Rad HAZU, Matematičke znanosti, Vol. 30 (2026), 65-73. \( \)

SPLITTING SUMS OF BINARY POLYNOMIALS

Luis H. Gallardo

Univ. Brest, UMR CNRS 6205, Laboratoire de Mathématiques de Bretagne Atlantique, 6, Av. Le Gorgeu, C.S. 93837, Cedex 3, F-29238 Brest, France
e-mail:Luis.Gallardo@univ-brest.fr


Abstract.   We study an analogue of a classical arithmetic problem over the ring of polynomials. We prove that \(m = 5\) is the minimal number such that the sums of any two distinct polynomials in a set of \(m\) polynomials over \(\mathbb{F}_2[x]\) cannot all be of the form \(x^k(x+1)^{\ell}\).

2020 Mathematics Subject Classification.   11T55, 11T06, 05A15, 11B13.

Key words and phrases.   Sums of polynomials, linear factors, characteristic \(2\).


Full text (PDF) (free access)

https://doi.org/10.21857/y26kecdqk9


References:

  1. R. P. Brent, S. Larvala, and P. Zimmermann, A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree \(3021377\), Math. Comput. 72 (2003), 1443–1452.
    MathSciNet    CrossRef

  2. E. F. Canaday, The sum of the divisors of a polynomial, Duke Math. J. 8 (1941), 721–737.
    MathSciNet    CrossRef

  3. L. H. Gallardo and O. Rahavandrainy, On Mersenne polynomials over \(\mathbb{F}_{2}\), Finite Fields Appl. 59 (2019), 284–296.
    MathSciNet    CrossRef

  4. L. H. Gallardo and O. Rahavandrainy, A polynomial variant of perfect numbers, J. Integer Seq. 23 (2020), Article 20.8.6, 9 pp.
    MathSciNet

  5. R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer-Verlag, New York, 2004.
    MathSciNet    CrossRef

  6. R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, Vol. 20, Cambridge University Press, 1996.
    MathSciNet

  7. N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2019.

Rad HAZU Home Page