Rad HAZU, Matematičke znanosti, Vol. 30 (2026), 75-91. \( \)

ENDS OF THE FIRST COMPLEMENTARY SERIES OF GENERALIZED PRINCIPAL SERIES

Darija Brajković Zorić and Ivan Matić

School of Applied Mathematics and Informatics, University of Osijek, 31 000 Osijek, Croatia
e-mail:dbrajkovic@mathos.hr

School of Applied Mathematics and Informatics, University of Osijek, 31 000 Osijek, Croatia
e-mail:imatic@mathos.hr


Abstract.   We determine all irreducible non-tempered composition factors of induced representations appearing at the ends of the first complementary series of generalized principal series representation of either symplectic, special odd-orthogonal, or unitary group over a non-archimedean local field.

2020 Mathematics Subject Classification.   22E35, 22E50, 11F70

Key words and phrases.   Classical \(p\)-adic groups, discrete series, composition factors, generalized principal series


Full text (PDF) (free access)

https://doi.org/10.21857/94kl4cerqm


References:

  1. J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups, American Mathematical Society Colloquium Publications 61, American Mathematical Society, Providence, 2013.
    MathSciNet    CrossRef

  2. W. T. Gan and L. Lomelí, Globalization of supercuspidal representations over function fields and applications, J. Eur. Math. Soc. (JEMS) 20 (2018), 2813–2858.
    MathSciNet    CrossRef

  3. Y. Kim, Strongly positive representations of \(GSpin_{2n+1}\) and the Jacquet module method, With an appendix by I. Matić, Math. Z. 279 (2015), 271–296.
    MathSciNet    CrossRef

  4. Y. Kim and I. Matić, Discrete series of odd general spin groups, Monatsh. Math. 203 (2024), 419–473.
    MathSciNet    CrossRef

  5. I. Matić, Composition factors of a class of induced representations of classical \(p\)-adic groups, Nagoya Math. J. 227 (2017), 16–48.
    MathSciNet    CrossRef

  6. I. Matić, Reducibility of representations induced from the Zelevinsky segment and discrete series, Manuscripta Math. 164 (2021), 349–374.
    MathSciNet    CrossRef

  7. I. Matić, Representations induced from the Zelevinsky segment and discrete series in the half-integral case, Forum Math. 33 (2021), 193–212.
    MathSciNet    CrossRef

  8. I. Matić, Irreducibility criteria for the generalized principal series of unitary groups, Proc. Amer. Math. Soc. 150 (2022), 5009–5021.
    MathSciNet    CrossRef

  9. I. Matić, On representations induced from the Zelevinsky segment and a tempered representation in the half-integral case, J. Algebra Appl. 22 (2023), no. 11, Paper No. 2350238, 41 pp.
    MathSciNet    CrossRef

  10. I. Matić, On reducibility of representations induced from the essentially Speh representations and discrete series, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 28 (2024), 283–325.
    MathSciNet    CrossRef

  11. I. Matić and M. Tadić, On Jacquet modules of representations of segment type, Manuscripta Math. 147 (2015), 437–476.
    MathSciNet    CrossRef

  12. C. Mœglin, Sur la classification des séries discrètes des groupes classiques \(p\)-adiques: paramètres de Langlands et exhaustivité, J. Eur. Math. Soc. (JEMS) 4 (2002), 143–200.
    MathSciNet    CrossRef

  13. C. Mœglin, Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands, in: Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemp. Math. 614, Amer. Math. Soc., Providence, 2014, pp. 295–336.
    MathSciNet    CrossRef

  14. C. Mœglin and M. Tadić, Construction of discrete series for classical \(p\)-adic groups, J. Amer. Math. Soc. 15 (2002), 715–786.
    MathSciNet    CrossRef

  15. G. Muić, Composition series of generalized principal series; the case of strongly positive discrete series, Israel J. Math. 140 (2004), 157–202.
    MathSciNet    CrossRef

  16. G. Muić, Reducibility of generalized principal series, Canad. J. Math. 57 (2005), 616–647.
    MathSciNet    CrossRef

  17. M. Tadić, Structure arising from induction and Jacquet modules of representations of classical \(p\)-adic groups, J. Algebra 177 (1995), 1–33.
    MathSciNet    CrossRef

  18. M. Tadić, On tempered and square integrable representations of classical \(p\)-adic groups, Sci. China Math. 56 (2013), 2273–2313.
    MathSciNet    CrossRef

  19. A. V. Zelevinsky, Induced representations of reductive \(p\)-adic groups. II. On irreducible representations of \(GL(n)\), Ann. Sci. École Norm. Sup. (4) 13 (1980), 165–210.
    MathSciNet

Rad HAZU Home Page