Rad HAZU, Matematičke znanosti, Vol. 30 (2026), 35-49. \( \)

ON \(b\)-REPDIGITS AS PRODUCTS OR SUMS OF FIBONACCI, PELL, BALANCING AND JACOBSTHAL NUMBERS

Chèfiath Awero Adégbindin, Kouèssi Norbert Adédji and Alain Togbé

Institut de Mathématiques et de Sciences Physiques, Université d'Abomey-Calavi, Bénin
e-mail:adegbindinchefiath@gmail.com

Institut de Mathématiques et de Sciences Physiques, Université d'Abomey-Calavi, Bénin
e-mail:adedjnorb1988@gmail.com

Department of Mathematics and Statistics, Purdue University Northwest, 2200 169th Street, Hammond, IN 46323 USA
e-mail:atogbe@pnw.edu


Abstract.   Let \(b\ge 2\) be an integer. In this paper, we study the repdigits in base \(b\) that can be expressed as sums or products of Fibonacci, Pell, balancing and Jacobsthal numbers. The proofs of our main theorems use lower bounds for linear forms in logarithms of algebraic numbers and a version of the Baker-Davenport reduction method.

2020 Mathematics Subject Classification.   11D09, 11B37, 11J68, 11Y50

Key words and phrases.   Fibonacci, Pell, balancing and Jacobsthal numbers, \(b\)-repdigits, logarithmic height, reduction method


Full text (PDF) (free access)

https://doi.org/10.21857/mnlqgcpvky


References:

  1. K. N. Adédji, Balancing numbers which are products of three repdigits in base \(b\), Bol. Soc. Mat. Mex. (3) 29 (2023), no. 2, Paper No. 45, 15 pp.
    MathSciNet    CrossRef

  2. K. N. Adédji, F. Luca and A. Togbé, On the solutions of the Diophantine equation \(F_n\pm a(10^m-1)/9=k!\), J. Number Theory 240 (2022), 593-610.
    MathSciNet    CrossRef

  3. K. N. Adédji, V. S. R. Dossou-yovo, A. Nitaj and A. Togbé, On \(b\) repdigits as product or sum of Fibonacci and Tribonacci numbers, Mat. Vesnik, to appear.
    CrossRef

  4. C. Adegbindin, F. Luca and A. Togbé, Lucas numbers as sums of two repdigits, Lith. Math. J. 59 (2019), 295–304.
    MathSciNet    CrossRef

  5. C. Adegbindin, F. Luca and A. Togbé, Pell and Pell-Lucas numbers as sums of two repdigits, Bull. Malays. Math. Sci. Soc. 43 (2020), 1253–1272.
    MathSciNet    CrossRef

  6. D. Bednařík and E. Trojovská, Repdigits as product of Fibonacci and Tribonacci numbers, Mathematics 8 (10) (2020), p.1720.
    CrossRef

  7. J. J. Bravo, C. A. Gómez and F. Luca, Powers of two as sums of two \(k\)-Fibonacci numbers, Miskolc Math. Notes 17 (2016), 85–100.
    MathSciNet    CrossRef

  8. Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), 969–1018.
    MathSciNet    CrossRef

  9. M. Ddamulira, Tribonacci numbers that are concatenations of two repdigits, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, Paper No. 203, 10 pp.
    MathSciNet    CrossRef

  10. A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxf. Ser. (2) 49 (1998), 291–306.
    MathSciNet    CrossRef

  11. F. Erduvan, R. Keskin and Z. Şiar, Repdigits base \(b\) as products of two Pell numbers or Pell-Lucas numbers, Bol. Soc. Mat. Mex. (3) 27 (2021), no. 3, Paper No. 70, 17 pp.
    MathSciNet    CrossRef

  12. J. C. Gómez and F. Luca, Product of repdigits with consecutive lengths in the Fibonacci sequence, Bol. Soc. Mat. Mex. (3) 27, (2021), no. 2, Paper No. 31, 9 pp.
    MathSciNet    CrossRef

  13. S. Guzmán and F. Luca, Linear combinations of factorials and \(s\)-units in a binary recurrence sequence, Ann. Math. Qué. 38 (2014), 169–188.
    MathSciNet    CrossRef

  14. F. Luca, Fibonacci and Lucas numbers with only one distinct digit, Portugal. Math. 57 (2000), 243–254.
    MathSciNet

  15. D. Marques, On the intersection of two distinct \(k\)-generalized Fibonacci sequences, Math. Bohem. 137 (2012), 403–413.
    MathSciNet

  16. E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125–180. In Russian. English translation in: Izv. Math. 64 (2000), 1217–1269.
    MathSciNet    CrossRef

  17. S. G. Rayaguru and G. K. Panda, Repdigits as products of consecutive balancing or Lucas-balancing numbers, Fibonacci Quart. 56 (2018), 319–324.
    MathSciNet    CrossRef

  18. Z. Şiar, F. Erduvan and R. Keskin, Repdigits as product of two Pell or Pell-Lucas numbers, Acta Math. Univ. Comenian. (N.S.) 88 (2019), 247–256.
    MathSciNet

  19. N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2019. Available at https://oeis.org.

  20. P. Trojovsky, On repdigits as sums of Fibonacci and Tribonacci Numbers, Symmetry 12(11) (2020), 1774.
    CrossRef

Rad HAZU Home Page