Rad HAZU, Matematičke znanosti, Vol. 30 (2026), 141-157. \( \)

SPECTRAL EXPANSION FOR IMPULSIVE DYNAMIC DIRAC SYSTEM ON THE WHOLE LINE

Bilender P. Allahverdiev, Hüseyin Tuna and Hamlet A. Isayev

Department of Mathematics, Khazar University, AZ1096 Baku, Azerbaijan
Research Center of Econophysics, UNEC-Azerbaijan State University of Economics, Baku, Azerbaijan
e-mail:bilenderpasaoglu@gmail.com

Department of Mathematics, Mehmet Akif Ersoy University, 15030 Burdur, Turkey
Research Center of Econophysics, UNEC-Azerbaijan State University of Economics, Baku, Azerbaijan
e-mail:hustuna@gmail.com

Department of Mathematics, Khazar University, AZ1096 Baku, Azerbaijan
e-mail:hamlet@khazar.org


Abstract.   In this study, we consider an impulsive dynamic Dirac system on the whole line. A spectral function of this system is constructed. We establish a Parseval equality and expansion formula in terms of the spectral function.

2020 Mathematics Subject Classification.   34N05 34A36, 33D15, 34L40, 34L10.

Key words and phrases.   Dynamic equations on time scales, impulsive Dirac system, Parseval equality, spectral expansion.


Full text (PDF) (free access)

https://doi.org/10.21857/moxpjh7kjm


References:

  1. B. P. Allahverdiev and H. Tuna, On expansion in eigenfunction for Dirac systems on the unbounded time scales, Differ. Equ. Dyn. Syst. 30 (2022), 271–285.
    MathSciNet    CrossRef

  2. B. P. Allahverdiev and H. Tuna, Impulsive Dirac system on time scales, Ukrainian Math. J. 75 (6) (2023), 827–841.
    MathSciNet

  3. F. V. Atkinson, Discrete and Continuous Boundary Problems, Mathematics in Science and Engineering 8, Academic Press, New York-London, 1964.
    MathSciNet

  4. M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhäuser, Boston, 2001.
    MathSciNet    CrossRef

  5. Ş. Faydaoğlu and G. Sh. Guseinov, Eigenfunction expansion for a Sturm-Liouville boundary value problem with impulse, Int. J. Pure Appl. Math. 8 (2) (2003), 137–170.
    MathSciNet

  6. Y. Güldü, On discontinuous Dirac operator with eigenparameter dependent boundary and two transmission conditions, Bound. Value Probl. 2016 (135) (2016), 1–19.
    MathSciNet    CrossRef

  7. D. Karahan and Kh. R. Mamedov, On a \(q\)-boundary value problem with discontinuity conditions, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz. 13 (4) (2021), 5–12.
    CrossRef

  8. D. Karahan, On a \(q\)-analogue of the Sturm-Liouville operator with discontinuity conditions, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauk. 26 (3) (2022), 407–418.
    CrossRef

  9. D. Karahan and Kh. R. Mamedov, Sampling theory associated with \(q\)-Sturm-Liouville operator with discontinuity conditions, J. Contemp. Appl. Math. 10 (2) (2020), 40–48.

  10. B. Keskin and A. S. Ozkan, Inverse spectral problems for Dirac operator with eigenvalue dependent boundary and jump conditions, Acta Math. Hungar. 130 (2011), 309–320.
    MathSciNet    CrossRef

  11. B. M. Levitan and I. S. Sargsjan, Sturm–Liouville and Dirac operators, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991.
    MathSciNet    CrossRef

  12. O. Sh. Mukhtarov, Discontinuous boundary-value problem with spectral parameter in boundary conditions, Turkish J. Math. 18 (1994), 183–192.
    MathSciNet

  13. O. Sh. Mukhtarov and K. Aydemir, The eigenvalue problem with interaction conditions at one interior singular point, Filomat 31 (17) (2017), 5411–5420.
    MathSciNet    CrossRef

  14. H. Olğar and O. Sh. Mukhtarov, Weak eigenfunctions of two-interval Sturm-Liouville problems together with interaction conditions, J. Math. Phys. 58 (2017), no. 4, 042201, 13 pp.
    MathSciNet    CrossRef

  15. E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-order Differential Equations, Part I, Second Edition, Clarendon Press, Oxford, 1962.
    MathSciNet

  16. A. Zettl, Adjoint and self-adjoint boundary value problems with interface conditions, SIAM J. Appl. Math. 16 (4) (1968), 851–859.
    MathSciNet    CrossRef

Rad HAZU Home Page