Rad HAZU, Matematičke znanosti, Vol. 30 (2026), 111-123. \( \)

A NOTE ON THE CHEBYSHEV INEQUALITY AND RELATED INEQUALITIES FOR FIBONACCI NUMBERS

Vera Čuljak and Josip Pečarić

Faculty of Civil Engineering, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:vera.culjak@grad.unizg.hr

Croatian Academy of Sciences and Arts, 10 000 Zagreb, Croatia
e-mail:jopecaric@gmail.com


Abstract.   Some new results for Fibonacci sequence concerning the Chebyshev type inequalities are proved.

2020 Mathematics Subject Classification.   26D15, 26D07, 26D99

Key words and phrases.   Fibonacci numbers, Lucas numbers, Chebyshev inequality, Grüss inequality, Karamata inequality


Full text (PDF) (free access)

https://doi.org/10.21857/yq32ohrl79


References:

  1. H. Alzer and M. K. Kwong, Extension of an inequality for Fibonacci numbers, Integers 22 (2022), Paper No. A85, 8 pp.
    MathSciNet

  2. H. Alzer and F. Luca, An inequality for Fibonacci numbers, Math. Bohem.  147 (2022), 587–590.
    MathSciNet

  3. D. Andrica and C. Badea, Grüss inequality for positive linear functional, Period. Math. Hungar. 19 (1988), 155–167.
    MathSciNet    CrossRef

  4. R. P. Grimaldi, Fibonacci and Catalan Numbers, John Wiley & Sons, Inc., Hoboken, NJ, 2012.
    MathSciNet    CrossRef

  5. S. Izumino and J. E. Pečarić, Some extensions of Grüss' inequality and its applications, Nihonkai Math. J. 13 (2002), 159–166.
    MathSciNet

  6. D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer, Dordrecht, 1993.
    MathSciNet    CrossRef

  7. J. E. Pečarić, F. Prochan and Y. L. Tong, Convex functions, partial ordering, and statistical applications, Mathematics in science and engineering 187, Academic Press, Boston, 1992.
    MathSciNet

  8. P. G. Popescu and J. L. Diaz-Barrero, Certain inequalities for convex functions, JIPAM. J. Inequal. Pure Appl. Math. 7(2) (2006), Article 41.
    MathSciNet

Rad HAZU Home Page