Rad HAZU, Matematičke znanosti, Vol. 30 (2026), 125-140. \( \)

GENERALIZED HORN FUNCTION \(H_{4,p,q,\nu}^\lambda\) AND RELATED BOUNDING INEQUALITIES WITH APPLICATIONS TO STATISTICS

Rakesh K. Parmar, Tibor K. Pogány and S. Pirivina

Department of Mathematics, Ramanujan School of Mathematical Sciences, Pondicherry University, Puducherry-605014, India
e-mail:rakeshparmar27@gmail.com, rakeshparmar@pondiuni.ac.in

Institute of Applied Mathematics, Óbuda University, 1034 Budapest, Hungary
Faculty of Maritime Studies, University of Rijeka, 51 000 Rijeka, Croatia
e-mail:pogany.tibor@nik.uni-obuda.hu, tibor.poganj@uniri.hr

Department of Mathematics, Ramanujan School of Mathematical Sciences, Pondicherry University, Puducherry-605014, India
e-mail:pirivina1610@pondiuni.ac.in


Abstract.   Motivated by recent unified version of the Euler's Beta integral form with a MacDonald function in the integrand, we generalize the Horn double hypergeometric function \(H_4[x,y]\). We then establish integral representations of the Euler and Laplace type including some other representations involving Bessel \(J_\nu(z)\) and modified Bessel functions \(I_\nu(z)\) for the generalized Horn double hypergeometric function \(H_{4,p,q,\nu}^\lambda\). Several functional upper bounds for the \(H_{4,p,q,\nu}^\lambda\) including the extended Gaussian hypergeometric \(F_{p,q,\nu}^\lambda\), the extended Kummer's confluent hypergeometric \(\Phi_{p,q,\nu}^\lambda\) are obtained by using functional bounds for extended Euler's Beta function \({\rm B}_{p,q,\nu}^\lambda(x,y)\). Various other bounding inequalities are obtained via Luke's, von Lommel's, Minakshisundaram and Szász and Olenko bounds. As an application, we define a Horn hypergeometric probability distribution to obtain certain statistical interference.

2020 Mathematics Subject Classification.   Primary: 26D15, 33C20, 33C65, 33C70; Secondary: 26D20; 33C70, 60E05

Key words and phrases.   Extended Beta function, Extended hypergeometric function, Extended confluent hypergeometric function, Horn double hypergeometric function \(H_4\), Bessel and modified Bessel functions, functional bounding inequalities, probability distribution, Turán inequalities


Full text (PDF) (free access)

https://doi.org/10.21857/y6zolb7wwm


References:

  1. Yu. A. Brychkov, O. I. Marichev and N. V. Savischenko, Handbook of Mellin Transforms, CRC Press, Taylor \(\&\) Francis Group, Boca Raton, London, New York, 2019.
    MathSciNet    CrossRef

  2. M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Euler's Beta function, J. Comput. Appl. Math. 78 (1997), 19–32.
    MathSciNet    CrossRef

  3. J. Choi, A. K. Rathie and R.K. Parmar, Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J. 36 (2014), No. 2, 339–367.
    MathSciNet    CrossRef

  4. H. Exton, Multiple Hypergeometric Functions and Applications, Halsted Press (Ellis Horwood, Chichester): New York, NY, USA; London, UK; Sydney, Australia; Toronto, QN, Canada, 1976.
    MathSciNet

  5. K. Górska, A. Horzela, D. Jankov Maširević and T. K. Pogány, Observations on the McKay \(I_\nu\) Bessel distribution, J. Math. Anal. Appl. 516 (2022), Article No. 126481.
    MathSciNet    CrossRef

  6. G. H. Hardy, J. E. Littlewood and Gy. Pólya, Inequalities, University Press, Cambridge, 1934.

  7. J. Horn, Hypergeometrische Funktionen zweier Veränderlichen, Math. Ann. 105 (1931), No. 1, 381–407.
    MathSciNet    CrossRef

  8. E. K. Ifantis and P. D. Siafarikas, Inequalities involving Bessel and modified Bessel functions, J. Math. Anal. Appl. 147 (1990), 214–227.
    MathSciNet    CrossRef

  9. D. Jankov Maširević, On new formulae for the cumulative distribution function of the noncentral Chi-square distribution, Mediterr. J. Math. 14 (2017), Article No. 66.
    MathSciNet    CrossRef

  10. D. Jankov Maširević and T. K. Pogány, On new formulae for cumulative distribution function for McKay Bessel distribution, Comm. Statist. Theory Methods 50 (2021), No. 1, 143–160.
    MathSciNet    CrossRef

  11. D. Jankov Maširević and T. K. Pogány, CDF of non–central \(\chi^2\) distribution revisited. Incomplete hypergeometric type functions approach, Indag. Math. 32 (2021), No. 4, 901–915.
    MathSciNet    CrossRef

  12. D. Jankov Maširević, T. K. Pogány and N. Ujić, Observations on the McKay \(I_\nu\) Bessel distribution II, J. Math. Anal. Appl. 550 (2025), No. 2, Article No. 129569.
    MathSciNet    CrossRef

  13. C. Krattenthaler and K. Srinivasa Rao, Automatic generation of hypergeometric identities by the beta integral method, in: R. Jagannathan, S. Kanemitsu, G. Vanden Berghe and V. Van Assche (Eds.), Proceedings of the International Conference on Special Functions and their Applications (Chennai, 2002). J. Comput. Appl. Math. 160 (2003), No. 1–2, 159–173.
    MathSciNet    CrossRef

  14. L. Landau, Monotonicity and bounds on Bessel functions, in: Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, CA, 1999), 147–154. Electron. J. Differ. Equ. Conf. 4 Southwest Texas State Univ., San Marcos, TX, 2000.
    MathSciNet

  15. D. M. Lee, A. K. Rathie, R. K. Parmar and Y. S. Kim, Generalization of extended beta function, hypergeometric and confluent hypergeometric functions, Honam Math. J. 33 (2011), No. 2, 187–206.
    MathSciNet    CrossRef

  16. E. C. J. von Lommel, Die Beugungserscheinungen einer kreisrunden Öffnung und eines kreisrunden Schirmchens theoretisch und experimentell bearbeitet, Abh. der math. phys. Classe der k. b. Akad. der Wiss. (München) 15 (1884-1886), 229–328.

  17. E. C. J. von Lommel, Die Beugungserscheinungen geradlinig begrenzter Schirme, Abh. der math. phys. Classe der k. b. Akad. der Wiss. (München) 15 (1884–1886), 529–664.

  18. E. Lukacs, Characteristic Functions, Translated from the English and with a preface by V. M. Zolotarev, Nauka, Moscow, 1979. (in Russian)
    MathSciNet

  19. Y. L. Luke, Inequalities for generalized hypergeometric functions, J. Approximation Theory 5 (1974), No. 1, 41–65.
    MathSciNet    CrossRef

  20. A. M. Mathai and H. J. Haubold, Special Functions for Applied Scientists, Springer, New York, NY, 2008.
    CrossRef

  21. G. V. Milovanović, R. K. Parmar and T. K. Pogány, Bounds for the \((p,\nu)\)–extended Beta function and certain consequences, J. Math. Ineq. 17 (2023), No. 4, 1433–1441.
    MathSciNet    CrossRef

  22. S. Minakshisundaram and O. Szász, On absolute convergence of multiple Fourier series, Trans. Amer. Math. Soc. 61 (1947), No. 1, 36–53.
    MathSciNet    CrossRef

  23. A. Ya. Olenko, Upper bound on \(\sqrt{x}J_\nu(x)\) and its applications, Integral Transforms Spec. Funct. 17 (2006), No. 6, 455–467.
    MathSciNet    CrossRef

  24. F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (Eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010.
    MathSciNet

  25. R. K. Parmar and T. K. Pogány, Bounds for novel extended beta and hypergeometric functions and related results, J. Inequal. Appl. 2024 (2024), Article No. 77
    MathSciNet    CrossRef

  26. R. K. Parmar, J. Choi and S. D. Purohit, Further generalization of the extended Hurwitz-Lerch Zeta functions, Bol. Soc. Parana. Mat. (3) 37 (2019), 177–190.
    MathSciNet    CrossRef

  27. R. K. Parmar, R. B. Paris and P. Chopra, On an extension of extended beta and hypergeometric functions, J. Class. Anal. 11 (2017), No. 2, 91–106.
    MathSciNet    CrossRef

  28. H. M. Srivastava and M. C. Daoust, A note on the convergence of Kampé de Fériet's double hypergeometric series, Math. Nachr. 53 (1972), 151–159.
    MathSciNet    CrossRef

  29. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
    MathSciNet

  30. G. N. Watson, A Treatise on the Theory of Bessel Functions, Second edition, Cambridge University Press, Cambridge, London and New York, 1944.
    MathSciNet

Rad HAZU Home Page