Rad HAZU, Matematičke znanosti, Vol. 30 (2026), 169-176. \( \)
THE MAXIMUM CARDINALITY OF ESSENTIAL FAMILIES IN REGULAR
OR NORMAL SPACES
Leonard R. Rubin
Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019, USA
e-mail:lrubin@ou.edu
Abstract.
Let \(X\) be a regular or normal space (\(\mathrm{T}_1\) not required) with infinite weight
and \(\mathcal{C}\) be an essential family in \(X\).
We will show that \({\operatorname{card}}\, \mathcal{C}\leq{\operatorname{wt}}\, X\). This implies that every essential family
in a separable metrizable space is countable.
2020 Mathematics Subject Classification. 54F45
Key words and phrases. Cardinality, essential family, normal space, regular space, weight
Full text (PDF) (free access)
https://doi.org/10.21857/yl4okfkgv9
References:
-
M. Lynam and L. Rubin, Characterizing strong infinite-dimension, weak infinite-dimension, and dimension in inverse systems, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 29 (2025), 299–318.
MathSciNet
CrossRef
-
J. van Mill, Infinite-Dimensional Topology, North-Holland, Amsterdam, 1989.
MathSciNet
-
L. Rubin, R. Schori, and J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topology Appl. 10 (1979), 93–103.
MathSciNet
CrossRef
-
L. Rubin, Hereditarily strongly infinite-dimensional spaces, Michigan Math. J. 27 (1980), 65–73.
MathSciNet
CrossRef
-
L. Rubin, Non-compact hereditarily strongly infinite-dimensional spaces, Proc. Amer. Math. Soc. 79 (1980), 153–154.
MathSciNet
CrossRef
-
L. Rubin, Totally disconnected spaces and infinite cohomological dimension, Topology Proc. 7 (1982), 157-166.
MathSciNet
-
L. Rubin, More compacta of infinite cohomological dimension, Contemp. Math. 44 (1985), 221–226.
MathSciNet
CrossRef
-
K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics, Springer, Tokyo, 2013.
MathSciNet
CrossRef
-
J. Walsh, An infinite dimensional compactum containing no \(n\)-dimensional \((n\geq1)\) subsets, Topology 18 (1979), 91–95.
MathSciNet
CrossRef
Rad HAZU Home Page