free variable, then r5(X + (u; : : : ; u)) = r5(X).2. If p is the cube of a polynomial, then r5(X) = 0.3. If p is an even polynomial, then r5(X) = 0.Proof:1. Follows from the uniqueness in lemma 3.2. Same thing, because r = s = 0.3. Again using uniqueness we writep(x) = q(x2) = g3(x2) + g(x2)r(x2) + s(x2)where we apply lemma 3 to q of degree 6, so that deg g � 2, deg r � 1and deg s � 1. Therefore by uniqueness g(x2), r(x2) and s(x2) are thecorresponding polynomials for p and looking at degrees we are done.2



5.1. CURVES OF RANK 11 41Lemma 5 Let a; b; c; d be four indeterminates. Then the pointV = (a; b; c; d; a; b; c; d; a; b; c; d)is a double point of r5(X) = 0.Proof: We already showed that r5(V ) = 0. We are to show that if D =(1; 0; : : : ; 0), then r5(V + �D) as a function of � is divisible by �2. The samereasoning will apply to the other variables and the proof will be complete.Now let p�(X) = (X � a+ �)(X � a)2(X � b)3(X � c)3(X � d)3= (1 + �X � a)(X � a)3(X � b)3(X � c)3(X � d)3Since g� is the polynomial part of p3� , we see thatg� � (X � a+ �3)(X � b)(X � c)(X � d) (mod �2)so that p� � g3� � 0 (mod �2)and therefore r� and s� are divisible by �2 and so is the leading coe�cientr5(V + �D) of r� . 2Lemma 6 In the hypothesis of lemma 5, let t be an indeterminate andW = (d; d; d; c; c; c; b; b; b; a; a; a)Then r5(V + tW ) = 0.Proof: r5(t1V + t2W ) is a homogeneous polynomial of degree 5 in (t1; t2)which has the two double roots (0; 1) and (1; 0) by lemma 5. To show thelemma it su�ces then to produce two new roots of that polynomial. One isV �W because its components are the roots of an even p and the other isV +W because the p corresponding to V +W � ((a+ b+ c+ d)=2; : : : ; (a+b+ c+ d)=2) is even and because of lemma 4. 2



42 CHAPTER 5. CURVES OF HIGH RANKTo sum up, given a; b; c; d four rational numbers, we can apply lemma 4to the polynomial whose roots are the components of V + tW to obtain anelliptic surface C (i.e. a cubic over Q(t)). We should expect C in general tobe nonsingular.Example: In [Mes 2] we specialize a; b; c; d in �1; 0; 2; 11. The corre-sponding C is given and also the twelve points Pi. In fact C is an ellipticsurface in the sense of [Shio 2], hence we can apply the methods describedtherein to compute the height matrix. Since the only singular �bers areirreducible (Kodaira I1) we have E(Q(t))0 = E(Q(t)) (cf chapter 3) and theheight matrix has integer entries. Lemma 7 of [Mes 2] shows how to compute< Pi; Pj >.We �nd that the height matrix has determinant 21634, thus the twelvepoints Pi are independent in Pic(C).5.1.1 Another way to �nd rank 11Instead of using lemma 3, we can apply lemma 1 to p of degree 12 to obtainp = g2 � r, where deg r � 5. Therefore the curve C given by y2 = r(x) con-tains the points Pi = (xi; g(xi)) where xi runs over the roots of p. HoweverC is of genus 2 in general but if deg r � 4, then C is of genus 1.Now if p is of the form q(x� t)q(x+ t), then the leading coe�cient of r isequal to t2� a constant. By the above methods we can make this constantequal to zero. This is the case if q(x) = (x+17)(x+16)(x� 10)(x� 11)(x�14)(x � 17) and the twelve points Pi are again found to be independent bythe usual methods.5.2 Curves of rank 12We can push further the previous two constructions to �nd a thirteenth pointin Q(t) independent of the �rst twelve.5.2.1 First constructionThe trick is always to �nd a relation between a; b; c; d; t to produce an extrarational point by solving algebraic equations.Here we take P1 = (x1; y1) and look at the two other points on C havingabscissa x1. These points may not be de�ned a priori in Q(a; b; c; d; t).Nevertheless their ordinates satisfy the equationy3 + r(x1)y + s(x1) = 0



5.2. CURVES OF RANK 12 43Since y1 2 Q(a; b; c; d; t) they also satisfy the equationy2 + �y + � (5.1)where � = y1 and � = y21 + r(x1). It is not di�cult to see that ~�(t) =�2 � 4� = t2�(t), where � is a polynomial of degree at most 4. Since att = 0, P1; P5 and P9 all have abscissa x1(0), a change of variables impliesthat �(0) is a square in Q(a; b; c; d). 1Therefore we can write � in the form�(t) = (v + v1t+ v2t2)2 + t3(w0 + u0t)and we see that for t = �w0=u0, � is always a square and the two rootsof 5.1 are rational over Q(a; b; c; d), giving the three points P1; Q; ~Q.Example: Fix a = �1; b = 0; c = 2. Then t is a rational function in d,so that now C is an elliptic curve over Q(d) with 12 independent points inC(Q(d)), namely (choosing P12 as the origin) P1; : : : ; P11; Q, as we readilyshow by standard methods.5.2.2 Second constructionIn the previous section we showed how to construct an elliptic curve C overQ(t) of rank 11 and of the form y2 = r(x), where deg r = 4. In the speci�cexample we gave, the leading coe�cient of r was 429t2 + 53260. Now it isknown (see for instance [Silv]) that we can embed C in P3 and that it hastwo points at in�nity rational over Q(p429t2 + 53260).Now the non degenerate conic K given by 429t2 + 53260 = u2 is Q -isomorphic to the projective line, because (3; 239) 2 K(Q). Therefore if zparametrizes K, we get that C as an elliptic curve over Q(z) has two newrational points. If we take one of them as origin, then the 12 � 12 heightmatrix of the points Pi has determinant equal to 226365 6= 0, thus provingthat rank(C(Q(z))) � 12.Corollary 3 There exist in�nitely many elliptic curves de�ned over Q withrank � 12.1in fact C is isomorphic to a curve for which ~� = � but with abscissae left unchanged



44 CHAPTER 5. CURVES OF HIGH RANK5.3 Nagao-Mestre construction of rank 13We can give a quick outline of how to proceed in order to construct a twoparameter family of elliptic curves over Q(w) of rank at least 13, generalizingNagao's result in [Nag 1] who found one curve (de�ned over Q(t)) belongingto this family.We proceed as in the second method for obtaining curves of rank 11: wetake p = g2 � r, where p is of degree 12 and r of degree 4.Choose p6 of degree 6 with roots x1; : : : ; x6 and let p(x) = p6(x�t)p6(x+t). The curve y2 = r(x) then has the twelve rational points (xi� t; g(xi� t)).We try to �nd p6 such that there is another rational point of abscissa a+ bt.This means that r(a + bt) = s(t)2, where s is a polynomial. Thus wemust havep(a+ bt) = g2(a+ bt)� s2(t) = (g(a + bt)� s(t))(g(a + bt) + s(t)) (5.2)Take p6 to be of the form p6 = p2q2p1q1, where8>>><>>>: p2(x) = x2 + a1x+ a0q2(x) = x2 + x+ b0p1(x) = x+ c0q1(x) = x� c0 � a1 � 1If we let R(x) = 2g(x) � p2(x� t)p2(x+ t)p1(x� t)q1(x+ t)� q2(x� t)q2(x+ t)p1(x+ t)q1(x� t)Then solutions to the equationS(t) = R(a+ bt) = 0 (5.3)will give rise to a rational point on y2 = r(x) with abscissa a + bt, by 5.2 .Note that equation 5.3 is of degree 4 in t. Choosing a0; c0 carefully will setto zero the coe�cients of degree 0 and 4 (hence 1 and 3) of S. Also for aspeci�c choice of b0 the coe�cient of degree 2 vanishes. Thus a+ bt is a rootof 5.3 now.Next we know that deg r = 5 so that we want to impose that its leadingcoe�cient be zero. This coe�cient is a product of two a�ne terms in a; onedoesn't �t (r is then a perfect square) but the other one is good. a is then�xed and we still have a freedom of choice for b and a1.



5.4. CURVES OF RANK � 14 DEFINED OVER Q(T ) 45We now impose that the discriminants of p2 and q2 be perfect squares,which gives the equation of a quadric with a rational point, hence we canparametrize b = b(u; v) and a1 = a1(u; v).Now the curve y2 = r(x) de�ned over Q(u; v; t) has 13 rational points.In order to �nd another, to be taken as origin, note that the degree 4coe�cient of r is of the form q(u; v)2t2+m(u; v) (miracle!?). Hence the conicq(u; v)2t2 +m(u; v) = z2 can be parametrized over Q (we have two rationalpoints at in�nity) and if t = t(u; v; w), then the curve y2 = r(x) gets twonew points at in�nity, de�ned over Q(u; v; w).Choosing one of them as origin of the curve y2 = r(x), we get an ellipticcurve with 13 points de�ned over Q(u; v; w), i.e. a family of elliptic curvesover Q(w) depending on two parameters. To prove that these 13 points areindependent, we can specialize and use PARI (the curve found by Nagaoin [Nag 1] was a specialization in u; v of this one).5.4 Curves of rank � 14 de�ned over Q(t)>From the preceding curve, using similar constructions, one can �nd:Theorem 25 (Mestre, April 1996) There exists an elliptic curve de�nedover Q(t) of rank � 14.



46 CHAPTER 5. CURVES OF HIGH RANK



Chapter 6Curves of high rank andconstant jWe have already mentioned the folklore conjecture according to which therank of elliptic curves over Q is unbounded. Also we mentioned a strongerconjecture: let E=Q be an elliptic curve. Is the rank of quadratic twists ofE bounded?Remark: It would be so if a conjecture of Honda were true. Note alsothat this contrasts with the previous approach using critical fundamentalpoints of odd order.Let's recall a de�nition.De�nition 3 Let E=Q be an elliptic curve given by y2 = x3 + ax+ b. Ford 2 Q we de�ne the elliptic curve Ed given by dy2 = x3 + ax + b to be thetwist of E by d.Remarks:1. It is known that j(Ed) = j(E) (cf. [Silv]).2. If j(E) 6= 0; 1728, thenE �=C E0 =) 9d 2 Q : E0 �=Q Ed3. If k = Q(pd) then E(k) is related to E(Q) and Ed(Q) in the followingway: let � be a generator of Gal(k=Q) and de�ne an applicationE(k) ��! E(Q)P 7�! P + P �47



48 CHAPTER 6. CURVES OF HIGH RANK AND CONSTANT JIf we write E in Weierstra� form, then it is easy to characterize ker�.Indeed P � = �P () ( x� = xy� = �y() ( x 2 Qy = upd (u 2 Q)i.e. we have the exact sequence0 �! Ed(Q) �! E(k) ��! E(Q) �! coker� �! 0Since 2E(Q) = �(E(Q)) � �(E(k)) and because of the weak Mordell-Weil theorem, we have that coker� is �nite, leading to the relationrkE(k) = rkE(Q) + rkEd(Q)The goal of this chapter is to �nd an in�nity of elliptic curves E=Q oflarge rank but of constant modular invariant j. For this purpose we willmake use of twists.Let us notice �rst that it is relatively easy to �nd in�nitely many twistsof E with rank � 1. Indeed let E be given by y2 = x3+ ax+ b and take anyx0 2 Q. If d = x30 + ax0 + b is not a square then it is not di�cult to showthat the point (x0; 1) 2 Ed(Q) is of in�nite order.Next we have the generalTheorem 26 (Mazur-Gouvêa) Let E=Q be an elliptic curve. SupposeTaniyama-Shimura-Weil and Birch Swinnerton-Dyer conjectures hold. Thenfor any � � 0 there exists a constant C� such that#fd 2 Z with jdj �M and ra(Ed) � 2g � C�M 12��We will show thatTheorem 27 For any j 2 Q there exist in�nitely many E=Q such that� j(E) = j� rkE(Q) � 2.Theorem 28 � If j = 0 then there exist in�nitely many E=Q withj(E) = 0 and rk(E(Q)) � 6.



49� If j = 1728 then there exist in�nitely many E=Q with j(E) = 1728and rk(E(Q)) � 4.De�nition 4 Let C be an algebraic curve and E, E0 two curves of genus1. Given two morphisms p : C ! E and p0 : C ! E0, we say that they areindependent if the pull-backs of di�erentials of the �rst kind on E and E0respectively by p and p0 are independent.Theorem 29 Let k be a �eld of characteristic zero and j 2 k. Then thereexist a quadratic covering C of P1 de�ned over k and an elliptic curve Ede�ned over k with invariant j together with two independent morphismsp; p0 : C ! E de�ned over k.(or equivalently, there exist C, E and an abelian variety A such thatE �E �A is isogenous to JacC).Theorem 30 Let j 2 k. There exists an elliptic curve E=k(t) with invariantequal to j and rank at least 2, not isomorphic over k(t) to a constant curve.It is clear that theorem 30 implies theorem 27. To prove theorem 29 we �rstproveTheorem 31 Let E=k and E0=k be two elliptic curves. Suppose that j(E)and j(E0) are not simultaneously equal to 0 or 1728. Then there existsa quadratic covering C=k of P1 together with two independent morphismsp : C ! E and p0 : C ! E0 de�ned over k.Proof: Take two equations y2 = x3+ ax+ b = f(x) and y2 = x3+ a0x+ b0 =g(x) de�ning E and E0 respectively. The assumption made on j(E) andj(E0) implies a = 0 ) a0 6= 0 and b = 0 ) b0 6= 0. If u is an unknown, theequation (in x) u6f(x) = g(u2x)has the solution x = h(u) = � b0 � u6bu2(a0 � u4a)Now de�ne C by the equation Y 2 = f(h(X)). De�ne also the two morphismsp : C �! E(X;Y ) 7�! (h(X); Y )and (6.1)p0 : C �! E0(X;Y ) 7�! (X2h(X);X3Y )



50 CHAPTER 6. CURVES OF HIGH RANK AND CONSTANT JIf ! = p�(dx=y) and !0 = p0�(dx=y) then by direct computation!!0 = 3aX4b0 � 2X6ba0 � b0a0X3(X6ba� 3X2ba0 + 2ab0)which is a non-constant rational function, thereby proving theorem 31. 2Proof of theorem 29: If j 6= 0; 1728, theorem 29 follows immediatelyfrom theorem 31 because for any j 2 k, there exists a E=k of invariant j.If j = 0, then choose as C the curve of equation y2 = x6 + 1. Then if Eis the elliptic curve of invariant 0 de�ned by y2 = x3 + 1, we have JacC isQ-isogenous to E �E and we're done.If j = 1728, we let C be the curve y2 = (t2 + 1)(t2 � 2)(2t2 � 1). Thetwo morphisms (t; y) 7! (t2; y) and (t; y) 7! (1=t2; y=t3) de�ne coverings ofC onto the elliptic curve y2 = (x + 1)(x � 2)(2x � 1) which has invariantequal to 1728, thereby proving our theorem. 2Theorem 29 implies theorem 30: There is a general proof of this factgiven in [Mes 7] but we can give here a proof \ad hoc" in the case wherej 6= 0; 1728. In this case formul� 6.1 imply that, if we call P = (t;pf(t))where f is as in the proof of theorem 31, thenp(P )� = �p(P ) and p0(P )� = �p0(P )where < � >= Gal(k(pf(t))=k). By the exact sequence above we concludethat (p(P ); p0(P )) 2 Ef(t)(k(t)) �Ef(t)(k(t))so that they are rational points of a curve of constant invariant j(E). Sinceby construction p and p0 are independent, we have that p(P ) and p0(P )are independent in E(k(pf(t))) (or in Ef(t)(k(t))), because otherwise ifmp(P ) + np0(P ) = 0 we would getmp�(!P ) + np0�(!P ) = 0where ! is a di�erential of the �rst kind on E and by the invariance of !this contradicts the independence of p and p0.For j = 0; 1728 we refer to what follows.



512Proof of theorem 28:Case j = 1728: Let p(x) = x4 + a2x2 + a1x + a0 2 k[x], with roots xi 2 k(P4i=1 xi = 0). The curve E of equation x4 + a2y2 + a1y + a0 = 0 has thefour k-rational points Pi = (xi; xi). Ifa0 = �u4 (u 2 k) (6.2)then O = (�u; 0) 2 E(k). If a2(a21�4a0a2) 6= 0 then E is k(t)-isomorphic toy2 = x3+a2(a21� 4a0a2)x, therefore is an elliptic curve of modular invariant1728.Now equation 6.2 is equivalent tox1x2x3(x1 + x2 + x3) = u4As is pointed out in [Di], Euler studied this surface and found several rationalcurves on it, for instanceu = 1; x1 = t2t2 � 12t2 + 1 ; x2 = 2t2 � 12t(2t2 + 1) ; x3 = 4t2t2 � 1If we form the polynomial p as above from these data, we obtain E=k(t)of invariant 1728. To show that it is not isomorphic to a constant curve itsu�ces to apply the usual formul�. For example sincea2(a21 � 4a0a2)(t)a2(a21 � 4a0a2)(t0)is not a fourth power in k(t) (t0 is just a value of of t) we are done. Choose Oas origin, then the four points Pi are independent, as we see by specialization,using PARI.Case j = 0: Again take p of the formp(x) = x6 + a4x4 + a3x3 + a2x2 + a1x+ a0 = 6Yi=1(x� xi)with xi 2 k and apply lemma 3 to p. Call R = p � g3 so that degR � 3.Then the curve E of equation y3 + R(x) = 0 contains the six k-rationalpoints Pi = (xi; g(xi)). We still have to �nd one more k-rational point to beput as the origin. Notice that if the discriminant D of R is not zero, then E



52 CHAPTER 6. CURVES OF HIGH RANK AND CONSTANT Jis a nonsingular curve of genus 1 isomorphic to y2 = x3 � 16D therefore ofinvariant 0.If the leading coe�cient of R is a cube in k, then at least one point atin�nity is rational over k and we can set it to be the origin O of the ellipticcurve E.We have r(x) = a3x3 + � � �. Since a3 is a homogeneous polynomial ofdegree 3 in the xi's, we get that u3 = a3 is the equation of a cubic hyper-surface H (in the variables u and xi 1 � i � 5). This surface has a lot ofrational points on it and we can �nd non trivial rational curves by standardmethods (see [Elk], for example take a plane P tangent to H. Then H \ Pis a cubic with a singular point, i.e. birational to P1). For examplex1 = �126(35t � 19)(14t � 13)(t + 1)x2 = 63(�980t3 + 3549t2 � 3084t+ 1135)x3 = x1x4 = 63(1127t3 � 3108t2 + 3525t � 988)x5 = �113876t3 + 265629t2 � 259980t + 69103x6 = �x1 � x2 � x3 � x4 � x5Again by standard methods since D(t)=D(t0) is not a sixth power in k(t) wehave that E is not k(t)-isomorphic to a curve de�ned over k. The indepen-dence of the six points Pi is dealt with as previously. 26.1 Curves of rank 7 with j = 0We now prove that there exist in�nitely many elliptic curves de�ned overQ with modular invariant equal to zero and Mordell-Weil rank at least 7.Again this follows using the usual arguments from the following theorem:Theorem 32 Let v be a variable. There exists an elliptic curve de�ned overQ(v) with zero invariant, not Q(v)-isomorphic to an elliptic curve de�nedover Q and rank at least 7.Proof: The proof follows the same lines as for rank 6. Take p 2 Q(x) of theform Q6i=1(x � xi) and write it as p = g3 � r where g is monic of degree 2and deg r � 3. Then the curve of equation y3 = r(x) is usually an ellipticcurve of invariant 0 having the 6 rational points (xi; yi), where g(xi) = yi.



6.1. CURVES OF RANK 7 WITH J = 0 53As before we will produce a seventh rational point (at in�nity). Theother new rational point will come out of a rational solution of y31�r(x) = 0,di�erent from x1. We have already seen a similar trick in section 5.2.Take the �ve unknowns t; a; b; c; d and let xi = (ui + tvi) (1 � i � 6)where ( (u1; : : : ; u6) = (a; a; b; c; d;�2a � b� c� d)(v1; : : : ; v6) = (1;�1; 1;�1; 1;�1)Then p is a homogeneous polynomial in t; a; b; c; d; x of degree 6. If we writer(x) = 3Xi=0 rixi (6.3)then we see that r3 is homogeneous of degree 3 in t; a; b; c; d. Moreover,working on the symmetries of p, it can be easily shown that degt r3 � 1 (forexample the term with t3 is zero because if we set a = b = c = d = 0 then pbecomes a cube so that r = 0). Likewisedegt r3�i � 1 + i (0 � i � 3) (6.4)Also the leading coe�cient of r3 (seen as polynomial in t) is a polynomial ofdegree 1 in d, namely4a2 + 2c2 + 4ab+ 2bc+ 4ca+ 2dc + 2db+ 4daHence for a suitable d we have that r3 doesn't depend on t anymore. Ex-plicitly r3 = 2a(b+ c)(a+ b)(a+ c)b+ c+ 2aNext we try to impose that one of the three points at in�nity be rational.We want to parametrize a; b; c so that r3 becomes a cube. For example wecan notice that on the surface r3(a; b; c) = �1 we can �nd rational curveslikea = �(v � 1)(v2 + v + 1)4v ; b = �v3 + 34v ; c = v6 � 6v3 � 3(4v � 4)(v2 + v + 1)vUntil now we have de�ned a curve y3 = r(x) over Q(v; t) with 7 rationalpoints.We are looking for a new rational point of ordinate y1. This amounts to�nding solutions of h(x) = r(x)� r(x1)x� x1 = 0



54 CHAPTER 6. CURVES OF HIGH RANK AND CONSTANT JNow the discriminant D of h is a polynomial of degree 4 in t and its leadingcoe�cient m is a square in Q(v), as can be readily checked using 6.4.Explicitly we havem = 16v4(v12 + 14v6 + 1)2�(v6 + 3)2(v � 1)4(v + 1)4(v2 + v + 1)4(v2 � v + 1)4Therefore by lemma 1 we can write D = G2 � (At � B), where degtG = 2and A;B 2 Q(v). Hence letting t = B(v)=A(v) we get that D is a perfectsquare in Q(v) and we get an eighth rational point.In the end we check that everything �ts well. The discriminant ofthe elliptic curve thus obtained is of degree 1296. It factors over Q[v] asP (v)4Q(v)2, where P and Q are coprime and Q is irreducible of degree 468.Consequently, it is not a 12-th power in C[v] and hence the curve is notisomorphic over Q(v) to a constant curve.If we set the point at in�nity as origin, the other seven rational pointsare proved to be independent as is proved by specialisation (for v = 2 theheight matrix has determinant 44435390119934:6473 : : : 6= 0 ). Quod eratdemonstrandum. 26.2 About the genus of CIt is natural to ask ourselves what the genus of the curve C appearing intheorems 31 and 29 is. As explained in [Mes 7] it is basically 10 if j(E) 6=j(E0), 6 if j(E) = j(E0) 6= 0; 1728 and 2 if j(E) = j(E0) = 0 or 1728. Is itpossible to �nd C of smaller genus with the same properties?Theorem 33 Let E 6�= E0 be two elliptic curves de�ned over k such thatat least one of them is without CM. Given a rational prime � such thatE[�] �= E0[�] inducing an anti-isomorphism for the Weil paring, then thereexists a C of genus 2 (notations as in theorem 31) such that p and p0 areindependent and deg p = deg p0 = �.Remarks:1. It is easy to prove the theorem in the special case when � = 2 and allthe points of order 2 of E and E0 are in k: let y2 = Q3i=1(x�xi) = f(x)and y2 = Q3i=1(x� x0i) = g(x) be equations for E and E0 respectively.



6.2. ABOUT THE GENUS OF C 55Then there exists h 2 PGL2(k) such that h(xi) = x0i; i = 1; 2; 3. Byhypothesis h(x) = (�x+ �)=(x + �) 6� x.Consider now the identityy2 = g(h(x)) = 3Yi=1(h(x) � x0i) = c(x� x1)(x� x2)(x� x3)(x+ �)3where c is a constant which can be put equal to 1. If we de�ne thenew quantities u2 = x + � and Y = yu3 the previous equation istransformed into Y 2 = L(u) (6.5)where L is an even polynomial of degree 6. Let C be the hyperellipticcurve of genus 2 given by 6.5. Then it is clear that the two morphismsfrom C to (resp.) E and E0 are given by(u; Y ) 7�! (u2 � � ; Yu3 )(u; Y ) 7�! (u2 � � ; Y )2. Let E = E0 be given by y2 = x3 � ax+ b and suppose that there existu; v 2 k such that a = u2�uv+v2. The conic given by x21+x1x2+x22 =a is then k- isomorphic to the projective line, hence there exist twodistinct rational functions of degree 2, namely x1(t) and x2(t) suchthat the rational function f(t) = x31 � ax1 + b be equal to the rationalfunction x32 � ax2 + b.There exist two morphisms from C of equation y2 = f(t) to E givenby (t; y) 7! (xi(t); y) (i = 1; 2). They are checked to be independentand, since the genus of C is 3, we have in this case a curve of lowergenus covering E.



56 CHAPTER 6. CURVES OF HIGH RANK AND CONSTANT J



Chapter 7p-rank of quadratic �eldsAnother question related to the topics studied in the last chapter regardsthe p-rank of quadratic �elds (over the rationals), i.e. the p-rank of theirideal class group. Let us introduce some notations.Let d 2 Z and K = Q(pd). We call G the ideal class group of K. ByDirichlet's theorem it is a �nite abelian group, therefore it makes sense, givena prime p, to speak of the p-rank of G (or K) as the Fp-dimension of G=pG.7.1 Algebraic theoryWhen p = 2, it has been known since Gau� that the 2-rank of K is more orless equal to the number of prime divisors of the discriminant � of K. Inparticular, this rank is not bounded.But when p is an odd prime very little is known. We don't even knowwhether the p-rank is bounded! As we shall see today there is one generalresult, whereas all other theorems deal with speci�c primes (but even inthose cases we don't know much). For p = 3 for example we haveTheorem 34 (Craig) There exist in�nitely many quadratic �elds with 3-rank � 4.The method in treating this problem always reduces to the equationy2 = 4xn + d (7.1)We give here a brief exposition of the �rst part of [Yam].Theorem 35 Let (x; y) 2 Z2 be a solution to 7.1 in coprime integers. Then57



58 CHAPTER 7. P -RANK OF QUADRATIC FIELDS1. The ideal I = (x; (y +pd)=2) is of exponent n in K.2. Let � < �4. Take a prime pjn and suppose that there exists a prime` dividing x such that y is a p-th power non-residue (mod `). ThenIn = ((y +pd)=2) is not the p-th power of a principal ideal of K.Proof: Call � = (y +pd)=2. It is an integer of K.1. Since (x) � I we have taking normsN(I)jN(x) = x2 (7.2)Also calling I� = (x; (y �pd=2)) we readily obtain from 7.1(xy) � II� � (x)which implies x2jN(I)2j(xy)2Now since (x; y) = 1 by hypothesis we get in view of 7.2N(I)2 = x2whence N(I) = jxj. Also from 7.1 we get In � (�), hence after takingnorms In = (�).2. Suppose there exists a 2 OK such that(a)p = (�)() ap = ��since � < �4. By juggling with Galois action and �y we may as wellsuppose that ap = �. Now since ` 6= 2 we have `jx) y2 � d (mod `)and again we may suppose thaty � pd (mod `)) � � y (mod `)) y � ap (mod `)Now since gcd(I; I�) = 1 andII� � (x) � (`)we obtain that ` is decomposed in K so that its residue �eld is isomor-phic to F` and there exists therefore b 2 Z such that y � bp (mod `),contradiction.



7.1. ALGEBRAIC THEORY 592This theorem has a corollary:Theorem 36 (Nagel, 1922) For any p, there exist in�nitely many imag-inary quadratic �elds K such that pjh(K), where h(K) is the class numberof K.The idea of the proof is to impose on x and y certain congruences and tode�ne d = y2 � 4xp. Yamamoto proves the in�nity by noticing that one canalso impose to a �nite set S of rational primes to be rami�ed in K.The main contribution of Yamamoto is the followingTheorem 37 (Yamamoto, 1973) For any p there exist in�nitely manyimaginary K of p-rank � 2. For any p there exist in�nitely many real K ofp-rank � 1.The idea of the proof is a modi�ed version of theorems 35 and 36: Yamamototakes two sets (x; y); (x0; y0) of solutions to 7.1 and applies to each one the-orem 35 but links the two solutions together by imposing that (y+ y0)=2 bea p-th power residue (mod `). He then arrives to the conclusion. To dealwith the in�nity of such �elds, he uses the identity(up+vp�wp)2�4upvp = (up�vp+wp)2�4upwp = (up�vp�wp)2�4vpwpcombined with the ideas already present in Nagel's theorem.Let's mention two other results.Theorem 38 (Gross, R�ohrlich) Let p = 5; 7; 11. Then if x 2 Q � f1gand 1� 4xp < 0 we have pjh(1 � 4xp).Proof: Let d = 1 � 4xp. Then again as in theorem 35 I = (x; (1 �pd)=2)has order p. If it were trivial then there would exist u 2 K such thatup = (1 �pd)=2. By conjugation in K also up = (1 +pd)=2, so that aftersumming 1 = up + up.But Gross and R�ohrlich show that there are no nontrivial point de�nedover Q(pd) on this Fermat curve, and so we are done. 2By the same methods they also proveTheorem 39 Let p be a prime greater than 3. If x 2 N � f0; 1g thenpjh(1� 4xp).



60 CHAPTER 7. P -RANK OF QUADRATIC FIELDS7.2 Geometric interpretation7.2.1 General theoryThere is a geometric interpretation of these facts that helps constructinga criterion to �nd large p-ranks in quadratic �elds (with emphasis on realones).Let E be an elliptic curve de�ned over Q and R a rational point on Eof order n. Let F = E= < R > be the quotient curve and � : E ! F be thecorresponding isogeny. Suppose that � is given in the simple form:x! p(x); y ! q(x)y (7.3)Take now a point P in F (K) (where K is a number �eld, in our case aquadratic �eld). We have that ��1(P ) = fQ + iR; i = 0; : : : ; n� 1g. Nowconsider the �eld M = K(Q) obtained from K by adjoining the coordinatesof Q. M does not depend on Q 2 ��1(P ) because R is rational and of theaddition law on an elliptic curve. Furthermore, by 7.3 if � 2 C is such thatp(�) is the abscissa of P , we have that M = K(�) and hence either M = Kor it is a cyclic extension of K of degree dividing n (to see it is cyclic, notethat the morphism Q! Q+R when restricted to the absciss� is a generatorof the Galois group). Also we remark that M = K if and only if Q 2 E(K).Thus to any non-trivial point of F (K)=�(E(K)) we can attach in a nat-ural way a non-trivial cyclic extension of K of degree dividing n.We can also describe everything in terms of Galois cohomology. Let Lbe a Galois closure of K, G = Gal(L=K), then we have the exact sequenceof G-modules: 0 �!< R >�= Z=nZ �! E(L) �! F (L) �! 0giving rise to the long cohomology sequence� � � �! H0(E(L)) �! H0(F (L)) �! H1(Z=nZ) �! � � �Since H0(A) is by de�nition the submodule of A consisting of elements �xedby G and G acts trivially on < R > the previous sequence translates into� � � �! E(K) �! F (K) �! hom(G;Z=nZ) �! � � �Any � 2 hom(G;Z=nZ) de�nes a �eld, namely the �xed �eld of ker�. This�eld is Galois over K with Galois group �(G) � Z=nZ, hence cyclic.



7.2. GEOMETRIC INTERPRETATION 61Suppose now that n is prime. We then see that r independents pointsin F (K)=�(E(K)) give rise to r independent number �elds M , cyclic and ofdegree n over K (that is, the �'s de�ning the M 's are independent). If G isabelian, this means that its n-rank is at least r.The link between this and Cl(K) is given by class �eld theory, whichsays that there is a L such that G = Cl(K) and it is precisely the maximalunrami�ed abelian extension of K (the Hilbert class �eld of K). Hence theproblem of showing that the p-rank of Cl(K) is large reduces to �nding inan equally large number of independent unrami�ed extensions of K that arecyclic of degree p.To study rami�cation, it is more convenient to introduce schemes.Start with the curve C of equation y2 = 4xp + d and set K = Q(pd).Then under the morphism f : C ! J(C) sending in�nity to zero we havethat the point P = (0;pd) is sent to a point of J(C) of order p (because thedivisor of y�pd is p(P �1)). Let A be the quotient variety J(C)= < P >,then we have an exact sequence0 �! Z=pZ �! J(C) �! A �! 0and by duality 0 �! �p �! B �! J(C) �! 0Then there exists a group scheme A0 of generic �ber J(C) and smooth overOK giving the following exact diagram, which we get from short exact se-quences (cf [Mes 6]): 0#O�K=(O�K)p#0 �! A0(OK)=B(OK) �! H1(Spec(OK);�p)#Cl(K)p#0where Cl(K)p is the p-th component of the class group of K.Now any point (x; y) 2 C(K) get mapped via f to a point of J(C)(K).The condition that x; y be coprime then insures that the image of this pointextends to a point of A0(OK), thus giving an element of Cl(K)p. We therefore



62 CHAPTER 7. P -RANK OF QUADRATIC FIELDSrecover Yamamoto's application giving for coprime integers (x; y) such thaty2 = 4xp + d the ideal I = (x; (y �pd)=2) of order 1 or p. Now in this casethere is an explicit description of B and the morphism B �! J(C). IndeedB is a quotient of the jacobian of the Fermat curve up + vp = pd. Thisfact enables us to understand the conditions in theorem 35 under which theideal I has exactly order p. Furthermore the point (x; y) of C has a non zeroimage in A0(OK)=B(OK).If K is imaginary quadratic and if there exist two independent points inA0(OK)=B(OK) then we can deduce the independence of the correspondingideals of Cl(K)p (note also that addition of these points on J(C) correspondsto the product of the corresponding ideals).If K is real quadratic the fact that O�K=(O�K)p has rank one only enablesus to conclude that Cl(K)p 6= 1. The weakness of Yamamoto's method isthat it relies on the structure of the units of K.We can avoid this problem by considering, instead of H1(Spec(OK);�p)the group scheme Z=pZ giving the cohomology group H1(Spec(OK);Z=pZ)= hom(Cl(K);Z=pZ).Suppose now we are given an abelian variety E together with a point Pof order p and call F = E= < P >. Take the N�eron model of E over Z andcall it E again. Suppose also that corresponding to P we have a morphism0 �! Z=pZ �! E. Then there exists a group scheme F 0 of generic �ber Fsuch that we have the exact sequence0 �! Z=pZ �! E �! F 0 �! 0yielding 0 �! F 0(OK)=E(OK) �! hom(Cl(K);Z=pZ)This gives a lower bound for the p-rank of K by the rank of F 0(OK)=E(OK),where the units of K don't come into play anymore.7.2.2 ExamplesWe choose E to be an elliptic curve with a rational point. By Mazur'stheorem p = 3; 5; 7. Such E's are classi�ed by the curves X1(p) which are ofgenus 0. Also by V�elu's formulas we can construct F explicitly. For exampleX1(5)(Q) is given by the family of cubicsy2 + uxy + v2(u� v)y = x3 + v(u� v)x2 [u; v] 2 P1(Q)



7.2. GEOMETRIC INTERPRETATION 63Theorem 40 (Mestre) There exist in�nitely many real quadratic �eldswith 5-rank (resp. 7-rank) � 2.Idea of proof: In pratice we don't need to invoke scheme theory becauseeverything is explicit. As an example we gave V�elu's formula for X1(5), butwe also know F and the quotient isogeny �. Now if for some value of [u; v]we can impose to F to be semistable, then a su�cient condition for K(Q)to be unrami�ed over K is that the point P = �(Q) not be congruent to thenode of F modulo the bad primes. This amounts to imposing congruenceconditions on x 2 Q if P = (x;pg(x)) (in the scheme dictionnary this wouldensure that P comes from a point in the associated scheme F 0).Thus we already have in�nitely many quadratic �elds K = Q(pg(x))(x 2 Q not in some arithmetic progression) with 5-rank � 1. By consideringseveral values of [u; v] we get g(x) of arbitrary sign.Now it is possible to construct in�nitely many points Pi = (xi; y) (i =1; 2; 3) on F such that xi 2 Q and y is quadratic over Q. (This is equivalentto �nding conditions so that a conic has a rational point (x1; x2); hence weparametrize it by t 2 Q). Then after callingK = Q(y) we can arrange for therelative extensions K(Qi) to be unrami�ed over K (congruence condition ont ). Since the Pi's lie on the same line they are not independent, but we can�nd conditions under which two of them are (in F (K)=�(E(K))). These arecongruence conditions again (t belonging to some arithmetical progression).Hence the theorem is proved. 2Remark: Let p be a prime and k 2 N. Assume we can �nd an hyper-elliptic curve over Q such that its Jacobian contains (Z=pZ)k as a rationalsubgroup (or better (�p)k). Then by a similar method we can prove thatthere exist in�nitely many quadratic �elds with p-rank � k.In the same way Mestre was able to proveTheorem 41 There are in�nitely many real (resp. imaginary) quadratic�elds of 5-rank � 3 ([Mes 1]). There are in�nitely many real (resp. imagi-nary) quadratic �elds of 3-rank � 5 (unpublished).



64 CHAPTER 7. P -RANK OF QUADRATIC FIELDS



Chapter 8Hyperelliptic curves IThe last two chapters will be devoted to the study of hyperelliptic curves inan attempt to produce results similar to those on elliptic curves. Let's recalla de�nition.Theorem 42 Let C be a curve of genus g � 2 de�ned over a �eld k. Let Kbe its canonical divisor. Then the following are equivalent:1. There exists f : C ! P1 of degree 2.2. There exists an involution w : C ! C such that genus(C=w) = 0.3. Let � : C ! Pg�1 be the morphism associated to K. Then � is not anembedding.Remark: It is known that degK = 2g�2. If L(K) = ff 2 k(C) : (f)+K �0g then L(K) [ f0g is a vector space of dimension g and given a basisf0; : : : ; fg�1 of this vector space � is given by x 7! (f0(x); : : : ; fg�1(x)).De�nition 5 Any curve C of genus at least 2 satisfying the equivalent con-ditions of the above theorem is called an hyperelliptic curve and the corre-sponding w is called the hyperelliptic involution (see also below).Remark: A curve of genus 2 is always hyperelliptic because the morphismassociated to K gives a morphism onto P1 of degree 2.Next we list a few properties of hyperelliptic curves.Theorem 43 1. The involution w is unique and de�ned over k.2. For any f 2 Aut(C) we have f � w = w � f .65



66 CHAPTER 8. HYPERELLIPTIC CURVES I3. The morphism � factors through C=w.>From now on we assume char k 6= 2. The next proof is widely knownbut seldom found in literature.Theorem 44 Let C be a hyperelliptic curve of genus g de�ned over k. Ifg is even, then C=w �=k P1 (i.e. C=w admits a k-rational point) so that Cadmits over k an hyperelliptic equation y2 = f(x) with deg f = 2g + 2. Inthese coordinates we have w(x; y) = (x;�y).Proof: Consider the projection map � : C ! C=w. Since K 2 Divk(C) anddegK = 2g � 2 we can write K in the formK =Xi Pi +w(Pi)and hence �(K) = 2L where degL = g � 1 and L 2 Divk(C=w). Let's showthat this implies that C=w has a k-rational point. Indeed ifK0 is a canonicaldivisor of C=w we have degK0 = �2 so thatL1 = �L� g2K0is of degree 1. If it is e�ective we are done. Otherwise by Riemann-Rochl(L1)� l(K0 � L1) = 1 + 0 + 1 =) l(L1) = 2and this implies that there exists f 2 k(C=w) such that L2 = (f) + L1 � 0.Since again degL2 = 1 we are done. 28.1 Review on Elliptic CurvesGiven an elliptic curve E=k from its Weierstra� equation we can computeits relative invariants c4 and c6 (see formulas for example in prof. Murty'snotes) and from these an absolute invariant j. If char k 6 j6 thenj = 123 c34c34 � c26Also A1 is the moduli space of elliptic curves parametrized by j. That is



8.2. CURVES OF GENUS 2 671. If E;E0 are elliptic curves over an algebraically closed �eld k, thenE �=k E0 , j(E) = j(E0).2. If again k = k then 8j 2 k there exists E=k such that j(E) = j.Remark: The last statement is true even if k is not algebraically closed(?). This is particular to elliptic curves and we will see that this does notgeneralize to hyperelliptic curves.Recall also that for general k we have E �=k E0 if and only if there existsu 2 k� such that c4(E) = u4c4(E0) and c6(E) = u6c6(E0).8.2 Curves of genus 2Recall that such curves are hyperelliptic and that they can be written asy2 = f(x) = x6 + � � � + a6over k. By a homography sending three roots of f to 0; 1;1 we can transformit into y2 = x(x� 1)(x� �)(x � �)(x � )CallM2 the moduli space of curves of genus 2. Then by the above it is moreor less parametrized by triples (�; �; ) 2 A3 just as the elliptic curves inLegendre form are \more or less" parametrized by an a�ne parameter. Wewant to characterize M2 that is to �nd an application' : fcurves of genus 2=kg !M2(k)such that1. '(C) = '(C 0), C �=k C 0.2. 8P 2M2(k) 9C=k : '(C) = P .Note that we can have P 2 M2(k) but no C=k such that '(C) = P so (?)doesn't hold (in spite of a 1943 article of Deuring who proves (?) for bothelliptic and hyperelliptic curves of genus 2!!).



68 CHAPTER 8. HYPERELLIPTIC CURVES I8.3 Invariants and Covariants of Binary FormsThe theory of invariants and covariants of binary forms was propoundedby Clebsch, Gordan et al. around 1880 and rediscovered in the Sixties byDieudonn�e and Dixmier, among others. It has a lot of applications also tothe �eld of hyperelliptic curves. We refer to [Cleb, Gor, CD] for details.De�nition 6 A binary form of degree n isf(x; y) = nXi=0 aixiyn�iGL2(K) acts on the space of binary forms with coe�cients in K in the\obvious" way. IfM =  � � � ! and  x0y0 ! =  � � � ! xy !then f =Pni=1 a0ix0iy0n�i and we putM � f = nXi=1 a0ixiyn�iNow if fi is a binary form, let a(i) represent its set of coe�cients and a0(i)those of M � f .De�nition 7 Let f1; : : : ; fm be a family of binary forms.� A covariant of f1; : : : ; fm is a polynomial C(a(1); : : : ; a(m); x; y) ho-mogeneous in (x; y) such thatC(a(1); : : : ; a(m); x; y) = (detM)�kC(a0(1); : : : ; a0(m); x0; y0)� The order of C is the total degree of C in (x; y).� The degree of C is deg(a(1);:::;a(m)) C.� The index of C is k.� C is a (relative) invariant if its order is 0.� An absolute invariant is a quotient of two relative invariants of sameindex.



8.4. SYMBOLIC COMPUTATION 69Example: fi is a covariant of index 0.Theorem 45 (A property of covariants) Let m = 1 in the above de�-nition and C be a covariant of index k of f = f1 binary form of degree n. Ifr is the degree and l is the order of C we have the relationk = nr � l2In particular if C is an invariant then k = nr=2.Remark(Transitivity of the covariant/invariant property): If C1; : : : ; Cr arecovariants of f1; : : : ; fm and D1; : : : ;Ds are covariants of C1; : : : ; Cr, thenthey are also covariants of f1; : : : ; fm.8.4 Symbolic computationLet Imn (resp. Cmn ) be the algebra of invariants (resp. covariants) of mbinary forms of degree n, with usual addition and multiplication. It was amajor problem in the last century to determine whether these algebras are�nitely generated and to �nd explicit generators for them. Usually one foundthe generators and a posteriori the algebra was �nitely generated. Howeverone proof was required for each n;m and the larger the numbers, the moredi�cult the proof (actually, we know explicit generators only in �nitely manycases, all with n � 8).Then came Hilbert who showed in one stroke that for all n;m the algebrasImn and Cmn are �nitely generated. His arguments involved a property ofthese rings called today Noetherianity. The drawback of Hilbert's theoremis that it does not produce an explicit system of generators. Therefore forcomputational purposes the methods of his predecessors are still valid.To �nd explicit generators, we will �rst de�ne a binary operator on thealgebra of all covariants. If f (resp. g) is a binary form of degree n (resp.m)we de�ne(fg)k = (m� k)! (n� k)!m!n! kXi=0(�1)i  ki ! @kf@xi@yk�i @kg@yi@xk�iIt is well-de�ned as we readily check and ord(fg)k = m+n� 2k. Moreover,if deg f = � and deg g = � (as covariants), then deg(fg)k = �+ �.



70 CHAPTER 8. HYPERELLIPTIC CURVES IWe can combine two or more of these operators through symbolic compu-tation, an example of which is provided by Leibniz' rule to compute deriva-tives of products. The trick is to deal with the operator f 7! f (n) = @nf=@xnas if it were the operator f 7! fn ( with exception f0 = f). For exampleusing this rule we have, symbolically@if@xi @jf@xj = @i+jf@xi+jand also dn(fg)dxn = (f + g)(n)Also by symbolic computation (fg)k(cd)l is a covariant of c; d; f; g. It is clearthat starting from invariants we obtain invariants.8.5 Explicit GeneratorsWe give without proof explicit generators of some of the algebras de�nedpreviously.1. Let f = ax2 + bxy + cy2. Then (ff)1 = 0 and 4(ff)2 = �2(�) =2(4ac � b2). We have < f;� >= C12 .2. Take f as before and g = a0x2 + b0xy + c0y2. De�nei = 2(fg)1 = (ab0 � a0b)x2 + 2(ac0 � a0c)xy + (bc0 � b0c)y2We have (ii)2 = �2disc(i) = �2res(f; g). Also D = (ff)2, D0 = (fg)2and D00 = (gg)2 generate I22 . For example�2i2 = Df2 � 2D0fg +D00g22(if)1 = Dg �D0f2(ii)2 = DD00 �D023. Let f be binary of degree 4. De�ne covariantscovariant degree orderC4 = (ff)2 2 4C6 = (fC4)1 3 6I2 = (ff)4 2 0I3 = (fC4)4 3 0



8.5. EXPLICIT GENERATORS 71Then f together with the quantities de�ned above generate C14 . Wealso have the important relation12C26 = �6C34 + 3I2C4f2 � 2I3f3 (8.1)This formula applies to �nd rational points on quartics. Indeed thecurve C given by u2 = f(x; 1) is a quartic. The elliptic curve E ofequation 12v2 = �6X3 + 3I2X � 2I3is isomorphic to Jac(C). The classical covering of a quartic onto itsJacobian can therefore be given in explicit form byC �! E(x; u) 7�! (C4u2 ; C6u3 )4. Let x1; x2; x3 be three binary quadratic forms (in x; y). To them wecan associate a conic C given by the image ofP1 �! P2[x; y] 7�! [x1(x; y); x2(x; y); x3(x; y)]The conic C is non degenerate if the determinant R of the xi's in thebasis x2; xy; y2 is not zero. De�ne now x�1 = (x2x3)1, x�2 = (x3x1)1 andx�3 = (x1x2)1. The x�i are again quadratic forms, so that we can againassociate a conic C� to them. We have the fundamental relationx1x�1 + x2x�2 + x3x�3 = 0This relation tells us that if R 6= 0, then C� is the dual conic of C.The intrinsic equation of C� is of the formX1�i;j�3Aijx�ix�j = 0and one can show that Aij = (xixj)2 (it is therefore an invariant as isto be expected). On the same linesR = �(x1x2)1(x2x3)1(x3x1)1and 2R2 = det(Aij).



72 CHAPTER 8. HYPERELLIPTIC CURVES I5. In general if f is a binary quadratic form we haveRf = (fx1)2x�1 + (fx2)2x�2 + (fx3)2x�3and if f is a binary form of degree 2nRnf = ( 3Xi=1(fxi)2x�i )(n) = X1�i1;:::;in�3 ai1;:::;inx�i1 : : : x�inwhere the a::: are invariants.6. What is written in the previous two points can be applied to retrievethe zeros of f in the projective plane. Indeed suppose R 6= 0 (i.e. thatwe take three independent quadratic forms xi) and let f be binary ofdegree 2n. If the x�i 's are as above we found thatP1�i;j�3Aijx�ix�j = 0 (8.2)Rnf =P1�i1;:::;in�3 ai1;:::;inx�i1 : : : x�in = 0 (8.3)are the equations of a conic C� and a curve T of degree n.If f = cQ2ni=1(�ix� �iy) then it is clear that the zeros of f are exactlygiven by C� \ T .



Chapter 9Hyperelliptic curves II9.1 Invariants and covariants of an hyperellipticcurveWe continue to assume throughout the rest of the chapter that char k 6= 2.>From Hurwitz' formula we know that an equationy2 = f(x) = c 2g+2Yi=1 (x� xi)where the rami�cation points xi are all distinct, gives an hyperelliptic curveof genus g. Reciprocally, any hyperelliptic curve over k has an equation ofthis type over k (see also theorem 44).In general it is di�cult to see if two given algebraic curves are isomorphic.However in the case of hyperelliptic curves the situation is much simpler, aswe state in the following proposition.Proposition 1 Given two hyperelliptic curves C and C 0 de�ned over a �eldk, C is isomorphic to C 0 over k (denoted C �=k C 0) if and only if there exists� 2 PGL2(k) such that�(fram. points of Cg) = fram. points of C 0gIn other terms, let C and C 0 be given respectively by u2 = f(x) and U2 =F (X). Call ~f(x; y) and ~F (X;Y ) the homogenized polynomials of f and F(i.e. f(x) = ~f(x; 1), . . . ). Then it is easy to see that C �=k C 0 () ~f(x; y)and ~F (X;Y ) are in the same orbit (mod PGL2(k)) (cf section 8.3).73



74 CHAPTER 9. HYPERELLIPTIC CURVES IITo an hyperelliptic curve of genus 2 over k we can associate a sextic formf with coe�cients in k (cf theorem 44). We then de�nei = (ff)4� = (ii)2x1 = (fi)4x2 = (ix1)2x3 = (ix2)2A = (ff)6B = (ii)4C = (i�)4D = (x1x3)2The �rst two are quartic forms, the following three are quadratic forms (towhich we associate the \dual" forms de�ned in section 8.5) and the last fourare invariants of even degree. Clebsch showed that A;B;C;D generate allinvariants of even degree and that A;B;C;D;R generate all invariants of f(see section 8.5 for de�nition of R). Furthermore he showed the followingfundamental result:Theorem 46 Let f and g be (binary) sextic forms. Then they are isomor-phic (mod PGL2(k)) if and only if there exists u 2 k� such thatA = u2A0; B = u4B0; C = u6C 0; D = u10D0where the invariants A;B;C;D are de�ned above and relative to f , whileA0; B0; C 0;D0 are the same ones relative to g.Note that we have a characterization of isomorphism for hyperelliptic curvesof genus 2 which does not require the computation of the roots of a polyno-mial.We now return to the problem of determining the moduli space of hy-perelliptic curves of genus 2.Since D = discf is an invariant of degree 10 by theorem 45, it is apolynomial expression of A;B;C;D.Theorem 47 (Igusa) For any A;B;C;D such that D 6= 0 there exists asextic form f with these numbers as invariants.



9.2. DEFINITION OVER K 75Suppose now A 6= 0 and de�ne absolute invariants� = BA2 ; � = CA3 ;  = DA5Then D=A5 is an absolute invariant, equal to '(�; �; ). Therefore for A 6= 0,the moduli space of hyperelliptic curves of genus 2 isA3 � f�; �;  : '(�; �; ) = 0gIn general the situation is technically more complicated (blow-ups...) butthe avor is the same.9.2 De�nition over kGiven (�; �; ) 2 k3 such that '(�; �; ) 6= 0, does there exist C=k of genus2 with invariants �; �; ? And if yes, how can we construct it?Recall from the end of section 8.5 that to a sextic f we can associate aconic C� and a cubic T . Since their coe�cients are invariants, after rescaling,we may as well suppose that they are absolute invariants. Hence, since theyare of even degree, they can be expressed in terms of �; �; . At this pointwe therefore know the equations of C� and T .1. Suppose C�(k) 6= ;. Then we may parametrize C�(k) by [x; y] 2 P1.Replacing x�i by x�i (x; y) in 8.3 we obtain a homogeneous polynomialof degree 6 whose roots are those of an f , by our previous discussion.Clearly f has coe�cients in k and the equation of our hyperellipticcurve is u2y4 = f(x; y).2. On the other hand if C�(k) = ;, if k is perfect and the hyperellipticcurve C (over k) obtained from �; �;  has no exceptional automor-phism (meaning that Aut(C) =< w >) 1 then C is not isomorphic toa curve de�ned over k.Proof: Suppose that C is given byy2 = f(x) (9.1)1This is mostly the case: it is clear that Aut(C) is �nite, so that a nontrivial auto-morphism must be a rotation � in the complex plane so that �6 = Id. Hence C has anequation 9.1 such that f is a polynomial in x3 if the order of � is 3 or f is even otherwise.



76 CHAPTER 9. HYPERELLIPTIC CURVES IIwith f 2 k[x] of degree 6. By de�nition C=w �=k P1. Also letP1 ��! C�be a parametrization of C�(k). Hence, a priori, � is de�ned over k.Let D = P6i=1 Pi where Pi (1 � i � 6) are the rami�cation points ofC (i.e. the zeros of f). Since f 2 k[x] this implies D 2 Divk(C). Notethat from what was said previously we haveD �7�! C�\ TFor � 2 Gal(k=k) de�ne �� = � � � � ��1. Then��1 � ��(D) = Dand this implies �� = � because there is no exceptional automorphism.Since this holds for arbitrary � and since k is perfect, it follows that �is de�ned over k and therefore C�(k) 6= ;, contrary to our assumption.2Remark: In contrast to what happens in the elliptic curve case (cf remarkon page 67), the relative invariants A;B;C;D are not enough to determinewhen two curves of genus 2 are k-isomorphic if k is not algebraically closed.As an example take f 2 k[x] and the two curves C1 and C2 given respectivelyby y2 = f(ux) and y2 = u3f(x). Then it is readily checked that C1 and C2have the same �; �; , but, unless u is a square in k, C1 6�=k C2.9.3 Points of high order in JacCWe already saw the importance of �nding large groups embedded in theJacobian of an hyperelliptic curve in connection with the study of classgroups of quadratic �elds. We give here a brief overview of the work ofLePr�evost [LeP].Theorem 48 � For any g there exists an hyperelliptic curve C=Q ofgenus g such that its Jacobian contains a point of order 2g2 + 5g + 5.� For any even g there exists an hyperelliptic curve C=Q(t) of genus gsuch that its Jacobian contains a point of order 2g2 + 5g + 5.



9.3. POINTS OF HIGH ORDER IN JACC 77� For any g there exists an hyperelliptic curve C=Q(t) of genus g suchthat its Jacobian contains a point of order 2g(2g + 1).Remark: Note that to obtain a point of order proportional to g is easy (takethe point (0; 1) �1 = P on y2 = x2g+1 + 1. Then (2g + 1)P = (y � 1)).Sketch of proof: We will expose the arguments to obtain a point of order2g2 + 2g + 1 on C=Q(t). Set2u = txg + (x� 1)gt2v = �txg + (x� 1)gtand de�ne C=Q(t) byy2 = u2 � xg+1(x� 1)g = v2 � xg(x� 1)g+1Then C is of genus g. Now take the functions � = y�u(x) and  = y�v(x).Since � = 0 =) xg+1(x� 1)g = 0 = 0 =) xg(x� 1)g+1 = 0we deduce that if P0 = (0; u(0)) P1 = (1; u(1))Q0 = (0; v(0)) Q1 = (1; v(1))then (�) = (g + 1)P0 + gP1 � (2g + 1)P1( ) = gQ0 + (g + 1)Q1 � (2g + 1)P1where P1 is the point at in�nity of C. Also note thatu� v = txg u(0) = v(0)=)u+ v = (x� 1)gt u(1) = �v(1)Therefore P0 = Q0. AlsoQ1 + P1 � 2P1 = (y2 � t24 ) � 0



78 CHAPTER 9. HYPERELLIPTIC CURVES IIimplying ( ) = gP0 + (g + 1)(2P1 � P1)� (2g + 1)P1Finally, if Di = Pi � P1 (i = 0; 1) then(g + 1)D0 + gD1 � 0 and gD0 � (g + 1)D1 � 0resulting in ((g + 1)2 + g2)D0 � 0>From this we only have that the order of D0 divides 2g2+2g+1 but a littlemore work shows that it is indeed equal to 2g2 + 2g + 1.9.4 Periods of hyperelliptic curves9.4.1 Classical theoryLet C=C be a curve of genus g > 0. It is known that the complex vectorspace of holomorphic di�erentials on C has dimension g. Let !1; : : : ; !g bea basis of it and let 1; : : : ; 2g be a basis of H1(C;Z) �= Z2g. Then thecomplex matrix (aij) = (Zi !j)j=1;:::;gi=1;:::;2ghas real rank 2g, i.e. its 2g rows generate a maximal discrete subgroup� � Cg. We also have an embeddingC ,! Jac(C) �= Cg=�P 7! (Z PP0 !1; : : : ; Z PP0 !g)where P0 is any point on C (Abel-Jacobi map).The most e�ective way to compute the periods of an elliptic curve isthrough the arithmetic-geometric mean. It is de�ned as follows: take a; bpositive real numbers and de�ne two sequences a0 = a, b0 = ban+1 = an + bn2 bn+1 = panbn (9.2)Then it is easy to prove that liman = lim bn =M(a; b) <1. Actually thereexists an absolute constant � such thatjan+1 � bn+1j < �jan � bnj2



9.4. PERIODS OF HYPERELLIPTIC CURVES 79so that the precision of the computation is quadratic, meaning that eachstep doubles the number of exact digits. This fact was discovered by Gau�who used this algorithm in his celestial computations.Theorem 49 (Gau� )Z �=20 dtpa2 cos2 t+ b2 sin2 t = �2M(a; b)It was one of Gauss' \teen" discoveries and he applied this result to a =1; b = p2.Take now an elliptic curve E of equationy2 = 4(x� e1)(x� e2)(x� e3) (e1 > e2 > e3) (9.3)De�ne �1 = Z +1e1 dxy = Z +1e1 dxp4(x� e1)(x� e2)(x� e3)and �2 = Z e1e2 dxy = Z e1e2 dxp�4(x� e1)(x� e2)(x� e3)Then (cf Zagier's trick in chapter 2) �1 is half (y > 0) the \real" period and�2 half the \imaginary" period (resp. = a11=2 and a21=2 in the previousmatrix).Theorem 50 We have that�1 = �2M(a; b) and �2 = �2M(a; c)where a = pe1 � e3, b = pe1 � e2 and c = pe2 � e3.Proof: We prove only the formula for �1. De�ne a ladder of elliptic curvesa0 = a, b0 = b as in theorem,En : y2 = 4x(x+ a2n)(x+ b2n) (n � 0)where the sequences (an) and (bn) are those appearing in 9.2. ClearlyE0 �= Eand �1 stays the same. Now let �2 = a21. Then we have the following



80 CHAPTER 9. HYPERELLIPTIC CURVES IIcommuting ladder of morphisms, the horizontal ones being complex isomor-phisms, the right vertical ones being the \natural" morphisms.... ... ...En �=�! C= < �1; 2n�2 ># ... #... ...E1 �=�! C= < �1; 2�2 ># #E0 �=�! C= < �1; �2 >Note that the left morphism is given byx 7�! x(x+ b2n)x+ a2nat the n-th level. Therefore since �1 remains the same throughout the ladderwe have �1 = Z +10 dxp4x(x+ a2n)(x+ b2n)and hence passing to the limit�1 = Z +10 dxp4x(x+M2(a; b))2 = Z +10 dx2(x+M2(a; b))px = �2M(a; b) 2Remark: Of course there is also a purely algebraic proof. One can usefor example the change of variables:x = e3 + (e2 � e3) sin2 twhich yields4 Z e2e3 dxp4(x� e1)(x� e2)(x� e3) = Z 2�0 dtq(e1 � e3) cos2 t+ (e1 � e2) sin2 t



9.4. PERIODS OF HYPERELLIPTIC CURVES 819.4.2 The case of hyperelliptic curves of genus 2Take four di�erent positive real numbersa = a0 > b = b0 > c = c0 > d = d0and de�ne an+1 = an + bn + cn + dn4bn+1 = panbn +pcndn2cn+1 = pancn +pbndn2dn+1 = pandn +pcnbn2Then as before we can prove thatliman = lim bn = lim cn = limdn =M(a; b; c; d) <1called the Borchardt mean.Let C be an hyperelliptic curve of genus two given byy2 = (x� e1) � � � (x� e6) (e1 > e2 > : : : > e6)and de�nea = q(e1 � e3)(e1 � e5)(e3 � e5)(e2 � e4)(e2 � e6)(e4 � e6)b = q(e1 � e4)(e1 � e6)(e4 � e6)(e2 � e3)(e2 � e5)(e3 � e5)c = q(e1 � e4)(e1 � e5)(e4 � e5)(e2 � e3)(e2 � e6)(e3 � e6)d = q(e1 � e3)(e1 � e6)(e3 � e6)(e2 � e4)(e2 � e5)(e4 � e5)Theorem 51 Under previous notations we havedet�R = 4�2M(a; b; c; d)where �R is the 2� 2 matrix with the real periods of C as entries.



82 CHAPTER 9. HYPERELLIPTIC CURVES IICan we get more? We can try and build a ladder as in the case of ellipticcurves. But there is a di�culty. At each step of the ladder we don't havemorphisms but correspondences between C and C 0. Recall that a (n;m)correspondence between C and C 0 is just an algebraic curve � � C�C 0 suchthat the projections �! C;C 0 are of degree n and m.C �! Jac(C)l #C 0 �! Jac(C 0)Take the rami�cation points P1; : : : ; P6 of C. Consider them in P1(R) �= S1.We want to give a geometric construction of C 0. Construct the triangleT whose sides are supported by (P1P2), (P3P4) and (P5P6). If we drawfrom its vertices the tangents to S1 we will get six new points on the circle,namely P 11 ; : : : ; P 16 . Then C 0 is the curve of genus two with these points asrami�cation points. The correspondence is easily seen to be (2; 2). We canproceed inductively. We remark that, in the same way as the limit curvein the elliptic curve case is a singular cubic (therefore a rational curve), forgenus 2 the six points converge to three points by pairs so that the limitcurve is a union of two rational cubics.The algebraic formulas to �nd C 0 make use of invariants. Write an equa-tion for C in the form y2 = p(x)q(x)r(x)where p; q; r are each of degree 2. De�neu = q0r � qr0 = [q; r]v = r0p� rp0 = [r; p]w = p0q � pq0 = [p; q]Note that u(x) = (qr)1(x; 1) etc. in the notation of chapter 8. Then C 0 isgiven by �y02 = u(x0)v(x0)w(x0)where � is the determinant of p; q; r in the basis 1; x; x2. Also the corre-spondence is given by ( p(x)u(x0) + q(x)v(x0) = 0yy0 = p(x)u(x0)(x� x0)



9.4. PERIODS OF HYPERELLIPTIC CURVES 83We can compute periods of curves of genus 2 by using these formulas.Indeed we need to compute integrals of the formZ a0a s(x)dxpjp(x)q(x)r(x)jwhere s is of degree at most 1, p; q; r are real polynomials of degree at most2 such that deg pqr = 5 or 6 and a; a0 are two consecutive zeros of p; q; r.Suppose that the zeros of p; q; r, resp. a < a0 < b < b0 < c < c0 arereal and arranged in increasing order. We can then de�ne the six sequences(an); (a0n); (bn); (b0n); (cn); (c0n) recursively by� a0 = a; a00 = a0; b0 = b; b00 = b0; c0 = c; c00 = c0.� an+1 < a0n+1 < bn+1 < b0n+1 < cn+1 < c0n+1� an+1; : : : ; c0n+1 are the roots of [pnqn][qnrn][rnpn] with pn = (x�an)(x�a0n) etc. (note that p1 6= u; we are reordering the roots of uvw alto-gether).Now from the discussion about the limit curve, we see that there exist � <� <  such that � = liman = lima0n� = lim bn = lim b0n = lim cn = lim c0nUsing the algebraic de�nition of the correspondence it is not di�cult to seethat if �n is the discriminant of pn; qn; rn with respect to the basis 1; x; x2and iftn = 2 p�nq(bn + b0n � an � a0n)(cn + c0n � bn � b0n)(cn + c0n � an � a0n)then we haveZ a0nan s(x)dxp�pnqnrn(x) = tn Z a0n+1an+1 s(x)dxp�pn+1qn+1rn+1(x)Therefore after settingIa = Z a0a s(x)dxp�(x� a)(x� a0)(x� b)(x� b0)(x� c)(x� c0)



84 CHAPTER 9. HYPERELLIPTIC CURVES IIand passing to the limit we obtainIa = �T s(�)(� � �)( � �)where T = Q1k=0 tk.In the same wayIb = Z b0b s(x)dxp�(x� a)(x� a0)(x� b)(x� b0)(x� c)(x � c0)= �T s(�)(� � �)( � �)Ic = Z c0c s(x)dxp�(x� a)(x� a0)(x� b)(x� b0)(x� c)(x� c0)= �T s()( � �)( � �)The reader can refer to [BM] for computational details.We conclude this topic by mentioning that there is a geometrical in-terpretation of the formulas given above, as was already mentioned in theexplanation of Richelot's correspondence. The sequence of correspondencesgives rise to a tower of (2,2)-isogenies between the jacobians of the curves Cnof equation T 2n�1y2 = pnqnrn(x) where Tn�1 = Qn�1k=0 tk. The limit curve hasequation T 2y2 = (x��)2(x��)2(x�)2, therefore consisting of two rationalcomponents on which we are integrating our di�erential form s(x)dx=y.
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