Rad HAZU, Matematičke znanosti, Vol. 30 (2026), 65-73. \( \)
SPLITTING SUMS OF BINARY POLYNOMIALS
Luis H. Gallardo
Univ. Brest, UMR CNRS 6205, Laboratoire de Mathématiques de Bretagne Atlantique, 6, Av. Le Gorgeu, C.S. 93837, Cedex 3, F-29238 Brest, France
e-mail:Luis.Gallardo@univ-brest.fr
Abstract.
We study an analogue of a classical arithmetic problem over the ring of polynomials.
We prove that \(m = 5\) is the minimal number such that the sums of any two distinct polynomials in a set of \(m\) polynomials
over \(\mathbb{F}_2[x]\) cannot all be of the form \(x^k(x+1)^{\ell}\).
2020 Mathematics Subject Classification. 11T55, 11T06, 05A15, 11B13.
Key words and phrases. Sums of polynomials, linear factors, characteristic \(2\).
Full text (PDF) (free access)
https://doi.org/10.21857/y26kecdqk9
References:
-
R. P. Brent, S. Larvala, and P. Zimmermann, A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree \(3021377\), Math. Comput. 72 (2003), 1443–1452.
MathSciNet
CrossRef
-
E. F. Canaday, The sum of the divisors of a polynomial, Duke Math. J. 8 (1941), 721–737.
MathSciNet
CrossRef
-
L. H. Gallardo and O. Rahavandrainy, On Mersenne polynomials over \(\mathbb{F}_{2}\), Finite Fields Appl. 59 (2019), 284–296.
MathSciNet
CrossRef
-
L. H. Gallardo and O. Rahavandrainy, A polynomial variant of perfect numbers, J. Integer Seq. 23 (2020), Article 20.8.6, 9 pp.
MathSciNet
-
R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer-Verlag, New York, 2004.
MathSciNet
CrossRef
-
R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, Vol. 20, Cambridge University Press, 1996.
MathSciNet
-
N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, published electronically at
https://oeis.org, 2019.
Rad HAZU Home Page