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Introduction

The following notes have been written out of the course that professor
Jean-Frangois Mestre taught at McGill and Concordia universities as part
of the Number Theory Seminar in april-may 1995.

Generally speaking, the course dealt with points on curves and related
problems. The focus was drawn to rational points on elliptic curves or on
jacobian of curves.

The first chapter consists of a certain number of tricks to find curves
with as many points as possible.

Chapter two through six examine elliptic curves of high rank, review-
ing the basics and exploring new results also under algebraic constraints
(constant j-invariant) or via analytic methods (Weil’s explicit formulas).

As an application of the previous chapters, chapter seven explains how
to construct quadratic fields with large p-rank.

Chapters eight and nine study hyperelliptic curves (especially of genus
2), mostly from the elegant viewpoint of the theory of invariants.

These notes are essentially self contained provided you don’t set off to
cross examine every statement in them (in which case you might also find
inaccuracies locally...). Since so much is yet to be done on the subject, the
aim is for the most to give a taste of the methods used up to date and to
leave the door open to new suggestions and improvements.

OO0

Les notes qui suivent ont été rédigées a partir du cours que le professeur
Jean-Francgois Mestre donna a McGill et & Concordia en avril-mai 1995, dans
le cadre du Séminaire de théorie des nombres du Québec et du Vermont.

L’objet du cours était principalement 1’étude de courbes définies sur Q
ayant beaucoup de points rationnels, et plus particulierement 1’obtention de
courbes elliptiques de rang élevé.

Le premier chapitre présente plusieurs méthodes simples pour construire
des courbes avec le plus possible de points rationnels.

Les chapitres deux & six étudient, apres quelques rappels, les courbes
elliptiques de rang élevé pour arriver a de nouveaux résultats en faisant aussi
usage de méthodes analytiques (formules explicites de Weil). De nouveaux



4 CONTENTS

travaux concernant les courbes elliptiques de rang élevé et invariant constant
y sont aussi présentés.

Les résultats des chapitres précédents s’appliquent pour construire des
corps quadratiques ayant un p-rang élevé, ce qui est I’objet du chapitre sept.

Les chapitres huit et neuf sont consacrés aux courbes hyperelliptiques
(surtout de genre 2), en grande partie par le biais de la théorie des invariants.

Ces notes de cours se suffisent a elles-mémes si le lecteur fait acte de
foi pour certaines affirmations. Il est possible cependant que des résultats
inexacts s’y soient glissés ... En fait, vu que beaucoup reste & découvrir,
I'objectif de ces notes est surtout de familiariser le lecteur avec les méthodes
employées jusqu’a aujourd’hui et de lui laisser la voie libre pour aller plus
loin.

Jean-Francois Mestre
Francesco Sica



Chapter 1

Curves with many points

The main goal of this course is to present a range of different topics related
to curves and points on them defined over certain number fields. The scope
of this chapter is to introduce a certain number of ”tricks” to cope with
conjectures giving information about the number of points on curves defined
over a number field.

1.1 General problems and general statements

The starting point is Faltings’ theorem (ex Mordell conjecture):

Theorem 1 (Faltings, 1983) Let C be a curve of genus g > 2 over a
number field K. Then C(K) the set of K-rational points of C is finite.

From this theorem many questions arise:
1. Effectivity:

e There is an effective bound on the number of points on C(K)
(Parshin).
e There is no effective bound on the height of points of C'(K).

2. C/Q fixed: Suppose we are given a sequence of number fields ... C
K, C K41 C.... How does #C(K,,) grow?

3. K, g fixed: Define

B(g,K)=  sup  #C(K)
C/K of genus g

Then
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Conjecture 1 B(g,K) < oo if g > 1.

It is not even known whether B(2,Q) < co.

4. g fixed: It is trivially false that supgx B(g, K) < oo . Nonetheless there
is a conjecture:

Conjecture 2 There ezists a positive constant N = N(g) such that
for any number field K, there exist a finite number of C/K of genus g
with #C(K) > N(g).

A generalization of Faltings’ theorem to higher dimensional varieties was
formulated by Lang and Vojta:

Conjecture 3 (Lang, Vojta) Let K be a number field and V/K a variety
of "general type”. Then

1) V(K) is not Zariski dense in V(K).

2) Moreover 3 W/ K, Zariski closed, W C V such that for any number
field L O K we have V(L) — W (L) is finite.

We have the remarkable result connecting these conjectures to the previous
ones:

Theorem 2 (Caporaso, Harris, Mazur) Lang’s first conjecture implies
conjecture 1. Lang’s second conjecture implies conjecture 2.

We give an indication of the proof in the case we have a family of curves
with one parameter.

Let V = {(z,y,t) € 63 . f(z,y,t) = 0} for a given f € Q[z,y,t] be
a surface of general type such that the fiber V; in t is given by curves of
genus at least 2. Lang-Vojta’s first conjecture says that there exists a curve
C C V defined over Q such that #V(Q) — #C(Q) < oco. This implies
that C' is not vertical, i.e. is not contained in any V;, otherwise #V (Q) =
#{V(Q) — C(Q)} + #C(Q) would be finite, the first term of the sum being
finite by the above, the second by Faltings’ theorem. Thus B(g, K) would
be trivially finite for this family of curves.

We may therefore suppose that C ”depends” on ¢. Again by Faltings,
C(Q)NV; is finite. We then consider the map ¢:

cC — Q
(z,y,1) — ¢
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Clearly B(g, K) over this family of curves is then bounded by deg¢ +
#{V(Q) - C(Q)}.

1.2 How to obtain lower bounds on B(g, K) and
N(g)?

This section is by no way conventional. We will work through several ex-
amples to construct curves with many points. Let’s begin with a general
example:

1. Plane curve of degree n: Let 2 +a12" 'y + - - - be the equation of
a general curve of degree n. Then we have (n+2)(n+1)/2 parameters
(coefficients) associated to such a curve. We can therefore construct a
curve C of degree n which passes through (n + 2)(n 4+ 1)/2 — 1 given
points, and C' can be expected to be nonsingular if the points are in
general position. Hence the genus of C is (n — 1)(n — 2)/2 and we
have produced a family of curves of genus g with ¢ rational points
approximately.

2. Curves with many automorphisms: Consider the curve C given
in affine coordinates by {(z,y) € C?: y? = f(x)} where f € Q|z]
is separable of degree 2g + 2. This curve has 2g + 4 coefficients (one
coming from y), therefore we can choose 2g + 3 general points which
will lie on such a curve. Since (z,y) € C = (z,—y) € C we obtain
that C has 4g + 6 rational points.

3. Let P, Q and R be polynomials in one variable of degree < g + 1.
Consider the curve C given by the equation y2P + yQ + R = 0. This
curve is birationally equivalent to Y2 = ? — 4P R which is a curve of
genus ¢ in general. This time we can fix 3(g + 2) — 1 points to lie on
C. Since again we have an involution of C' we obtain a total of 6g 4 10
rational points on C.

This suggests that maybe B(g, K)/g < co... At least we can say:

Theorem 3 1. We have the following lower bounds on B(g,Q):



8 CHAPTER 1. CURVES WITH MANY POINTS

e B(g,Q) >8g+ 16

e g=1 (mod4)= B(g,Q)>8g+ 24
e g=3 (mod4)= B(g,Q)>8g+40
e g=2 (mod 3)= B(g,Q) > 8g + 32

2. N(g) >16(g+1)
We will make wide use of the following lemma:

Lemma 1 Let K be any field with char K # 2. Let p € K[z] be monic
of degree 2n. Then there exist two unique polynomials q and r in Klz], q
monic, degq =n, degr <n — 1, such that p = ¢*> —r.

Proof: In writing
p(x) = 2" + agy 12”4 = (2" + bp1a™ 4 )7 — ()

we see that ag,—; = 2b,_;+ polynomial terms involving only b,,_; for j < i,
this holding for ¢ < n. Therefore the result is clear.

O
Let’s apply this lemma to the construction of our curves:

1. Writing the degree of polynomials as subscripts, we let, as in lemma 1:

4g9+4
pagra(@) = [[ (@ —ai) = ¢ —rog1
i=1
where a; € Q. Consider then the curve C' given by the equation
y? = ryg+1(z). In general, C' will be of genus g and we readily check
that the points (a;, +q(a;)) € C(Q). C has therefore (at least) 8g + 8
rational points.

2. Now take

2g+4
p29+4($2) = H (2 — a?) = QZ+2($2) - Tg+1($2)
i=1
and the curve C given by y? = ry41(2?) of general genus g. Then the
points (£a;, £ry11(a?)) € C(Q), showing 4(2g +4) = 8¢g + 16 rational
points on C', which is the lower bound for a general curve given in
theorem 3.
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We can now generalize this idea further: suppose we take an hyperelliptic
curve C given by y? = f(z) where f € Q[z]. We are looking for curves which
are stable under certain groups of automorphisms G to obtain from k points
on the curve another (k — 1) |G| points. On C' we have a unique canonical
involution w, given in our coordinates by w(z,y) = (z,—y). Moreover, it
is a well-known result that if g : C — C' is an automorphism of C, then
gow = wog. By writing g as (z,y) — (u(z,y),v(x,y)), for (u,v) € Q(z,y)?,
we then see that u(z,y) = u(z, —y), i.e. u does not depend on y and therefore
u € Aut(P'(Q)). Hence if g € G C Aut(C), then u € Aut(P*(Q)). Also, if
we know u we can recover g modulo w.

We now want to characterize the possible finite G that can occur. By
the above we need examine only the finite subgroups G C PGLy(Q).

Remark: o € G = orda < 6. This results after examining the compati-
bility of Galois action on the two eigenvalues of «. Indeed if " = AId then
/|A] is quadratic over Q (or rational), hence the eigenvalues of «a are [\
times a root of unity (at most 12-th root). Rule out the impossible cases to
arrive to the the result.

By Klein’s theorem and by the remark the only possible G’s are
1,Z/2Z,Z/3Z,Z/AZ,Z/2Z xZ/2Z,Z/6Z, D3, Dy, Ds and these indeed oc-
cur as we show in the table below (we also write the corresponding invariant
function, i.e. a generator of Q(z)%).

Z/2Z <z —T> 59 = 12
yARY/ <z L > v} —3u+1
T — Sa =
I—z 3 z(z —1)
4 2
—6x°+1
7/AZ y 4l _ 7
/ <z 1—x> Sq .T(:U—l)(x—i—l)
4
1
Z)2Z % Z)2Z <5 lue—z> 5=t
X

(23 — 62% + 92 — 3) (23 — 9z + 9)
z(zx —1)(2z — 3)(x — 2)(z — 3)

Z/6Z <z > 56 =

_:E2—a;+1

D <z A reil>s gg=-
3 z 6 22 (x —1)2

1—x?

Dy <x»—>%,xl—>—x> ngsi
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- .3
Dy <z %,x > % > S19 = 56(:10)56(;)

Let’s apply this characterization to our context:

1. Take po,(7) = ¢*(z) — mn_1(z). Let C be the curve given by y? =
rn—1(sg(z)). Let G = Dy be a group defined over Q associated to ss.
Pick 2n general values z1,...,z9, of x to get 16n different values (g -
z;) (g9 € G). Note that C is birationally equivalent to an hyperelliptic
curve of degree 8(n — 1) because deg sg = 8. Therefore if we choose g
such that 2g +2 =8n — 8 < g = 4n — 5 we get that the genus of C' is

g. In taking
2n

pon(z) = [ (= — ss(xi))
i=1
we get 2 x 16n = 8¢ + 40 rational points on C, which is the bound
given in theorem 3 for ¢ =3 (mod 4).

2. Counsider the group C,, =< z — (p,x >, cyclic of order n. It is de-
fined over K = Q((,), and has z" as invariant function. Choose four
different points =7, ..., 2} and let

pa(z) = (& —2}) - (v — 2}) = ¢*(z) — (az + )

Take the curve C: y? = az” + 3, and suppose n = 2g + 2 so that
C has genus g. Then as before C' passes through the 8n = 16(g + 1)
points ((Jz;, £q(x?)) (1 < i < 4,1 < j < n). Therefore there exist
infinitely many curves defined over K with at least 16(g + 1) points
over K, which is the lower bound for N(g).

The bound for N(g) in theorem 3 is the best one for ¢ > 6 and g #
9,10,45. For small values of g, we have the following: long ago Brumer
found B(2,Q) > 144 and B(3,Q) > 72. This was improved recently by
Keller and Kulesz to B(2,Q) > 588 and B(3,Q) > 176 (cf [KK]). We refer
to the paper of Elkies for an account of various methods to tackle these
problems. In class we just mentioned the method of slicing surfaces. If S is
a smooth surface of P3(Q) of degree d with R lines then a generic plane slice
of S is a nonsingular curve of degree d with at least R points, thus making
N((d—1)(d—2)/2) > R. We end by an example:

Example: Let P € Q[X,Y] be a homogeneous polynomial of degree
d, and suppose that its zeros in CP' are left invariant by a subgroup
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G C PGLy(C) of order M. Let S be the surface P(X,Y) = P(Z,T).
Then, for any (a, 3,7,0) € G we have:

PlaX + BY,vX +0Y) = AP(X,Y)

Since we have d different determinations for \'/¢, we get Md lines on S given
by the general equation:

Also we have d? more lines
{X —a;Y =0} {Z — o;T =0}

where the a; (1 < k < d) are the roots of P. Hence S contains at least
d(M + d) lines and it is a theorem that this is the exact number of lines on
S. The problem of finding P maximizing M is explained in Elkies’ paper
[Elk] and is related to the existence of regular polyhedra inscribed in the
Riemann sphere whose vertices are the zeros of P.
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Chapter 2

Rank of elliptic curves

The purpose of chapters 2 and 3 is to construct families of elliptic curves of
rank (at least) 8 and 11. Let’s recall some general facts about cubics and
elliptic curves.

2.1 General Facts

Let C'/K be a nonsingular cubic with a point O € C(K). Then we can endow
C(K) with an associative law + to make it a commutative group in which
O is the identity. If O is an inflexion point then the cubic is isomorphic to
a plane cubic of the form

y2 + a2y + a3y = 3+ a2x2 + aqx + ag

This is the Weierstra3 model of the elliptic curve in which O is the only
point at infinity (therefore an inflexion point). In this case, for given points
P and Q in C(K), we can compute P+ (@ by noticing that P, Q and —P —(Q
lie on the same line.

A cubic is determined by 9 points in general position (no three on the
same line or six on the same conic). Therefore by 8 points in general position
there passes a pencil of cubics aC; 4+ BCy. Then there exists a ninth point
which lies on all the cubics of the pencil (Tate produced a proof of the
associativity of the addition law based on this fact).

Theorem 4 (Mordell, Weil) Let K be a number field or a function field,
E/K an elliptic curve. Then E(K) is finitely generated i.e.

E(K)~Z'xT

13
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where T' is a torsion group and r is called the rank of E/K.

We can ask ourselves if there is a way of finding an explicit system of gener-
ators. Regarding the torsion, we have the famous

Theorem 5 (Mazur) If K = Q then T is one of the following groups:

Z./nZ n=1,...,10,12
Z/2nZ X Z/2Z n=1....,4

and each of these can occur.

Recently Merel [Mer| generalized this result:

Theorem 6 For any d there exists a constant M (d) such that for all K with
[K : Q] =d and all elliptic curves EJK we have |Tor E(K)| < M(d).

Now we can ask ourselves:

e K fixed: is » bounded?

e Let E/K be an elliptic curve and K C K; C ... C K,, C ... a sequence

of number fields. How does rank(F(K,)) grow with respect to n?

2.2 Independence of points on an elliptic curve

Consider the general problem: given P, ..., P; points in E(K), how can we
prove that they are linearly independent (over Z)?

1. One method is to look at the reduction modulo 2, that is to observe

that if the images of the P;’s are independent in E(K)/2E(K), then
a fortiori they are independent in E(K). A case by case verification
involves 2° computations, which makes the method unsuitable for large
s.

. Over number fields we have the notion of height h , that is a positive

definite quadratic form defined over E(K)/Tor(E(K)). Furthermore h
is uniquely defined by the extra condition that for any P, h(P) —iz(P) =
O(1), where h is the "naive” Weil height (Néron, Tate, cf [Silv] pages
277 and following). Then, after calling < .,. > the bilinear pairing
associated to b we have that the P;’s are independent if and only if the
matrix (< F;, Pj >)1<; j<s is nonsingular.
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How can we compute h(P)?
Néron gives the formula (valid for K = Q):

W(P) = Ap(P) + Aoo(P)

where the sum runs over primes p dividing the denominator of the abscissa
z(P) of P and bad p’s. A\,(P) is equal to logpx (a rational number with
denominator dividing 12). The archimedean part is more complicated and
involves trascendental numbers. Putting z € E(C) corresponding to P we
have:

Aoo(P) = —logo(z) + Re(zn(z))/2

This formula is fast to converge but involves two transcendental functions.
On the other hand, Tate gave in 1968 an alternative formula which is simpler
but also slower:

n
Ao(P) = togla(P)] + 1 3 22D
n
where Z is a certain rational function.

Remark: We see that in order to apply Néron’s formula we have to com-
pute z with high precision. A good way to do this is by Landen’s transform
(1788) whose precision is quadratic (the precision is twice as good at each
step, cf [BM]). Zagier gave an elegant but slower method. We give here a
brief review of his method. Suppose for instance that E is given in Legendre
form y? = f(z) and that f has three real roots. Then its affine graph in
R? has two connected components. Call E; the "right” (unbounded) one.
Also E(C) can be viewed as a rectangle in C whose lower edge (0,w;) cor-
responds to E;. Furthermore, the interval (0,w;/2) corresponds exactly to
the ”lower” part of Ey, i.e. to

E}={P€E, :y(P)<0}
Therefore if z corresponds to P € E; then, writing z/w; in binary base:

PeE%:»wi:0.0...
1

We can then proceed inductively by defining P, = 2" P. We can write:

z €
-y

Yiooa>
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where ¢, = 0< P,_1 € E% Also recall that there is a quadratic algorithm
to compute w; by the arithmetic-geometric mean (cf theorem 50).
We conclude this section by mentioning a theorem of Tate about heights:

Theorem 7 (Tate)

2 o .. h(2"P)
h(P) = hﬁn "

2.3 Elliptic Curves of High Rank

Most of the cases where it is proven that there exist infinitely many curves
of rank r come by specialization in accordance with the following

Theorem 8 (Néron 1952) Given an elliptic curve E/Q(t1,...,t,) of
rank r and non constant j-invariant, there exist infinitely many (t1,...,t,) €
Q" such that the specialization of the curve has rank ot least r.

Proof: Call K = Q(ty,...,t,). We will prove that there are points Py, ..., P,
in E(K) such that their reductions modulo 2 are independent for infinitely
many (t1,...,t,) € Q™. Note that since F(K) is of rank r we have that
[E(K)/2E(K)] @, F2 has dimension r over Fy so that we can pick
Py, ..., P independent in E(K)/2E(K). Now to say that Pp,..., P, are
independent in F(K)/2E(K) means that 2" quadratic polynomials (with

coefficients depending on (¢1,...,%,)) have no root in K, therefore they are
irreducible over K. By Hilbert’s irreducibility theorem for infinitely many
specializations (t1,...,t,) € Q" the polynomials obtained will remain irre-

ducible over Q, so that the specializations of the points Pi,..., P, will be
independent in E(K)/2E(K) and a fortiori in E(K).

a

Moreover Néron produced elliptic curves over Q(¢) of rank at least 10 and,
for any g, curves of genus g (over Q(t)) with Jacobian of rank at least 3g+6,
hence the following

Theorem 9 (Néron) 1. There exist infinitely many elliptic curves of
rank at least 10 over Q .

2. There exist infinitely many curves of genus g such that their Jacobian
has rank v > 3g + 6.
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Similarly, working with curves defined over the function field of an elliptic
curve of positive rank over the rationals, he finds

Theorem 10 (Néron) 1. There exist infinitely many elliptic curves of
rank at least 11 over Q .

2. There exist infinitely many curves of genus g such that their Jacobian
has rank r > 3g + 7.

Silverman and Tate say more. Suppose we are given an elliptic surface S with
base B (= P! or an elliptic curve of rank at least one) defined over a field
k. Then we can view S as an elliptic curve over the global field K = k(B).
If we take a point P € E(K) we can consider its Néron-Tate height h(P).
Also we can consider for nearly any fiber Ej the Néron-Tate height of the
specialisation Py, namely ﬁk(Pb) . Finally we can speak also of the height
h(b) of elements of B. Call also <.,. > and <.,. > the first and second
Néron-Tate height, respectively. We then have the following theorem:

Theorem 11 (Silverman, Tate) We have the following equivalent facts:

1.

VP € E(K lim LA g &
) 57 n) )

. < Py, Qp >
VP,Q € E(K) lim wenu < B, Gy >k

=< P,Q >
hb)—oioo (D)

Corollary 1 e For any P € E(K) — E(K)tor there exist finitely many
b € B(k) such that P, is a torsion point.
o IfP,..., P, are independent sections of S, then there are finitely many
b € B(k) such that their specializations are dependent.

2.4 Néron’s method as explained by Shioda

Shioda ([Shio 1]) describes in an elegant fashion Néron’s method for con-
structing a family of elliptic curves defined over Q of rank (at least) 11.
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Since (0,0) is

Start with the curve Cy defined over Q by y? = z3.
(0,0) can be given

singular, this is not an elliptic curve. Nevertheless Cy, —
an abelian group structure by defining a morphism:

(67 +) — (Coo_(070)3+)
u — Pu) = (u"2u?)

Also P(uy), P(u2), P(us) are collinear if and only if u; + ug 4+ uz = 0.
Define also L(u) to be the line passing through P(u) and tangent to
Coo — (0,0), i.e. passing through P(—u/2). We can then verify that L(u;),
L(ug), L(u3) are concurrent if and only if u7' 4+ uy ' +uz! = 0.
Now take u; € Q (1 <4 < 8) such that

and
R S N (2.1)

Consider the pencil of cubics passing through the eight points Py = (00, 00),
P; = P(u;) (1 <14 < 7). Then it is not difficult to see that the ninth base-
point of the pencil is Ps = P(ug). The pencil of cubics can also be seen as
an elliptic surface S over Q(t) (i.e. the base is P}(Q)). An element of the
pencil can be written as

Cr={(z,y) €Q*: > ayaz'y! —t(y* —2°) =0} (2.2)
i+5<3

Suppose further that
Vi, 5,k ui—l—uj-i-uk;éo

Then S is an elliptic surface in the sense of [Shio 2], all the fibers are irre-
ducible and except for a finite number of them, they are nonsingular (hence
elliptic curves) (easy exercise). Moreover P, ..., Py are independent over
Q(t), as we will see further in chapter 3.3.
Construction of 3 more points:
We have that
Ct ﬂ L(ul) == {Pl, Ml, M{}

and the map M; — t is ramified at oo by construction, therefore there exists
one other ramified value of ¢, say t; € Q. The field Q(¢)(M;) is then a
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quadratic extension of Q(t) ramified at oo and ¢;, therefore its discriminant
is of the form A; = a;(t — t;) with a; € Q. Do the same with uy and wus.

Then M; € C; (and therefore M) is defined over Q if and only if A; is a
square. In general the new points M; are defined over Q(v/A1, vVAz, vA3z).
Consider then the curve B defined by

y% =A1 =a1(t—t1)
y% = AQ CLQ(t — t2)
y% = Ag = ag(t—tg)

Then B is easily seen to be an intersection of two quadrics. Indeed after
replacing ¢ in the second and third equations, we get

Y3 bryi + by
y3 = byyi+bs

After parametrizing the first equation (a cylinder) in w, we replace y? in
the second equation to get an expression of the type Y2 = f(w) where f
is a polynomial of degree 4, i.e. B is a curve of genus 1. If we can show
that B(Q) # 0 then B is an elliptic curve defined over Q and for any
Q = (y1,92,y3) € B(Q) we have an elliptic curve C;/Q over ) with 11
rational points Pl, s ,Pg, Ml, MQ, M3.

Claim: B(Q) # 0.

Indeed by assumption (2.1) L(u1), L(u2) and L(u3) are concurrent in
R € Q2. Since {C,;} is a pencil, we can choose ty € Q such that R € Cj,.
Since then R # P; and

{R, P} C L(u;) () Chy

and all the points are rational we must have that a;(to — ¢;) is a square for
1 =1,2,3, that is our claim.

Note that in general as soon as B(Q) # () there is more than one rational
point on B and it will be of infinite order (cf [Shio 1] for an example that is
all we need), so that we can apply the theory of elliptic surfaces that follows
up to prove the independence of the 11 points thus constructed.
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Chapter 3

Elliptic Surfaces

We want now to prove the independence ”in general” of the eleven points
Py, ..., Py, My, My, M3. We will do this through the theory of elliptic sur-
faces, as explained in [Shio 2].

Now we suppose the ground field & is an algebraic closed field of arbi-
trary characteristic. Let C' be a smooth projective curve over k, to say S
is an elliptic surface over C' will always mean the following: S is a smooth
projective surface with a relatively minimal elliptic fibration

f: 85—C
that is, f is a surjective morphism such that

1. almost all fibres are elliptic curves and

2. no fibres contain an exceptional curve of the first kind (i.e. a smooth
rational curve with self-intersection number -1).

Throughout the chapter, we assume that f has a global section O and that
f is not smooth, i.e. there is at least one singular fibre.

If we call E the generic fibre if f and K = k(C), we then have that E is
an elliptic curve defined over the global field K with a distinguished point
O. We can therefore take O as the identity of E(K). Viceversa any E/K
we can substantially viewed as an elliptic surface by adding a finite number
of singular fibres.

Example 1: In the notations of chapter 2 we see that the cubic Cy is
defined over Q and that if f(z,y,t) = 0 is the equation of C;, then by
letting also ¢ vary we see that

{(z,y,t) € Q"¢ f(z,y,1) = 0}

21
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is the affine part of a smooth projective surface S that is an elliptic surface
over P! (for example, the discriminant A of the generic fiber F is a polyno-
mial in ¢, therefore the only singular fibers correspond to the zeros of A and
to 00). Furthermore, the surface is rational because, except for the nine base
points Py, ..., Ps, given z and y, you can recover ¢ such that (z,y,t) € S
uniquely (just look at equation 2.2). In fancier terms, S is the blow-up of
P2 at the nine base points. The fibration is the trivial one: (z,y,t) — t.

Let us return to the general context. The points in E(K) correspond to
global sections of S. From this viewpoint, we shall define a positive definite
bilinear pairing on E(K)/E(K )ior by means of intersection theory of divisors
on a surface.

We can also attach to a surface its arithmetic genus x € N (Euler-
Poincaré characteristic), which is shown to be positive in the case of an
elliptic surface.

Example 2: Consider the case of S over P! given by y? = 2% +a(t)z+b(t)
where a,b € Q(t) and suppose that oo is not a singular value. This implies
that

A = —da(t)® — 27b(t)*

and deg A =0 (mod 12) so that

_degA

T

Remark: We take for granted the fact that
Lemma 2 S is rational if and only if x = 1.
Finally, call
R={v € C: thefiber f!(v) is reducible}
Let us state now the main theorem of this chapter:

Theorem 12 (Main Theorem) Let S be an elliptic surface over C of
genus g(C) as at the beginning. Then

1.

rkE(K) <12y — 4 + 2¢9(C)
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2. There exists a positive definite bilinear pairing (denoted by < .,. >)

over E(K)/E(K)tor such that

<P,Q>=x+(0.P)+(0.Q) — (P.Q) — Z contr, (P, Q)

vER

where (P.Q) ... is the intersection number of the sections correspond-
ing to P and Q on S, and contry(P,Q) is a rational number with
denominator < 12.

Remarks:

1.

5.

The bilinear pairing in the theorem is essentially the Néron-Tate pair-
ing seen in chapter 2.

. contr, (P, Q) depends on the intersection numbers of the components

of the reducible fibres and uses a classification into Kodaira types
(cf [Shio 2]).

. Let us continue with our example related to Shioda’s construction

where we have a pencil of cubics. In this situation, C = P! so that
g(C) =0, x = 1 and therefore rkE(Q(t)) < 8. We cannot hope to go
to 11 when C' = P!, that’s why the Néron-Shioda construction involves

C = B an elliptic curve of positive rank.

. Note also that since a relation of linear dependence in E(Q(t)) gives

a relation of algebraic dependence on the coefficients of the points, we

have rkE(Q(t)) = rkE(C(¢)) by Hilbert’s Nullstellensatz.

This implies in example 2 that if deg A = 12, then rkE(Q(t)) < 8.

About intersection numbers: Let D and D’ be two algebraic curves
on S. If they meet transversally (i.e. if the tangent spaces of D and D’ are
not the same at their common points), then (D.D’) = #D (| D’ by definition.

Recall that two curves D; and Ds are said to be algebraically equivalent
if there exists an algebraic surface I' C C" and t1,t2 € C such that

Fti = {(mla N 7$n—17t’i) € F} = DZ

fori=1,2.

Then (D.D') is defined in general up to algebraic equivalence and we
can always find curves D ~ D and D' ~ D’ such that D and D’ meet
transversally.
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In conclusion the intersection number is defined on the Néron-Severi
group N S(S), which is defined as the group of divisors on S modulo algebraic
equivalence. Since in this case NS(S) is a free group of finite rank p it
becomes with the intersection pairing an integral lattice.

Theorem 13 (Hodge index theorem) The intersection pairing on
NS(S) is an indefinite bilinear form of signature (1,p — 1).

In our context if P = (z(t),y(t)) and Q = (w(t),z(t)), then (P.Q) is
equal to the number of solutions (counted with multiplicities) of

If P = @ then it is "known” that (P.P) = —x. Also, since by definition any
two fibres of S are algebraically equivalent we have that (D.D) =0 if D is
contained in a fibre. This suggests the following terminology:

Definition 1 A vertical divisor is a divisor contained in a fiber. A horizon-
tal divisor is a divisor which is not vertical.

3.1 Idea of the proof of Main Theorem

Let Dyer be the image of the vertical divisors in NS(S) and similarly for
Dror- We then have
Dhor + Dyer = NS(S)

Now as in [Shio 2] we write, for a reducible fibre F):

my—1

F, = f_l(v) = G)’U,OU U 95:;#

1=1

where ©,; (0 <4 < m, — 1) are the irreducible components of F,, j,;
their multiplicity, m, their number, such that ©, o is the unique component
of F, meeting the zero section (it appears with multiplicity one because of
the minimality of the fibration).

If D € NS(S) we can write D = Dy + Dyer and if we view the generic
fiber E as a curve on S the intersection product Dy,.F is a well-defined K-
rational O-cycle whose degree is (Dyop.F) = (D.E). We then define D.E =
Dy, E.
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Shioda then shows that one can define a surjective homomorphism

v: NS(S) — E(K)
D — P

where P is defined via the Abel-Jacobi map so that
P — 0" Dyor.E — (Dyor.E)O

Theorem 14 (Shioda) v is surjective. Let T' = kertp. Then T is free and
generated by

(0), F, ©,; (1<i<m,—1, veR)
where F stands for any fiber. Also T' = Dyer + Z(O) so that Dy is free and

rh(T) =2+ Y (my, — 1)

vER

If = =1, then ¢(P) = (P) (mod T) (to a point it associates the global
section on S modulo T').

Corollary 2 We have

rh(B(K)) < 12x —4+2g(C) — Y _ (m, — 1)
veER

to account for the first part of Main Theorem.

Proof of corollary: By definition, we have that

12x = by — 2by +2 = by — 29(C) + 2 (3.1)

where b; is the i-th Betti number of S. Since NS(S) injects into H?(S, Z)
we have that p < by so that

p < 12x —2+29(C)
On the other hand, theorem 14 implies that
rk(E(K)) =1k(NS(S)) —xk(T) = p —rk(T)

and this implies the corollary.
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a

Remark: In the case where S is rational we have

Theorem 15 (Shioda) T is an integral sublattice of NS(S). If we set
L =T+, then L is a negative definite even integral lattice of rank equal to
rk(E(K)) and determinant given by

[NS(S) : L+ T)?

det L = det NS(S) ot T
e

There exists a map (again called ¢)
¢: E(K) — NS(S)q =NS(S) QX Q

substantially the same as the previous one, with kernel precisely E(K)ior,
which enables us to inject E(K)/E(K )tor into NS(S). Furthermore

Im¢ CLq=LQRQ
so that we can make E(K)/E(K)ior into a positive-definite lattice (not nec-
essarily integral) by defining, for P and Q in E(K), the height pairing
<P,Q>=—(¢(P)-9(Q))

Remark: L is called the essential sublattice of NS(S). These facts follow
from a direct knowledge of ¢ which also accounts for the explicit formula in
part 2 of Main Theorem. We shall see that L is negative-definite. Indeed we
can write, by theorem 14:

T=UDPT,
vER

where we set

U=Z0)PzF

and
Ty, =<0,;| 1<i<m,—1)> (veER)

Then U is a unimodular indefinite integer lattice with intersection matrix

(30
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Therefore, on W = U+ D L, the intersection product is negative definite by
the Hodge index theorem ( 13).

Next we ask ourselves whether it is possible to find a sublattice of
E(K)/E(K)tor which is integral. For this purpose we introduce the sub-
group of E(K):

E(K) ¥ {(Pe E(K): (P) meets ©,9 Vv € R} (3.3)
Then E(K)Y is of finite index in E(K). Moreover it is torsion-free so that
it can be viewed as a sublattice of E(K)/E(K ). Also, the definition of
contr, (P, Q) implies that, for P or Q in E(K)", we have

<PQ> = x+(P.O)+(Q.0)—(PQ) (3.4)
<P,P> = 2x+2(PO) (3.5)

Finally, it can be proven that the lattice E(K)" is even. Let us summarize
all this:

Theorem 16 E(K)® defined by 5.3 is a positive-definite integral even lattice
of same rank as E(K)/E(K)ior. The height pairing on E(K)® is given by
the formulas 3.4 and 3.5.

3.2 Application to Rational Elliptic Surfaces

Let us apply now the theory to the special case of rational elliptic surfaces
and more precisely to the pencil of cubics considered by Shioda.

p = 10: Follows easily from lemma 2 , formulas 3.1 and 3.2 because
C = P! here.

Therefore from theorem 14 we get:

rk(E(K)) =rk(E(K)°) =8 — > (m, — 1) (3.6)
vER

Now suppose that we take Shioda’s pencil of cubics. We have already seen
in chapter 2 that all the cubics of the pencil are irreducible, therefore we
have in this case R = () and from 3.3, 3.6:

E(K) = E(K)
rk(E(K)) = rk(E(K)%) =8

Remark: By integral lattice theory (cf [Ser|) we can say that E(K) =
E(K)® = Eg.
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3.3 Computation of the height matrix of P,..., P}

Since P; € E(K) = E(K)°, the height pairing is given by the formulas 3.4,
3.5. Since (P;) N(P;) =0 if i # j we have

(Pi-Pj) = 0 (i#))

(PP) = —x=-1 (i=j)
and hence
<P,P> = x+(PoP)+(Po.Py) = (P.P))
_ )1 (#))
2 (1=1)

Now the determinant of the height matrix is equal to
det(< Py, Pj >)1<ij<s =9 # 0

which proves the linear independence of Pp,..., Py (also, they generate a
subgroup of E(K) of index 3).

We refer to [Shio 2] page 113, for the slighty more difficult computation
of the height matrix of the eleven points Py, ..., Ps, My, My, M3.



Chapter 4

Explicit formulas and elliptic
curves

Riemann in his celebrated 1859 paper first showed the connection between
the distribution of the zeros of an L function and the asymptotic behaviour
of prime numbers. In view of the standard conjectures connecting algebraic
properties of elliptic curves and more generally of abelian varieties to the
order of vanishing of the associated L functions, we can recover information
about the former by analysing the latter via the “explicit formulas”. We
refer to [Mes 5] for details.

Let M and M’ be two non negative integers, A and B two positive
real numbers, (a;)1<i<m and (a})1<i<m two sequences of non negative real
numbers such that 2, a; = Y, a]. Finally, let (b;)1<;<m and (b})1<i<m
be two sequences of complex numbers with non negative real part.

Suppose we are given two meromorphic functions A; and As verifying
the following conditions:

1. There exists a w € C* such that A1(1 — s) = wAs(s).
2. Ay and As have only a finite number of poles.

3. For ¢ = 1 or 2 A; without its singular terms is bounded inside any
vertical strip of the form

—o0 < 0pg < Re(s) <oy < 400

29
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4. There exists ¢ > 0 such that, for Re(s) > 1 4 ¢ we have:

M M’
Ai(s) = A*T[T(ais+0) [T TIQ — cslp)p )
=1

p i=1

M M’
Ay(s) = B°[[T(ais+0) [T TI1 - Bilp)p™)~"
-1

P i=1

where p runs over all the prime numbers and where «;(p) and G;(p)
are complex numbers of modulus < p°.

In what follows we put

<

Lis) = J]J](-cilp)p™)~"
p =1
MI
Ly(s) = J[TJQ—Bipp*) "
p =1
Let
F: R—R

be a function satisfying the following:
1. There exists € > 0 such that
F(z)exp((1/2 + ¢+ €)x)
is summable and has bounded variation (etc.).
2. (F(z) — F(0))/z has bounded variation.
We also define

I(a,b) =a /0 +°°(F(ax)e—<a/2+b>w /(1 —e™®) = F(0)e™®/z)dx

J(a,b) =a /0 +°°(F(—ax)e—<a/2+b>w /(1 —e™®) — F(0)e " /x)da

and
“+00

O(s) = F(z)e= 1224y

—o0
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Theorem 17 In the previous notations we have the formula:

M M
Yo 0(p) =D () + Y I(aibi) + Y J(a, b)) =
P o =1 =1

F(0)log(AB) — Y (af (p)F(klogp) + Bf (p)F (—klogp))fkg/g
p,t,k>1

where p (resp. 1) runs over the zeros (resp. the poles) of Ay in the critical
strip —c < Re(z) < 1+ ¢, each of them counted with multiplicity.

4.1 Application to modular forms

Let f(2) = X,>0 an €™ be a modular form for ['y(N) of weight k. In the
case where f is a newform, we can apply theorem 17 because it is known
that the L function associated to f has an Euler product expansion:

L(Saf) = H(l — appfs)fl H(l - appfs _'_pk*lfS)fl
pIN pJN

It is known for this function that if
A(s) = (\/N/Z’IF)SF(S)L(S)

then
A(s) = CA(k — s)

where C = +1. Moreover A is an entire function, so that after translation,
we set

Ll(S) = LZ(S) = L(S + —)

Al(S) = AQ(S) = A(S + —)
Also, in view of Deligne’s and Atkin-Lehner results, since |a,| < 2p*=1/2]
we have that ¢ = 0 so that the critical strip is S = [0, 1] x iR.
If we choose an even function F' satisfying the properties listed above

and if we set
b(p™) = (ap)™ if p|N
b(p™) = apt + o, if p [N
where «;, and a;, are the roots of 7% — apT + p*~1 theorem 17 then reads
as:
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logp
3 000) + 23 W) g ) 258
p
= F(O)(log N —2log2r) — 21y (4.1)

where I = I(1,(k — 1)/2) and p runs over the zeros of L translated back
by (k—1)/2.

4.2 Bounding the order of L at k/2

Formula 4.1 of the preceding section can be applied to estimate the order r
of vanishing of L at k£/2. Indeed take an even F' as before, such that Re®
is positive in the critical strip S. Then F'(0) is positive and can be assumed
to be equal to 1. After rewriting formula 4.1 and dropping all zeros except
1/2 we obtain:

7@(%) < log(k*N) —2log4n + 2/0+°°(1 — F(x))/(e* — 1)dz

1
42 mogp log p

For example we may take

cosh(z/2)
F(z)=0 elsewhere

{ F(z) = Lolz/log3] g g e [— log 3, log 3]
This gives the following explicit bound:
1.072r < log(k*N) — 1.97

In particular

Theorem 18 Let f be a newform of weight k for Uo(N), and L its associated
L-function. Then the order r of vanishing of L at k/2 is bounded by

r < logk’N

Assuming the generalized Riemann hypothesis (GRH) we can say more:
GRH means that all the zeros of L in the critical strip have real part equal
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to k/2 (or, after normalizing, to 1/2). Therefore since on the line Re(s) = 1/2
we have

(1) = @(% +it) = /_ ;OO Fz)ei da

we need look for functions F' having positive Fourier transform.

More precisely, take F' positive, even, with support contained in [—1, 1]
such that F(z) <1 and F(0) = 1. For A > 0, set Fy(z) = F(x/A). If ¢x(t)
is the corresponding ¢ we have ¢, (t) = Ap(At).

As before a little computation shows that

Arg(0) < log(k*N) + 8e*?log 3 — 2log 4n

+0o0
+ 2/ (1= F(2))/(e" — 1)dz (4.2)
0
Choosing A = 2loglog(k?N) we see that

Theorem 19 Under GRH, in the notations of theorem 18, we have

log(k*N)

"= O(loglog(k2N)

)

where the constant involved in O(...) is absolute.

Suppose now that ¢ is positive in [—1, 1] and negative elsewhere (this
can be done). Then if ¢y > 0 is the first zero of L on the line Re(s) = 1/2
distinct from 1/2 and if A = 1/tp, then we obtain the lower bound:

Ar¢(0) > log k2N — O(eM?)
which together with theorem 19 gives

Theorem 20 If ty is as before, we have

1

to=0(————
0 (loglogk2N

)

where again the constant involved in O(...) is absolute.
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4.3 Application to elliptic curves

The results of the preceding section apply well to find upper bounds on
the rank of an elliptic curve over Q because of the Taniyama-Shimura-Weil
conjecture saying that the L-function of an elliptic curve over Q arises as the
L-function attached to a certain modular form of weight 2 and level equal to
the conductor N of the elliptic curve £/Q, and the Birch and Swinnerton-
Dyer conjecture that tells us that r is precisely the rank of E(Q).

However, given E/Q, we can refine our estimate of b(p™) for that spe-
cific curve and obtain better results using formula 4.1. Indeed, put in that
formula as F' the Odlysko function (cf [Mes 5]). In particular, since the main
contribution comes from b(p) = a, = p + 1 — Ny, we need only compute the
number NN, of points of the reduced curve mod p for p < et

Example: For the curve 11B we get the estimate 0 = r < 0.0014, for
189F 0 = r < 0.430, for 200C 1 =r < 1.011. Here we took A = log23 which
is pretty small!

Notice also that if we proceed as in the previous section, where we made
the crude estimate |b(p™)| < 2p™/2, we still obtain with A = log 100

r < 0.268log N + 1.03

which is not bad for small V.

The precision of such an estimate seems to arise from the fact that in
the best examples we have ¢y ~ 1/log N, so that the first non-real zero of L
in the critical strip is “sufficiently far” from k/2. We now turn to indicate a
sufficient condition under which this holds.

Let f be a newform of weight k for To(N). Then f is real on iR™, so
that the following definition makes sense:

Definition 2 (Mazur, Swinnerton-Dyer) A critical fundamental point
of odd order (cfpoo) of f is a complex number of the form it with t positive
such that f changes sign.

Theorem 21 (Mazur, Swinnerton-Dyer) If h is the number of cfpoo’s
of f we have

r<h and r=h (mod 2)

Actually among all curves with conductor < 430, only 17 fail to have r = h
for their associated L-function. This leads us to the following;:
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Theorem 22 Suppose in the above that ¥ = h. Then if s is a zero of L
distinct from k/2, we have

1

I8 = B2 > 1510e o)

Remark:
1. Notice that the theorem is unconditional of GRH.

2. The experimental results of Fermigier show that there is a strong evi-
dence that the first non-real zero has an ordinate of C'/log N (case of
elliptic curves, k = 2). Moreover, C' seems to grow as the rank grows.
Question: does C' go to infinity as the rank grows?

4.3.1 Twists with high rank

Let E/Q be an elliptic curve. It seems reasonable to ask ourselves if for any
M > 0, there exists a quadratic twist E, of E such that rank(E, (Q)) > M.
We can at least bring an evidence of affermative answer.

Theorem 23 Let f be a newform of weight k for Ty(N). Then, for any
M, there erists a quadratic twist f, of f such that M is smaller than the
number of cfpoo’s of fy.

4.3.2 Curves with high rank

Examining formula 4.1, we see that in order for £(Q) to possibly have a
high rank, we should require that —b(p) = —a, be as large as possible, i.e.
we want IV, as large as possible (N, =5, N3 =7, N5 =10...). If we go up
to p =41, we get a curve of rank 14, namely the curve whose coefficients in
Weierstrafl form are

[0,2597055, 357573631, —549082, —19608054]

In general, the most effective method to find elliptic curves over Q with
exceptionally high rank is this one, applied to the curves of rank at least 11
obtained in 5.1 and following. Fermigier ([Ferm 1]) thus finds a curve of rank
19, while Kouva and Nagao ([KN]) go up to 21 and Fermigier (unpublished)
obtains 22 (May 1996).
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4.4 An interesting question

Take the curve
v =23 fx+t

over Q(t). It has rank 0. By specialisation, we find that the proportion of
curves having rank 0 is 0.40, rank 1 is 0.35, rank 2 is 0.1 etc.

Question: Is there a positive proportion for each rank?

Also the curve over Q(t)

y =2+ 3+t

is of rank 1. Again by specialisation, there are 40% of curves of rank 1, 35%
of curves of rank 2, 10% of rank 3 etc.
The generalisation is clear.

Question 1 Let y? = 2® +a(t)z +b(t) be an elliptic curve over Q(t) of rank
r. Then by specialisation roughly 40% of curves are of rank r, roughly 35%
of rank r + 1, roughly 10% of rank r + 2 etc.

We refer to [Ferm 2] for numerical results concerning this question.

4.5 An application to algebraic varieties

Let A/Q be an algebraic variety of dimension d and conductor N. We can
attach to it an L-function L. If we assume that L satifies the standard
conjectures then by the aforementioned methods we find a lower bound for
its conductor.

Theorem 24 Suppose that L has analytic continuation to an entire function
and that the function

A(s) = N*2((2r) *T(s))"L(s)

satisfies the functional equation A(s) = £A(2 — s) and is entire of order 1.
Then we have the lower bound N > 10.32%. In particular, A cannot have
good reduction everywhere.

This raises the question of the minimality of the conductor for an abelian
variety over Q of dimension d. For d = 1 (elliptic curve) the theorem says
that NV > 10 and indeed for N = 11 we have X((11). For d = 2 we have
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that Xo(11) x Xo(11) has conductor 112 = 121. The bound of the theorem
gives N > 109 but so far we don’t know of any A such that 109 < N < 121.

In general, does there exist an A of dimension d such that 10.32¢ < N <
114 7 And if not, is (X((11))¢ the minimal one ? :wq



38 CHAPTER 4. EXPLICIT FORMULAS AND ELLIPTIC CURVES



Chapter 5

Curves of high rank

In this chapter we will exhibit elliptic curves of rank 11 and 12 over Q(t).

5.1 Curves of rank 11

We begin with a lemma analogous to lemma 1.

Lemma 3 Let k be a field with chark # 3 and p a monic polynomial of
degree 3n in k[z]. Then there exists a unique triplet (g,r,s) € (k[z])® with g
monic of degree n, degr < n —1 and degs < n — 1 such that

p=93+rg+s

Proof: Again this is proved in the same way as in lemma 1. Another way of
seeing it is that ¢ is the polynomial part of p'/3 which is computed using the
binomial expansion (1 +z)'/3 = 142/3+ - - - valid in characteristic different
from 3. Then a rapid computation shows that degp — g3 < 2n — 1 which
proves the theorem (uniqueness again follows from the binomial expansion).

O

Now take in the preceding lemma n = 4. As in chapter 1 we take a

polynomial
12

p(x) = [[(z — =) (wi€k)

1=1

39
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Define (g,r, s) as in lemma 3. Then the curve C given by
Yy’ +yr(z) +s(z) =0

has P; = (z;,9(z;)) € C(k) but its genus is 3 in general. However if degr < 2
then C' is a cubic therefore in general of genus 1.
Therefore we want to take & = Q(¢) and p such that:

1. degr < 2.
2. C is a non singular cubic of non-constant modular invariant.
3. The points P; are linearly independent in Pic(C).

Then choosing Py for example as the origin we find an elliptic curve over
Q(t) of rank > 11.

Call 5 = r5(x1,...,212) the coefficient of degree 3 of r. Then since
p is a homogeneous polynomial in x,z1,...x19, it is easy to see that r5 is
a homogeneous symmetrical polynomial of degree 5 in the z;’s. Call X =

(Z1,...,212).
Lemma 4 1. Ifu is a free variable, then r5(X + (u,...,u)) = r5(X).
2. If p is the cube of a polynomial, then r5(X) = 0.
3. If p is an even polynomial, then r5(X) = 0.
Proof:
1. Follows from the uniqueness in lemma, 3.
2. Same thing, because r = s = 0.
3. Again using uniqueness we write
p(z) = q(a?) = ¢°(2?) + g(2®)r(z?) + s(a?)

where we apply lemma 3 to g of degree 6, so that degg < 2, degr <1
and deg s < 1. Therefore by uniqueness g(z?), r(z?) and s(z?) are the
corresponding polynomials for p and looking at degrees we are done.
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Lemma 5 Let a,b,c,d be four indeterminates. Then the point
V =(a,b,¢,d,a,b,c,d,a,b,c, d)
is a double point of r5(X) = 0.

Proof: We already showed that r5(V) = 0. We are to show that if D =
(1,0,...,0), then r5(V + eD) as a function of € is divisible by 2. The same
reasoning will apply to the other variables and the proof will be complete.
Now let

pe(X) = (X —a+e(X —a)?X -0)>*X —c)}(X —d)?
= (1+ )X —a)3(X =) (X —¢)}(X —d)3

X —a

Since g, is the polynomial part of p3, we see that

ge=(X—a+ g)(x —b)(X —¢)(X —d) (mod ¢?)

so that
pe—gi=0 (mod é2)

and therefore 7. and s, are divisible by € and so is the leading coefficient
r5(V 4+ €D) of re .

Lemma 6 In the hypothesis of lemma 5, let t be an indeterminate and
W = (d7 d? d7 c? C7 c? b7 b? b7 a7 a7 a)
Then rs(V +tW) = 0.

Proof: r5(t1V +t2W) is a homogeneous polynomial of degree 5 in (¢1, t2)
which has the two double roots (0,1) and (1,0) by lemma 5. To show the
lemma it suffices then to produce two new roots of that polynomial. One is
V — W because its components are the roots of an even p and the other is
V + W because the p corresponding to V+W — ((a+b+c+d)/2,...,(a+
b+ c+d)/2) is even and because of lemma 4.
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To sum up, given a, b, ¢, d four rational numbers, we can apply lemma 4
to the polynomial whose roots are the components of V 4+ tW to obtain an
elliptic surface C (i.e. a cubic over Q(t)). We should expect C in general to
be nonsingular.

Example: In [Mes 2] we specialize a,b,c,d in —1,0,2,11. The corre-
sponding C' is given and also the twelve points P;. In fact C is an elliptic
surface in the sense of [Shio 2|, hence we can apply the methods described
therein to compute the height matrix. Since the only singular fibers are
irreducible (Kodaira I1) we have E(Q(t))? = E(Q(t)) (cf chapter 3) and the
height matrix has integer entries. Lemma 7 of [Mes 2] shows how to compute
< P, P >.

We find that the height matrix has determinant 2'°3%, thus the twelve
points P; are independent in Pic(C).

5.1.1 Another way to find rank 11

Instead of using lemma 3, we can apply lemma 1 to p of degree 12 to obtain
p = g*> —r, where degr < 5. Therefore the curve C given by y? = r(z) con-
tains the points P; = (x;,g(z;)) where z; runs over the roots of p. However
C is of genus 2 in general but if degr < 4, then C' is of genus 1.

Now if p is of the form g(x —t)q(z +t), then the leading coefficient of r is
equal to t>x a constant. By the above methods we can make this constant
equal to zero. This is the case if g(z) = (z +17)(z + 16)(x — 10)(z — 11) (z —
14)(x — 17) and the twelve points P; are again found to be independent by
the usual methods.

5.2 Curves of rank 12

We can push further the previous two constructions to find a thirteenth point
in Q(t) independent of the first twelve.

5.2.1 First construction

The trick is always to find a relation between a, b, ¢, d, ¢t to produce an extra
rational point by solving algebraic equations.

Here we take P, = (z1,y1) and look at the two other points on C' having
abscissa z;. These points may not be defined a priori in Q(a,b,c,d,t).
Nevertheless their ordinates satisfy the equation

yS + r(z1)y + s(x1) =0
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Since y1 € Q(a,b,c,d,t) they also satisfy the equation
v +ay+ 8 (5.1)

where a = y; and 8 = y? + r(z1). It is not difficult to see that A(t) =
o? — 48 = t2A(t), where A is a polynomial of degree at most 4. Since at
t =0, P, P; and Py all have abscissa x1(0), a change of variables implies
that A(0) is a square in Q(a,b,c,d). *

Therefore we can write A in the form

A(t) = (v +vit + vat?)? + 3 (wo + ugt)

and we see that for ¢ = —wg/ug, A is always a square and the two roots
of 5.1 are rational over Q(a,b,c,d), giving the three points P;, Q, Q.

Example: Fix ¢ = —1,b = 0,¢c = 2. Then t is a rational function in d,
so that now C' is an elliptic curve over Q(d) with 12 independent points in
C(Q(d)), namely (choosing Pjs as the origin) Py, ..., P1,Q, as we readily
show by standard methods.

5.2.2 Second construction

In the previous section we showed how to construct an elliptic curve C' over
Q(t) of rank 11 and of the form y? = r(x), where degr = 4. In the specific
example we gave, the leading coefficient of r was 429t> + 53260. Now it is
known (see for instance [Silv]) that we can embed C in P3 and that it has
two points at infinity rational over Q(v/429t2 + 53260).

Now the non degenerate conic K given by 429t + 53260 = u? is Q -
isomorphic to the projective line, because (3,239) € K(Q). Therefore if z
parametrizes K, we get that C as an elliptic curve over Q(z) has two new
rational points. If we take one of them as origin, then the 12 x 12 height
matrix of the points P; has determinant equal to 220355 # 0, thus proving
that rank(C'(Q(z))) > 12.

Corollary 3 There exist infinitely many elliptic curves defined over Q with
rank > 12.

lin fact C is isomorphic to a curve for which A = A but with abscissae left unchanged
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5.3 Nagao-Mestre construction of rank 13

We can give a quick outline of how to proceed in order to construct a two
parameter family of elliptic curves over Q(w) of rank at least 13, generalizing
Nagao’s result in [Nag 1] who found one curve (defined over Q(%)) belonging
to this family.

We proceed as in the second method for obtaining curves of rank 11: we
take p = g?> — r, where p is of degree 12 and r of degree 4.

Choose pg of degree 6 with roots 1, ..., z¢ and let p(z) = pg(z—1t)ps(z+
t). The curve y? = r(z) then has the twelve rational points (z; ¢, g(x; £t)).
We try to find pg such that there is another rational point of abscissa a + bt.

This means that r(a + bt) = s(t)?, where s is a polynomial. Thus we
must have

pla+bt) = g*(a + bt) — s*(t) = (g(a + bt) — 5(t))(g(a + bt) + s(t)) (5.2)
Take pg to be of the form pg = pagap1q1, where

p2(z) = 2% + a1z + ag
QQ(I) =.T2+.T+b0
pi(z) =z + ¢
qG(z)=2—cpy—a; —1

If we let

R(z) = 2g(z) — p2(x — t)p2(x + t)p1(z — t)qr (v + 1)

Then solutions to the equation
S(t) =R(a+bt) =0 (5.3)

will give rise to a rational point on y? = r(x) with abscissa a + bt, by 5.2 .
Note that equation 5.3 is of degree 4 in t. Choosing ag, ¢y carefully will set
to zero the coefficients of degree 0 and 4 (hence 1 and 3) of S. Also for a
specific choice of by the coefficient of degree 2 vanishes. Thus a + bt is a root
of 5.3 now.

Next we know that degr = 5 so that we want to impose that its leading
coefficient be zero. This coefficient is a product of two affine terms in a; one
doesn’t fit (r is then a perfect square) but the other one is good. a is then
fixed and we still have a freedom of choice for b and a.
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We now impose that the discriminants of po and ¢o be perfect squares,
which gives the equation of a quadric with a rational point, hence we can
parametrize b = b(u,v) and a1 = a1(u,v).

Now the curve y? = r(z) defined over Q(u,v,t) has 13 rational points.

In order to find another, to be taken as origin, note that the degree 4
coefficient of r is of the form g(u,v)?t?+m(u,v) (miracle!?). Hence the conic
q(u,v)?t? + m(u,v) = 2? can be parametrized over Q (we have two rational
points at infinity) and if ¢ = ¢(u,v,w), then the curve y? = r(z) gets two
new points at infinity, defined over Q(u, v, w).

Choosing one of them as origin of the curve y? = r(z), we get an elliptic
curve with 13 points defined over Q(u,v,w), i.e. a family of elliptic curves
over Q(w) depending on two parameters. To prove that these 13 points are
independent, we can specialize and use PARI (the curve found by Nagao
in [Nag 1] was a specialization in u, v of this one).

5.4 Curves of rank > 14 defined over Q(t)

iFrom the preceding curve, using similar constructions, one can find:

Theorem 25 (Mestre, April 1996) There exists an elliptic curve defined
over Q(t) of rank > 14.
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Chapter 6

Curves of high rank and
constant

We have already mentioned the folklore conjecture according to which the
rank of elliptic curves over Q is unbounded. Also we mentioned a stronger
conjecture: let F/Q be an elliptic curve. Is the rank of quadratic twists of
E bounded?

Remark: It would be so if a conjecture of Honda were true. Note also
that this contrasts with the previous approach using critical fundamental
points of odd order.

Let’s recall a definition.

Definition 3 Let E/Q be an elliptic curve given by y?> = x> + ax + b. For
d € Q we define the elliptic curve Eq given by dy?> = x* + ax + b to be the
twist of E by d.

Remarks:
1. It is known that j(Ey) = j(E) (cf. [Silv]).
2. If j(E) # 0, 1728, then
E~¥cE = 3deQ : E'=q Ey

3. If k = Q(v/d) then E(k) is related to E(Q) and E4(Q) in the following
way: let o be a generator of Gal(k/Q) and define an application

Ek) % E(Q)
P — P+ P°

47
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If we write E in Weierstral form, then it is easy to characterize ker ¢.

Indeed
P’ =P — { -7
= Yy
z € Q
= {y = u/d (ue Q)

i.e. we have the exact sequence

0 — Ey(Q) — E(k) -2 E(Q) — coker¢) — 0

Since 2E(Q) = ¢(E(Q)) C ¢(E(k)) and because of the weak Mordell-
Weil theorem, we have that coker¢ is finite, leading to the relation

tkE(k) = rkE(Q) + rkEy(Q)

The goal of this chapter is to find an infinity of elliptic curves E/Q of
large rank but of constant modular invariant j. For this purpose we will
make use of twists.

Let us notice first that it is relatively easy to find infinitely many twists
of E with rank > 1. Indeed let E be given by y? = 23 + ax + b and take any
1y € Q. If d = 2} + azp + b is not a square then it is not difficult to show
that the point (zg,1) € E4(Q) is of infinite order.

Next we have the general

Theorem 26 (Mazur-Gouvéa) Let E/Q be an elliptic curve. Suppose
Taniyama-Shimura- Weil and Birch Swinnerton-Dyer conjectures hold. Then
for any € > 0 there exists a constant C¢ such that

#{d € Z with |d| < M and ro(Eq) > 2} > C. M2
We will show that
Theorem 27 For any j € Q there exist infinitely many E/Q such that
° j(E) =
o 1EE(Q) > 2.

Theorem 28 e If j = 0 then there ezist infinitely many E/Q with
J(E) =0 and rk(E(Q)) > 6.
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o If j = 1728 then there exist infinitely many E/Q with j(E) = 1728
and Tk(E(Q)) > 4.

Definition 4 Let C be an algebraic curve and E, E' two curves of genus
1. Given two morphisms p: C — E and p' : C — E', we say that they are
independent if the pull-backs of differentials of the first kind on E and E'
respectively by p and p’ are independent.

Theorem 29 Let k be o field of characteristic zero and j € k. Then there
exist a quadratic covering C of P' defined over k and an elliptic curve E
defined over k with invariant j together with two independent morphisms
p,p : C — E defined over k.

(or equivalently, there exist C, E and an abelian variety A such that
E x E x A is isogenous to JacC).

Theorem 30 Letj € k. There exists an elliptic curve E /k(t) with invariant
equal to j and rank at least 2, not isomorphic over k(t) to a constant curve.

It is clear that theorem 30 implies theorem 27. To prove theorem 29 we first
prove
Theorem 31 Let E/k and E'/k be two elliptic curves. Suppose that j(E)
and j(E') are not simultaneously equal to 0 or 1728. Then there exists
a quadratic covering C/k of P! together with two independent morphisms
p:C — E and p' : C — E' defined over k.
Proof: Take two equations 4 = 23 +az +b = f(z) and y? = 23 +d'z + b =
g(z) defining E and E' respectively. The assumption made on j(E) and
J(E') impliesa =0 = a' # 0 and b =0 = V' # 0. If u is an unknown, the
equation (in x)
u’f(z) = g(u’z)
has the solution
b — ubb
u?(a' — uta)
Now define C by the equation Y2 = f(h(X)). Define also the two morphisms

x = h(u) =

and (6.1)
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If w = p*(dz/y) and ' = p'*(dz/y) then by direct computation

w 3a X% —2X%ba’ — b'a’
W' X3(X%ba — 3X2ba’ + 2al/)

which is a non-constant rational function, thereby proving theorem 31.

a

Proof of theorem 29: If j # 0, 1728, theorem 29 follows immediately
from theorem 31 because for any j € k, there exists a E/k of invariant j.

If j = 0, then choose as C the curve of equation y? = 2° + 1. Then if E
is the elliptic curve of invariant 0 defined by y? = 2* 4+ 1, we have JacC is
Q-isogenous to £ x E and we’re done.

If j = 1728, we let C be the curve y? = (t2 + 1)(t> — 2)(2t> — 1). The
two morphisms (t,y) — (t2,y) and (¢,y) — (1/t?,y/t?) define coverings of
C onto the elliptic curve y?> = (z + 1)(x — 2)(27 — 1) which has invariant
equal to 1728, thereby proving our theorem.

a

Theorem 29 implies theorem 30: There is a general proof of this fact
given in [Mes 7] but we can give here a proof “ad hoc” in the case where
j # 0, 1728. In this case formulee 6.1 imply that, if we call P = (¢,/f(t))
where f is as in the proof of theorem 31, then

p(P)7 = —p(P) and p'(P)” = —p/(P)

where < o >= Gal(k(\/f(t))/k). By the exact sequence above we conclude
that

(p(P),p'(P)) € Efy(k(t)) x Ey (k(t))

so that they are rational points of a curve of constant invariant j(£). Since
by construction p and p' are independent, we have that p(P) and p'(P)
are independent in E(k(\/f(?))) (or in Ey)(k(t))), because otherwise if
mp(P) + np'(P) = 0 we would get

mp*(wp) + np'*(wP) =0

where w is a differential of the first kind on £ and by the invariance of w
this contradicts the independence of p and p'.
For 7 =0, 1728 we refer to what follows.
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Proof of theorem 28:
Case j = 1728: Let p(z) = z* + a22? + a7 + ay € k[z], with roots z; € k
(X%, z; = 0). The curve E of equation z! + ayy® + a1y + ap = 0 has the
four k-rational points P; = (z;,x;). If

ap = —ut  (u€k) (6.2)

then O = (—u,0) € E(k). If az(a? — 4apaz) # 0 then E is k(t)-isomorphic to
y? = 23 + as(a? — 4agas)z, therefore is an elliptic curve of modular invariant
1728.

Now equation 6.2 is equivalent to

z11ox3(zy + o9 + 23) = ul

As is pointed out in [Di], Euler studied this surface and found several rational
curves on it, for instance

212 — 1 22 — 1 4t

:]_ = {— = -
YTh T he Ty T ey

2t2 — 1

If we form the polynomial p as above from these data, we obtain E/k(t)
of invariant 1728. To show that it is not isomorphic to a constant curve it
suffices to apply the usual formulae. For example since

az(a? — dagaz)(t)

ag(a% — 4(10(12) (to)

is not a fourth power in k(%) (¢o is just a value of of t) we are done. Choose O
as origin, then the four points P; are independent, as we see by specialization,
using PARI.

Case j = 0: Again take p of the form

6
p(z) = 2% + auz® + a32® + a22” + @z + ag = [[ (& — 2))
i—1

with #; € k and apply lemma 3 to p. Call R = p — ¢° so that deg R < 3.
Then the curve E of equation y> + R(z) = 0 contains the six k-rational
points P; = (x4, g(z;)). We still have to find one more k-rational point to be
put as the origin. Notice that if the discriminant D of R is not zero, then E
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is a nonsingular curve of genus 1 isomorphic to y? = 3 — 16D therefore of
invariant 0.

If the leading coefficient of R is a cube in k, then at least one point at
infinity is rational over k£ and we can set it to be the origin O of the elliptic
curve F.

We have r(z) = azz® + ---. Since a3 is a homogeneous polynomial of
degree 3 in the x;’s, we get that u® = a3 is the equation of a cubic hyper-
surface H (in the variables u and z; 1 < 4 < 5). This surface has a lot of
rational points on it and we can find non trivial rational curves by standard
methods (see [Elk], for example take a plane P tangent to H. Then H N P
is a cubic with a singular point, i.e. birational to P!). For example

xy = —126(35t —19)(14t — 13)(t + 1)

zo = 63(—980° + 3549t* — 3084t + 1135)

r3 = I

zy = 63(1127¢% — 3108t* + 3525t — 988)

x5 = —113876t> + 265629t% — 259980t + 69103
g = —X1— Ty — T3 — T4 — Ts

Again by standard methods since D(t)/D(tp) is not a sixth power in k(t) we
have that £ is not k(t)-isomorphic to a curve defined over k. The indepen-
dence of the six points P; is dealt with as previously.

6.1 Curves of rank 7 with 7 =0

We now prove that there exist infinitely many elliptic curves defined over
Q with modular invariant equal to zero and Mordell-Weil rank at least 7.
Again this follows using the usual arguments from the following theorem:

Theorem 32 Let v be a variable. There exists an elliptic curve defined over
Q(v) with zero invariant, not Q(v)-isomorphic to an elliptic curve defined
over Q and rank at least 7.

Proof: The proof follows the same lines as for rank 6. Take p € Q(z) of the
form [I%_, (z — 2;) and write it as p = ¢> — r where g is monic of degree 2
and degr < 3. Then the curve of equation y* = r(z) is usually an elliptic
curve of invariant 0 having the 6 rational points (z;,v;), where g(z;) = y;.
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As before we will produce a seventh rational point (at infinity). The
other new rational point will come out of a rational solution of y$ —r(z) = 0,
different from x;. We have already seen a similar trick in section 5.2.

Take the five unknowns ¢,a,b,c,d and let x; = (u; + tv;) (1 < i < 6)
where

(uy,...,us) = (a,a,b,¢c,d,—2a —b—c—d)
{ (01,...,06) = (1,-1,1,-1,1,-1)

Then p is a homogeneous polynomial in ¢, a, b, ¢, d, z of degree 6. If we write

3
r(z) = mei (6.3)
i=0

then we see that r3 is homogeneous of degree 3 in t,a,b,c,d. Moreover,
working on the symmetries of p, it can be easily shown that deg, r3 <1 (for
example the term with ¢3 is zero because if we set a =b=c =d = 0 then p
becomes a cube so that r = 0). Likewise

deg;rs—; <1414 (0<i<3) (6.4)

Also the leading coefficient of r3 (seen as polynomial in ¢) is a polynomial of
degree 1 in d, namely

4a? + 2¢? + dab + 2bc + 4ca + 2de + 2db + 4da

Hence for a suitable d we have that r3 doesn’t depend on ¢ anymore. Ex-
plicitly
s = 2a(b+c)(a+b)(a +c)
b+ c+ 2a
Next we try to impose that one of the three points at infinity be rational.
We want to parametrize a, b, c so that r3 becomes a cube. For example we

can notice that on the surface r3(a,b,c¢) = —1 we can find rational curves
like
(v—1) (w2 +v+1) b v3 43 v® — 603 — 3
a = — = - CcC =
4v ’ v ' (4v —4)(v? +v+1)v

Until now we have defined a curve y*> = r(z) over Q(v,t) with 7 rational
points.
We are looking for a new rational point of ordinate y;. This amounts to
finding solutions of
r(z) —r(x
) — ") = ()

r — I

=0
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Now the discriminant D of h is a polynomial of degree 4 in t and its leading
coefficient m is a square in Q(v), as can be readily checked using 6.4.
Explicitly we have

m = 160" (v'? + 140 + 1)?x
(W5 +3)2(w—1)*(w+ D + o+ 1) (w? —v+1)4

Therefore by lemma 1 we can write D = G? — (At — B), where deg, G = 2
and A, B € Q(v). Hence letting t = B(v)/A(v) we get that D is a perfect
square in Q(v) and we get an eighth rational point.

In the end we check that everything fits well. The discriminant of
the elliptic curve thus obtained is of degree 1296. It factors over Q[v] as
P(v)*Q(v)?, where P and @ are coprime and @ is irreducible of degree 468.
Consequently, it is not a 12-th power in Clv] and hence the curve is not
isomorphic over Q(v) to a constant curve.

If we set the point at infinity as origin, the other seven rational points
are proved to be independent as is proved by specialisation (for v = 2 the
height matrix has determinant 44435390119934.6473... # 0 ). Quod erat
demonstrandum.

6.2 About the genus of

It is natural to ask ourselves what the genus of the curve C appearing in
theorems 31 and 29 is. As explained in [Mes 7] it is basically 10 if j(E) #
J(E"), 6 if j(E) =j(E') #0, 1728 and 2 if j(E) = j(E') =0 or 1728. Is it
possible to find C' of smaller genus with the same properties?

Theorem 33 Let E % E' be two elliptic curves defined over k such that
at least one of them is without CM. Given a rational prime © such that
E[r] & E'[r] inducing an anti-isomorphism for the Weil paring, then there
exists a C of genus 2 (notations as in theorem 31) such that p and p' are
independent and degp = degp' = .

Remarks:

1. It is easy to prove the theorem in the special case when 7 = 2 and all

the points of order 2 of E and E' are in k: let y* = [[3_, (z— ;) = f(x)

and y? = [[}_;(z — 2!) = g(z) be equations for E and E' respectively.
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Then there exists h € PGL2(k) such that h(z;) = =}, i = 1,2,3. By
hypothesis h(z) = (az + B)/(yz + ) # x.
Consider now the identity
3
2 n (@ —3)(x— 29)(z — 33)
pry h = h b - pry
y* = g(h(x)) i:Hl( () — @) = ¢ (2 1 0)°

where ¢ is a constant which can be put equal to 1. If we define the
new quantities u?> = yz + 6 and Y = yu?® the previous equation is
transformed into

Y% = L(u) (6.5)

where £ is an even polynomial of degree 6. Let C' be the hyperelliptic
curve of genus 2 given by 6.5. Then it is clear that the two morphisms
from C to (resp.) E and E' are given by

w—5Y
wy) — (—=5)

uw? =9
(u,Y) — ,Y)

2. Let E = E' be given by y? = 23 — axz + b and suppose that there exist
u,v € k such that a = u2 —uv+v?2. The conic given by z? +z115+23 =
a is then k- isomorphic to the projective line, hence there exist two
distinct rational functions of degree 2, namely z(t) and z2(t) such
that the rational function f(t) = x3 — az1 + b be equal to the rational

function z3 — azy + b.

There exist two morphisms from C of equation y?> = f(t) to E given
by (t,y) — (zi(t),y) (i = 1,2). They are checked to be independent
and, since the genus of C' is 3, we have in this case a curve of lower
genus covering F.
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Chapter 7

p-rank of quadratic fields

Another question related to the topics studied in the last chapter regards
the p-rank of quadratic fields (over the rationals), i.e. the p-rank of their
ideal class group. Let us introduce some notations.

Let d € Z and K = Q(v/d). We call G the ideal class group of K. By
Dirichlet’s theorem it is a finite abelian group, therefore it makes sense, given
a prime p, to speak of the p-rank of G (or K) as the F)-dimension of G /pG.

7.1 Algebraic theory

When p = 2, it has been known since Gaufl that the 2-rank of K is more or
less equal to the number of prime divisors of the discriminant A of K. In
particular, this rank is not bounded.

But when p is an odd prime very little is known. We don’t even know
whether the p-rank is bounded! As we shall see today there is one general
result, whereas all other theorems deal with specific primes (but even in
those cases we don’t know much). For p = 3 for example we have

Theorem 34 (Craig) There exist infinitely many quadratic fields with 3-
rank > 4.

The method in treating this problem always reduces to the equation
y? = 42"+ d (7.1)
We give here a brief exposition of the first part of [Yam)].

Theorem 35 Let (z,y) € Z2 be a solution to 7.1 in coprime integers. Then

o7
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1. The ideal I = (z,(y +V/d)/2) is of exponent n in K.
2. Let A < —4. Take a prime p|n and suppose that there exists a prime
¢ dividing x such that y is a p-th power non-residue (mod £). Then
I" = ((y +V/d)/2) is not the p-th power of a principal ideal of K.
Proof: Call o = (y + V/d)/2. Tt is an integer of K.
1. Since (z) C I we have taking norms
N(I)|N(z) = * (7.2)
Also calling 17 = (z, (y — Vd/2)) we readily obtain from 7.1
(zy) C II° C ()

which implies
2?|N(I)?|(zy)?

Now since (z,y) = 1 by hypothesis we get in view of 7.2
N(I)? = *

whence N(I) = |z|. Also from 7.1 we get I" C («), hence after taking
norms " = ().

2. Suppose there exists ¢ € Ok such that
(@) = (o) <= df = *a

since A < —4. By juggling with Galois action and +y we may as well
suppose that a? = a. Now since £ # 2 we have {|z = y> =d (mod )
and again we may suppose that

y=vVd (modf)=a=y (modl)=y=d (mod?¥)
Now since ged(I,17) = 1 and
I1° C (z) C (¢)

we obtain that ¢ is decomposed in K so that its residue field is isomor-
phic to Fy and there exists therefore b € Z such that y =0 (mod /),
contradiction.
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This theorem has a corollary:

Theorem 36 (Nagel, 1922) For any p, there exist infinitely many imag-
inary quadratic fields K such that p|h(K), where h(K) is the class number
of K.

The idea of the proof is to impose on = and y certain congruences and to
define d = y? — 427. Yamamoto proves the infinity by noticing that one can
also impose to a finite set S of rational primes to be ramified in K.

The main contribution of Yamamoto is the following

Theorem 37 (Yamamoto, 1973) For any p there exist infinitely many
imaginary K of p-rank > 2. For any p there exist infinitely many real K of
p-rank > 1.

The idea of the proof is a modified version of theorems 35 and 36: Yamamoto
takes two sets (z,y), (z',y') of solutions to 7.1 and applies to each one the-
orem 35 but links the two solutions together by imposing that (y +y')/2 be
a p-th power residue  (mod ¢). He then arrives to the conclusion. To deal
with the infinity of such fields, he uses the identity

(u? + 0P —wP)? — duPoP = (uP — P +wP)? — PP = (uP —oP —wP)? — doPwP

combined with the ideas already present in Nagel’s theorem.
Let’s mention two other results.

Theorem 38 (Gross, Rohrlich) Let p = 5,7,11. Then if x € Q — {1}
and 1 — 4zP < 0 we have p|h(1 — 4zP).

Proof: Let d = 1 — 42P. Then again as in theorem 35 I = (z, (1 — V/d)/2)
has order p. If it were trivial then there would exist © € K such that
uP = (1 —v/d)/2. By conjugation in K also @ = (1 + v/d)/2, so that after
summing 1 = u? 4+ @”.

But Gross and Rohrlich show that there are no nontrivial point defined
over Q(v/d) on this Fermat curve, and so we are done.

By the same methods they also prove

Theorem 39 Let p be a prime greater than 3. If v € N — {0,1} then
p|h(1 — 4zP).
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7.2 Geometric interpretation

7.2.1 General theory

There is a geometric interpretation of these facts that helps constructing
a criterion to find large p-ranks in quadratic fields (with emphasis on real
ones).

Let E be an elliptic curve defined over Q and R a rational point on F
of order n. Let F' = E/ < R > be the quotient curve and ¢ : E — F be the
corresponding isogeny. Suppose that ¢ is given in the simple form:

z — p(z), y — q(z)y (7.3)

Take now a point P in F(K) (where K is a number field, in our case a
quadratic field). We have that ¢=*(P) = {Q + iR, i =0,...,n—1}. Now
consider the field M = K(Q) obtained from K by adjoining the coordinates
of Q. M does not depend on Q) € ¢~!(P) because R is rational and of the
addition law on an elliptic curve. Furthermore, by 7.3 if o € C is such that
p(a) is the abscissa of P, we have that M = K(«) and hence either M = K
or it is a cyclic extension of K of degree dividing n (to see it is cyclic, note
that the morphism ) — @+ R when restricted to the abscissa is a generator
of the Galois group). Also we remark that M = K if and only if Q € E(K).

Thus to any non-trivial point of F'(K)/¢(E(K)) we can attach in a nat-
ural way a non-trivial cyclic extension of K of degree dividing n.

We can also describe everything in terms of Galois cohomology. Let L
be a Galois closure of K, G = Gal(L/K), then we have the exact sequence
of G-modules:

0 —<R>=Z/nZ — E(L) — F(L) —0
giving rise to the long cohomology sequence
.-+ — H°(BE(L)) — H"(F(L)) — HY(Z/nZ) — ---

Since HY(A) is by definition the submodule of A consisting of elements fixed
by G and G acts trivially on < R > the previous sequence translates into

-+ — B(K) — F(K) — hom(G,Z/nZ) — - --

Any o € hom(G,Z/nZ) defines a field, namely the fixed field of kero. This
field is Galois over K with Galois group o(G) C Z/nZ, hence cyclic.
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Suppose now that n is prime. We then see that r independents points
in F(K)/¢(E(K)) give rise to r independent number fields M, cyclic and of
degree n over K (that is, the o’s defining the M’s are independent). If G is
abelian, this means that its n-rank is at least .

The link between this and CI(K) is given by class field theory, which
says that there is a L such that G = Cl(K) and it is precisely the maximal
unramified abelian extension of K (the Hilbert class field of K). Hence the
problem of showing that the p-rank of CI(K) is large reduces to finding in
an equally large number of independent unramified extensions of K that are
cyclic of degree p.

To study ramification, it is more convenient to introduce schemes.

Start with the curve C of equation y? = 4zP + d and set K = Q(V/d).
Then under the morphism f : C — J(C) sending infinity to zero we have
that the point P = (0,+/d) is sent to a point of J(C) of order p (because the
divisor of y — v/d is p(P — o0)). Let A be the quotient variety J(C)/ < P >,
then we have an exact sequence

0 —Z/pZ — J(C)— A—0

and by duality
0—p,—B—J(C)—0

Then there exists a group scheme A’ of generic fiber J(C') and smooth over
Ok giving the following exact diagram, which we get from short exact se-
quences (cf [Mes 6]):

0
3
O%/ia%)p
0 — A(Ok)/B(Okx) — H'(Spec(Ok), )
3
CI(K),
3
0

where Cl(K), is the p-th component of the class group of K.

Now any point (z,y) € C(K) get mapped via f to a point of J(C)(K).
The condition that x,y be coprime then insures that the image of this point
extends to a point of A'(Ok ), thus giving an element of C1(K),. We therefore
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recover Yamamoto’s application giving for coprime integers (z,y) such that
y? = 42P + d the ideal I = (z, (y — v/d)/2) of order 1 or p. Now in this case
there is an explicit description of B and the morphism B — J(C). Indeed
B is a quotient of the jacobian of the Fermat curve u? + vP = /d. This
fact enables us to understand the conditions in theorem 35 under which the
ideal I has exactly order p. Furthermore the point (z,y) of C' has a non zero
image in A'(Ok)/B(Ok).

If K is imaginary quadratic and if there exist two independent points in
A'(Ok)/B(Ok) then we can deduce the independence of the corresponding
ideals of CI(K),, (note also that addition of these points on J(C') corresponds
to the product of the corresponding ideals).

If K is real quadratic the fact that Oj /(O})? has rank one only enables
us to conclude that CI(K), # 1. The weakness of Yamamoto’s method is
that it relies on the structure of the units of K.

We can avoid this problem by considering, instead of H'(Spec(Ok), p,y)
the group scheme Z/pZ giving the cohomology group H'(Spec(O), Z/pZ)
= hom(Cl(K),Z/pZ).

Suppose now we are given an abelian variety E together with a point P
of order p and call ¥ = E/ < P >. Take the Néron model of £ over Z and
call it F/ again. Suppose also that corresponding to P we have a morphism
0 — Z/pZ — E. Then there exists a group scheme F' of generic fiber F
such that we have the exact sequence

0—Z/pZ — E — F' — 0
yielding
0 — F'(Ok)/E(Ok) — hom(Cl(K), Z/pZ)
This gives a lower bound for the p-rank of K by the rank of F'(Og)/E(Ok),
where the units of K don’t come into play anymore.
7.2.2 Examples

We choose E to be an elliptic curve with a rational point. By Mazur’s
theorem p = 3,5, 7. Such E’s are classified by the curves X (p) which are of
genus 0. Also by Vélu’s formulas we can construct F' explicitly. For example
X1(5)(Q) is given by the family of cubics

y? + uzy + v’ (u —v)y = 3 + v(u — v)z? [u,v] € PH(Q)
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Theorem 40 (Mestre) There exist infinitely many real quadratic fields
with 5-rank (resp. T-rank) > 2.

Idea of proof: In pratice we don’t need to invoke scheme theory because
everything is explicit. As an example we gave Vélu’s formula for X;(5), but
we also know F' and the quotient isogeny ¢. Now if for some value of [u, v]
we can impose to F' to be semistable, then a sufficient condition for K(Q)
to be unramified over K is that the point P = ¢(Q) not be congruent to the
node of F' modulo the bad primes. This amounts to imposing congruence
conditions on z € Q if P = (z, /g(z)) (in the scheme dictionnary this would
ensure that P comes from a point in the associated scheme F”).

Thus we already have infinitely many quadratic fields K = Q(\/g(z))
(x € Q not in some arithmetic progression) with 5-rank > 1. By considering
several values of [u,v] we get g(z) of arbitrary sign.

Now it is possible to construct infinitely many points P; = (x;,y) (1 =
1,2,3) on F such that z; € Q and y is quadratic over Q. (This is equivalent
to finding conditions so that a conic has a rational point (z1,z2); hence we
parametrize it by ¢ € Q). Then after calling K = Q(y) we can arrange for the
relative extensions K ((Q);) to be unramified over K (congruence condition on
t ). Since the P;’s lie on the same line they are not independent, but we can
find conditions under which two of them are (in F'(K)/¢(E(K))). These are
congruence conditions again (¢ belonging to some arithmetical progression).
Hence the theorem is proved.

a

Remark: Let p be a prime and k£ € N. Assume we can find an hyper-
elliptic curve over Q such that its Jacobian contains (Z/pZ)* as a rational
subgroup (or better (up)k). Then by a similar method we can prove that
there exist infinitely many quadratic fields with p-rank > k.

In the same way Mestre was able to prove

Theorem 41 There are infinitely many real (resp. imaginary) quadratic
fields of 5-rank > 3 ([Mes 1]). There are infinitely many real (resp. imagi-
nary) quadratic fields of 3-rank > 5 (unpublished).
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Chapter 8

Hyperelliptic curves I

The last two chapters will be devoted to the study of hyperelliptic curves in
an attempt to produce results similar to those on elliptic curves. Let’s recall
a definition.

Theorem 42 Let C be a curve of genus g > 2 defined over o field k. Let K
be its canonical divisor. Then the following are equivalent:

1. There exists f : C — P! of degree 2.
2. There ezists an involution w: C — C such that genus(C/w) = 0.

3. Let ¢ : C — P9I~ be the morphism associated to K. Then ¢ is not an
embedding.

Remark: It is known that deg K = 2¢g—2. If L(K) ={f € k(C) : (f)+K >
0} then L£(K) U {0} is a vector space of dimension g and given a basis
fo,- .., fg—1 of this vector space ¢ is given by « — (fo(z),..., fg—1(x)).

Definition 5 Any curve C of genus at least 2 satisfying the equivalent con-
ditions of the above theorem is called an hyperelliptic curve and the corre-
sponding w is called the hyperelliptic involution (see also below).

Remark: A curve of genus 2 is always hyperelliptic because the morphism
associated to K gives a morphism onto P! of degree 2.
Next we list a few properties of hyperelliptic curves.

Theorem 43 1. The involution w is unique and defined over k.

2. For any f € Aut(C) we have fow =wo f.

65
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3. The morphism ¢ factors through C/w.

(From now on we assume char k # 2. The next proof is widely known
but seldom found in literature.

Theorem 44 Let C be o hyperelliptic curve of genus g defined over k. If
g is even, then C/w = P! (i.e. C/w admits a k-rational point) so that C
admits over k an hyperelliptic equation y*> = f(x) with deg f = 29 +2. In
these coordinates we have w(z,y) = (x,—y).

Proof: Consider the projection map 7 : C — C/w. Since K € Divg(C) and
deg K = 2g — 2 we can write K in the form

K=2Pi+w(Pz~)

and hence 7(K) = 2L where deg L = g — 1 and L € Divy(C/w). Let’s show
that this implies that C'/w has a k-rational point. Indeed if K| is a canonical
divisor of C'/w we have deg Ky = —2 so that

Ly =-L-$K
is of degree 1. If it is effective we are done. Otherwise by Riemann-Roch
WLy) — WKy — L) =1+ 0+1=1I(L1) =2

and this implies that there exists f € k(C'/w) such that Ly = (f) + L1 > 0.
Since again deg Lo = 1 we are done.

8.1 Review on Elliptic Curves

Given an elliptic curve E/k from its Weierstrafl equation we can compute
its relative invariants ¢4 and c¢g (see formulas for example in prof. Murty’s
notes) and from these an absolute invariant j. If chark f6 then

3
. 103 C4

3 =12 703_02
4 6

Also A' is the moduli space of elliptic curves parametrized by j. That is
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1. If E,E' are elliptic curves over an algebraically closed field k, then
B> B & j(B) = j(B).

2. If again k = k then Vj € k there exists E/k such that j(E) = j.

Remark: The last statement is true even if k is not algebraically closed
(x). This is particular to elliptic curves and we will see that this does not
generalize to hyperelliptic curves.

Recall also that for general k we have E = E' if and ouly if there exists

u € k* such that ¢4 (E) = u*cy(E') and cs(E) = uSc(E').
8.2 Curves of genus 2
Recall that such curves are hyperelliptic and that they can be written as
over k. By a homography sending three roots of f to 0, 1, 0o we can transform
it into

v’ = a(x —1)(z - a)(z — )z —7)

Call M5 the moduli space of curves of genus 2. Then by the above it is more
or less parametrized by triples (c, 3,7) € A2 just as the elliptic curves in
Legendre form are “more or less” parametrized by an affine parameter. We
want to characterize M, that is to find an application

¢ : {curves of genus 2/k} — My (k)

such that

2. VP € My(k) 3C/k: (C) = P.

Note that we can have P € My(k) but no C/k such that ¢(C) = P so ()
doesn’t hold (in spite of a 1943 article of Deuring who proves (x) for both
elliptic and hyperelliptic curves of genus 2!!).
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8.3 Invariants and Covariants of Binary Forms

The theory of invariants and covariants of binary forms was propounded
by Clebsch, Gordan et al. around 1880 and rediscovered in the Sixties by
Dieudonné and Dixmier, among others. It has a lot of applications also to
the field of hyperelliptic curves. We refer to [Cleb, Gor, CD] for details.

Definition 6 A binary form of degree n is
n . .
fla,y) =Y ai'y"™™
i=0

GLy(K) acts on the space of binary forms with coefficients in K in the
“obvious” way. If

w= (0w (7)) (2 0)(3)

then f = Y7, ala’"y'™ " and we put
n - -
M- f= E:agxzy”_Z
i=1

Now if f; is a binary form, let a9 represent its set of coefficients and o’ (@)
those of M - f.

Definition 7 Let f1,..., fim be a family of binary forms.

e A covariant of fi,..., fm is a polynomial C(a™M,... a™ z,y) ho-
mogeneous in (z,y) such that

C(aW,...,a"™ z,y) = (det M) FC@@W, ... .a"™, 2"y

e The order of C is the total degree of C in (x,y).
e The degree of C' is deg(a(l)r“,a(m)) C.

e The index of C is k.

e C is a (relative) invariant if its order is 0.

e An absolute invariant is a quotient of two relative invariants of same
index.
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Example: f; is a covariant of index 0.

Theorem 45 (A property of covariants) Let m = 1 in the above defi-
nition and C be a covariant of index k of f = f1 binary form of degree n. If
r s the degree and [ is the order of C' we have the relation

nr —1|

k= 5

In particular if C is an invariant then k = nr/2.

Remark(Transitivity of the covariant/invariant property): If Cy,...,C, are
covariants of fi,..., f;, and Dq,..., D are covariants of C1,...,C), then
they are also covariants of fi1,..., fi..

8.4 Symbolic computation

Let Z]" (resp. C,') be the algebra of invariants (resp. covariants) of m
binary forms of degree n, with usual addition and multiplication. It was a
major problem in the last century to determine whether these algebras are
finitely generated and to find explicit generators for them. Usually one found
the generators and a posteriori the algebra was finitely generated. However
one proof was required for each n,m and the larger the numbers, the more
difficult the proof (actually, we know explicit generators only in finitely many
cases, all with n < 8).

Then came Hilbert who showed in one stroke that for all n, m the algebras
;' and C]' are finitely generated. His arguments involved a property of
these rings called today Noetherianity. The drawback of Hilbert’s theorem
is that it does not produce an explicit system of generators. Therefore for
computational purposes the methods of his predecessors are still valid.

To find explicit generators, we will first define a binary operator on the
algebra of all covariants. If f (resp. g) is a binary form of degree n (resp.m)
we define

(f9e =

m!n! i ) OrtOyk—t Oyt Ork—t

(m—k)!(n—k)!i(_l)i<k> ok f oy

1=0

It is well-defined as we readily check and ord(fg)r = m + n — 2k. Moreover,
if deg f = @ and degg = [ (as covariants), then deg(fg)r = o+ .
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We can combine two or more of these operators through symbolic compu-
tation, an example of which is provided by Leibniz’ rule to compute deriva-
tives of products. The trick is to deal with the operator f — f(") = o"f/ox"
as if it were the operator f ~ f™ ( with exception f = f). For example
using this rule we have, symbolically

azf ﬁ B 8i+jf
Ozt Oxd — Ortti

and also

dT;EUfng) _ (f _I_g)(n)

Also by symbolic computation (fg)x(cd); is a covariant of ¢, d, f, g. It is clear
that starting from invariants we obtain invariants.

8.5 Explicit Generators

We give without proof explicit generators of some of the algebras defined
previously.

1. Let f = az? + bry + cy?. Then (ff); = 0 and 4(ff)2 = —2(A) =
2(4ac — b?). We have < f, A >=C1.

2. Take f as before and g = a'2? + Vzy + c'y?. Define
i=2(fg)1 = (abl — a'b)z® + 2(ad’ — d'¢)zy + (b — b'c)y?

We have (ii)p = —2disc(i) = —2res(f,g). Also D = (ff)2, D' = (fg)2
and D" = (gg)2 generate Z7. For example

—2i? = Df*—2D'fg+ D"g4?
2(if)i = Dg—D'f
2(ii), = DD"—D"”

3. Let f be binary of degree 4. Define covariants

covariant degree | order
Cy=(ff)2 2 4
Cs = (fCy)1 3 6
Iy = (ff)a 2 0
Is = (fCy4)4 3 0
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Then f together with the quantities defined above generate Cj. We
also have the important relation

1202 = =603 + 31,Cy f* — 213 f3 (8.1)

This formula applies to find rational points on quartics. Indeed the
curve C given by u? = f(z,1) is a quartic. The elliptic curve E of
equation

1202 = —6X° + 31, X — 2,

is isomorphic to Jac(C). The classical covering of a quartic onto its

Jacobian can therefore be given in explicit form by

Cc — FE
C,y Cs

(:v,u) — (ﬁu ﬁ

)

4. Let x1,x9,x3 be three binary quadratic forms (in z,y). To them we
can associate a conic C given by the image of

P! — P?
[*Tvy] — [fEl(.T,y),lUQ(.T,y),:Ug(:U,y)]

The conic C is non degenerate if the determinant R of the z;’s in the
basis 22, zy, 42 is not zero. Define now z% = (z223)1, 3 = (z321); and
z§ = (z122)1. The ] are again quadratic forms, so that we can again
associate a conic C* to them. We have the fundamental relation

z1x] + Toxh + x373 =0

This relation tells us that if R # 0, then C* is the dual conic of C.
The intrinsic equation of C* is of the form

Z Ajjziz; =0

1<i,j<3

and one can show that A;; = (z;x;)2 (it is therefore an invariant as is
to be expected). On the same lines

R = —(z129)1(zox3)1(321)1

and 2R? = det(Aij).
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5. In general if f is a binary quadratic form we have

Rf = (fa1)22] + (fr2)2w) + (f23)205
and if f is a binary form of degree 2n

3

Rf=0 (fo)oae)™ = Y a1,

i=1 1<i1,0in <3

where the a__ are invariants.

. What is written in the previous two points can be applied to retrieve

the zeros of f in the projective plane. Indeed suppose R # 0 (i.e. that
we take three independent quadratic forms z;) and let f be binary of
degree 2n. If the z}’s are as above we found that

RY =3 1<i, .. in<3 QirpinTiy - T, =0

are the equations of a conic C* and a curve T of degree n.

If f = c[12",(ciz — Biy) then it is clear that the zeros of f are exactly
given by C*NT.
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Hyperelliptic curves 11

9.1 Invariants and covariants of an hyperelliptic
curve

We continue to assume throughout the rest of the chapter that char k # 2.
(JFrom Hurwitz’ formula we know that an equation

2g+2

y'=f(@)=c ][] (#—=)
=1

where the ramification points z; are all distinct, gives an hyperelliptic curve
of genus g. Reciprocally, any hyperelliptic curve over k has an equation of
this type over k (see also theorem 44).

In general it is difficult to see if two given algebraic curves are isomorphic.
However in the case of hyperelliptic curves the situation is much simpler, as
we state in the following proposition.

Proposition 1 Given two hyperelliptic curves C' and C' defined over a field
k, C is isomorphic to C' over k (denoted C = C') if and only if there exists

o € PGLy(k) such that
o({ram. points of C'}) = {ram. points of C'}

In other terms, let C" and C' be given respectively by u? = f(r) and U? =
F(X). Call f(z,y) and F(X,Y) the homogenized polynomials of f and F

(ie. f(z) = f(x,1), ...). Then it is easy to see that C = C' <= f(x,y)

and F(X,Y) are in the same orbit  (mod PGLy(k)) (cf section 8.3).
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To an hyperelliptic curve of genus 2 over k£ we can associate a sextic form
f with coefficients in & (cf theorem 44). We then define

N N N AN N N AN N/
. ~ .
N

DSQawmed § 8
I

The first two are quartic forms, the following three are quadratic forms (to
which we associate the “dual” forms defined in section 8.5) and the last four
are invariants of even degree. Clebsch showed that A, B,C, D generate all
invariants of even degree and that A, B, C, D, R generate all invariants of f
(see section 8.5 for definition of R). Furthermore he showed the following
fundamental result:

Theorem 46 Let f and g be (binary) sextic forms. Then they are isomor-
phic (mod PGLy(k)) if and only if there exists u € k' such that

A=u*A", B=u'B, C =u5C", D =4"D'

where the invariants A, B,C, D are defined above and relative to f, while
A',B',C", D' are the same ones relative to g.

Note that we have a characterization of isomorphism for hyperelliptic curves
of genus 2 which does not require the computation of the roots of a polyno-
mial.

We now return to the problem of determining the moduli space of hy-
perelliptic curves of genus 2.

Since D = discf is an invariant of degree 10 by theorem 45, it is a
polynomial expression of A, B, C, D.

Theorem 47 (Igusa) For any A,B,C,D such that D # 0 there exists a
sextic form f with these numbers as invariants.
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Suppose now A # 0 and define absolute invariants

_ B e D
a = ﬁa ﬁ - Ea Y= E
Then D/AS is an absolute invariant, equal to p(c, 3,). Therefore for A # 0,
the moduli space of hyperelliptic curves of genus 2 is

A’ —{a,B,7: p(a,B,7) =0}

In general the situation is technically more complicated (blow-ups...) but
the flavor is the same.

9.2 Definition over k

Given (a, 3,7) € k® such that ¢(a, 8,7) # 0, does there exist C/k of genus
2 with invariants «, 8,7 And if yes, how can we construct it?

Recall from the end of section 8.5 that to a sextic f we can associate a
conic C* and a cubic T'. Since their coefficients are invariants, after rescaling,
we may as well suppose that they are absolute invariants. Hence, since they
are of even degree, they can be expressed in terms of «, 3,7. At this point
we therefore know the equations of C* and T'.

1. Suppose C*(k) # (. Then we may parametrize C*(k) by [z,y] € P
Replacing z} by z}(z,y) in 8.3 we obtain a homogeneous polynomial
of degree 6 whose roots are those of an f, by our previous discussion.
Clearly f has coefficients in k& and the equation of our hyperelliptic
curve is u’y* = f(z,y).

2. On the other hand if C*(k) = 0, if k is perfect and the hyperelliptic
curve C (over k) obtained from «, 3,y has no exceptional automor-
phism (meaning that Aut(C) =< w >) ! then C is not isomorphic to
a curve defined over k.

Proof: Suppose that C is given by

y* = f() (9.1)

!This is mostly the case: it is clear that Aut(C) is finite, so that a nontrivial auto-
morphism must be a rotation p in the complex plane so that p® = Id. Hence C has an
equation 9.1 such that f is a polynomial in 2 if the order of p is 3 or f is even otherwise.
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with f € k[z] of degree 6. By definition C'/w = P'. Also let

p' % ¢
be a parametrization of C*(k). Hence, a priori, ¢ is defined over k.
Let D = 2?21 P; where P; (1 < i < 6) are the ramification points of
C (i.e. the zeros of f). Since f € k[z] this implies D € Divy(C). Note
that from what was said previously we have

b et NT
For o € Gal(k/k) define ¢° = 00 ¢ o o=, Then
¢~ o¢?(D)=D

and this implies ¢7 = ¢ because there is no exceptional automorphism.
Since this holds for arbitrary o and since & is perfect, it follows that ¢
is defined over k and therefore C*(k) # (), contrary to our assumption.

O

Remark: In contrast to what happens in the elliptic curve case (cf remark
on page 67), the relative invariants A, B, C, D are not enough to determine
when two curves of genus 2 are k-isomorphic if £ is not algebraically closed.
As an example take f € k[z] and the two curves C; and Cy given respectively
by y? = f(uz) and y? = v®f(x). Then it is readily checked that C; and Co
have the same «, 3,7y, but, unless u is a square in k, Cy 2§ Co.

9.3 Points of high order in JacC

We already saw the importance of finding large groups embedded in the
Jacobian of an hyperelliptic curve in connection with the study of class
groups of quadratic fields. We give here a brief overview of the work of
LePrévost [LeP].

Theorem 48 e For any g there exists an hyperelliptic curve C/Q of
genus g such that its Jacobian contains a point of order 2g° + 5g + 5.

e For any even g there exists an hyperelliptic curve C/Q(t) of genus g
such that its Jacobian contains a point of order 2g* + 5g + 5.
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e For any g there exists an hyperelliptic curve C/Q(t) of genus g such
that its Jacobian contains a point of order 2g(2g + 1).

Remark: Note that to obtain a point of order proportional to g is easy (take
the point (0,1) — oo = P on y? = 229! + 1. Then (29 + 1)P = (y — 1)).

Sketch of proof: We will expose the arguments to obtain a point of order
292 +2g +1 on C/Q(t). Set

(z — 1)
t
(z —1)7
t

2u = txd+

2u —tzd +

and define C/Q(t) by
y? =u? — 29 (2 —1)9 = v — 29(z — 1)9H!

Then C is of genus g. Now take the functions ¢ = y —u(z) and ¢ = y—v(z).
Since

p=0 = 29 (z—-1)¢=
Yp=0 = 29z —1)9"1 =0
we deduce that if
Py =(0,u(0)) P =(Lu(l))
Qo = (0,0(0)) Q1= (L,v(1))
then
(¢) = (g+1)P+gP—(29+1)Px
(%) = gQo+(9+1)Q1 — (29 +1)P
where P, is the point at infinity of C'. Also note that

u—v =ty u(0) = v(0)

u+v=@;”g u(l) = —v(1)

Therefore Py = QQp. Also

t2
Q1+ P —2Px = (y*— =) ~0
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implying
(V) = 9P+ (9 +1)(2Ps — 1) — (29 + 1) Po

Finally, if D; = P; — Py (i = 0, 1) then
(g + 1)D0 + ng ~ 0 and ng — (g + 1)D1 ~ 0
resulting in
((g+1)* +9°)Do ~ 0

;From this we only have that the order of Dy divides 29+ 2g+ 1 but a little
more work shows that it is indeed equal to 2¢% + 2g + 1.

9.4 Periods of hyperelliptic curves

9.4.1 Classical theory

Let C/C be a curve of genus g > 0. It is known that the complex vector
space of holomorphic differentials on C' has dimension g. Let wq,...,w, be
a basis of it and let vi,...,72, be a basis of H;(C,Z) = Z*. Then the
complex matrix
j=1,...,
(aij) = (/ wi)iz1)

i
has real rank 2g, i.e. its 2g rows generate a maximal discrete subgroup
A C C9. We also have an embedding

C — Jac(C) = CI/A
P P
P — (/ wl,...,/ wg)
Py Po

where Py is any point on C' (Abel-Jacobi map).

The most effective way to compute the periods of an elliptic curve is
through the arithmetic-geometric mean. It is defined as follows: take a,b
positive real numbers and define two sequences ag = a, by = b

ay, + by,
Ap+1 = 9 bn+]_ == anbn (92)

Then it is easy to prove that lima, = limb, = M (a,b) < co. Actually there
exists an absolute constant s such that

lan+1 — bnt1| < lan — bn|2
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so that the precision of the computation is quadratic, meaning that each
step doubles the number of exact digits. This fact was discovered by Gaufl
who used this algorithm in his celestial computations.

Theorem 49 (Gauf )

/2 dt T
0 VaZcos2t+ b2sin’t ~ 2M(a,b)

It was one of Gauss’ “teen” discoveries and he applied this result to a =
1,b=+v2.

Take now an elliptic curve E of equation
v =4(z —e))(z — ez)(z — e3) (e1 > ez > e3) (9.3)

Define

+oo dy +oo dx
)\1—/61 ?_/el VAa(z —e1)(z — e2)(z — e3)

and

N /61 dz /61 dx
9 = —

e2 Y e2 V—4(x —e1)(z —e3)(z —e3)
Then (cf Zagier’s trick in chapter 2) Ay is half (y > 0) the “real” period and
A9 half the “imaginary” period (resp. = a11/2 and ag1/2 in the previous
matrix).

Theorem 50 We have that

s s

A= S VS -
L= 9M(a, b) o 27 9M(a, )

where a = \/e1 —ez, b= \/e1 — ey and c = \/ea — e3.

Proof: We prove only the formula for A;. Define a ladder of elliptic curves
ap = a, bg = b as in theorem,

Eyn: y* = 4x(z +ap)(z + b)) (n>0)

where the sequences (a,,) and (b,,) are those appearing in 9.2. Clearly Ey = E
and \; stays the same. Now let Ay = a9;. Then we have the following
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commuting ladder of morphisms, the horizontal ones being complex isomor-
phisms, the right vertical ones being the “natural” morphisms.

Note that the left morphism is given by

z(z + b2)
T+ a2

at the n-th level. Therefore since A\; remains the same throughout the ladder

we have
+oo dz

0 Vaz(z +al)(z +b2)

and hence passing to the limit

AL =

A = = z + M2(a,b))v/x  2M/(a,b)

o ax(z + M2(a,0)?

+oo dx /"‘00 dz T
o 2

a

Remark: Of course there is also a purely algebraic proof. One can use
for example the change of variables:

T =e3 + (ey — e3) sin’ ¢
which yields

e dx 2 dt
4/63 VA —e1)(w —e)(z —e3) /0 \/(el —e3) cos?t + (e — ep) sin’ ¢
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9.4.2 The case of hyperelliptic curves of genus 2

Take four different positive real numbers

a=ay>b=by>c=cy>d=dy

and define
an + by, +cp +dy,
ap+1 = 4
b Y anbn, + Vendy
n+l1 — 2
\VOnCp + v b,dy,
Cn+1 = 5
dyi vand, + veRby
" 2

Then as before we can prove that
lima, = limb, = lim¢, = limd, = M(a,b,c,d) < 0o

called the Borchardt mean.
Let C be an hyperelliptic curve of genus two given by

v =(z—e1) - (z —eg) (1 >e2>...>e5)
and define
a = y/ler —es)(er — e5)(es — es)(e2 — ea)(e2 — e6) (ex — o)
b = \/(er—ea)ler — es)(es — e) ez — es)(e2 — e5) (€5 — e5)
¢ = yfler—ed)(er —es)(ea — e5)(ez — e3)(ez — es)(es — e5)
d = /(er—es)(er — es)(es — eo)(e2 — ea)(e2 — e5) (ex — e5)

Theorem 51 Under previous notations we have

472
det Ap = ————
SR M(a,b,c, d)

where AR is the 2 X 2 matriz with the real periods of C as entries.
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Can we get more? We can try and build a ladder as in the case of elliptic
curves. But there is a difficulty. At each step of the ladder we don’t have
morphisms but correspondences between C and C’. Recall that a (n,m)
correspondence between C and C' is just an algebraic curve I' C C' x C' such
that the projections I' — C, C” are of degree n and m.

C — Jac(O)

! "
' — Jac(C')

Take the ramification points P, ..., Ps of C. Consider them in P!(R) = S*.
We want to give a geometric construction of C’. Construct the triangle
T whose sides are supported by (P P), (PsP;) and (P;Fs). If we draw
from its vertices the tangents to S* we will get six new points on the circle,
namely Pl, ..., P¢. Then C’ is the curve of genus two with these points as
ramification points. The correspondence is easily seen to be (2,2). We can
proceed inductively. We remark that, in the same way as the limit curve
in the elliptic curve case is a singular cubic (therefore a rational curve), for
genus 2 the six points converge to three points by pairs so that the limit
curve is a union of two rational cubics.

The algebraic formulas to find C’ make use of invariants. Write an equa-
tion for C' in the form

y* = p(x)q(z)r(z)

where p, q,r are each of degree 2. Define

u =q¢r—q' =]q,r]
v =r'p—rp =[rp]
w =p'q—pd =I[p,q]

Note that u(z) = (¢r)1(z,1) etc. in the notation of chapter 8. Then C” is
given by
Ay'? = u(x" o (z ) w(z')

where A is the determinant of p,q,r in the basis 1,z,2%. Also the corre-

spondence is given by

p(@)u(z’) + q(z)v(z') =0
yy' = p(z)u(z’)(z — ')
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We can compute periods of curves of genus 2 by using these formulas.
Indeed we need to compute integrals of the form

o s(z)dx
ViIp(z)q(z)r(z)]

where s is of degree at most 1, p, ¢, r are real polynomials of degree at most

2 such that degpgr =5 or 6 and a,a’ are two consecutive zeros of p, q,r.
Suppose that the zeros of p,q,r, resp. a < d < b <V < ¢ <  are

real and arranged in increasing order. We can then define the six sequences

! ’

(an), (a,,), (bn), (b)), (¢n), (¢,)) recursively by

!
e ag=a,ay=a,by =b by ="b,co=c,co=c.

!
® apy1 < anH <bpy1 < an < cpt1 <y

® Upil,... ,c,nH are the roots of [pnqn|[gnrn][rnpn] With p, = (z—ay,)(z—
a,) etc. (note that p; # u; we are reordering the roots of uvw alto-

gether).

Now from the discussion about the limit curve, we see that there exist a <
B < v such that

o =lima, =Ilim a’n
B =limb, =limb,
v =lime¢, =lim c;z

Using the algebraic definition of the correspondence it is not difficult to see
that if A,, is the discriminant of py,, g, r, with respect to the basis 1, z, z*
and if

VA,
\/(bn +b;z — QGp — a’n)(cn 'l‘cln — by — b’n)(cn +c;z — Gp _a;z)

ty =2

then we have

/ - s(z)dx
=t
V pn‘]nrn (nt1 \/_pn—l—IQn-i—lTn-i—l(w)

Therefore after setting

/“' s(z)dx
a V—(z—a)(lz—d)(z—-0b)(z—V)(z—c)(zr—)

I, =
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and passing to the limit we obtain

S (s Loy
where T' = [} k-
In the same way
I, = 4 s(z)dx
b V—(z—a)(x—a)(z—0b)(zx—V)(z—c)(z—)
)
(6 —a)(y — )
e s(z)dx
L= | e =T
_ s(7)
)

The reader can refer to [BM] for computational details.

We conclude this topic by mentioning that there is a geometrical in-
terpretation of the formulas given above, as was already mentioned in the
explanation of Richelot’s correspondence. The sequence of correspondences
gives rise to a tower of (2,2)-isogenies between the jacobians of the curves Cy,
of equation T? ,y? = ppgnrn(x) where T),_1 = Hz;é tr. The limit curve has
equation T2y? = (z—a)?(z—B)?(x—)?, therefore consisting of two rational
components on which we are integrating our differential form s(z)dz/y.
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