Rad HAZU, Matematičke znanosti, Vol. 30 (2026), 35-49. \( \)
ON \(b\)-REPDIGITS AS PRODUCTS OR SUMS OF FIBONACCI, PELL, BALANCING AND JACOBSTHAL NUMBERS
Chèfiath Awero Adégbindin, Kouèssi Norbert Adédji and Alain Togbé
Institut de Mathématiques et de Sciences Physiques, Université d'Abomey-Calavi, Bénin
e-mail:adegbindinchefiath@gmail.com
Institut de Mathématiques et de Sciences Physiques, Université d'Abomey-Calavi, Bénin
e-mail:adedjnorb1988@gmail.com
Department of Mathematics and Statistics, Purdue University Northwest, 2200 169th Street, Hammond, IN 46323 USA
e-mail:atogbe@pnw.edu
Abstract.
Let \(b\ge 2\) be an integer. In this paper, we study the repdigits in base \(b\) that can be expressed as sums or products of Fibonacci, Pell, balancing and Jacobsthal numbers. The proofs of our main theorems use lower bounds for linear forms in logarithms of algebraic numbers and a version of the Baker-Davenport reduction method.
2020 Mathematics Subject Classification. 11D09, 11B37, 11J68, 11Y50
Key words and phrases. Fibonacci, Pell, balancing and Jacobsthal numbers, \(b\)-repdigits, logarithmic height, reduction method
Full text (PDF) (free access)
https://doi.org/10.21857/mnlqgcpvky
References:
-
K. N. Adédji, Balancing numbers which are products of three repdigits in base \(b\), Bol. Soc. Mat. Mex. (3) 29 (2023), no. 2, Paper No. 45, 15 pp.
MathSciNet
CrossRef
-
K. N. Adédji, F. Luca and A. Togbé, On the solutions of the Diophantine equation \(F_n\pm a(10^m-1)/9=k!\), J. Number Theory 240 (2022), 593-610.
MathSciNet
CrossRef
-
K. N. Adédji, V. S. R. Dossou-yovo, A. Nitaj and A. Togbé, On \(b\) repdigits as product or sum of Fibonacci and Tribonacci numbers, Mat. Vesnik, to appear.
CrossRef
-
C. Adegbindin, F. Luca and A. Togbé, Lucas numbers as sums of two repdigits, Lith. Math. J. 59 (2019), 295–304.
MathSciNet
CrossRef
-
C. Adegbindin, F. Luca and A. Togbé, Pell and Pell-Lucas numbers as sums of two repdigits, Bull. Malays. Math. Sci. Soc. 43 (2020), 1253–1272.
MathSciNet
CrossRef
-
D. Bednařík and E. Trojovská, Repdigits as product of Fibonacci and Tribonacci numbers, Mathematics 8 (10) (2020), p.1720.
CrossRef
-
J. J. Bravo, C. A. Gómez and F. Luca, Powers of two as sums of two \(k\)-Fibonacci numbers, Miskolc Math. Notes 17 (2016), 85–100.
MathSciNet
CrossRef
-
Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), 969–1018.
MathSciNet
CrossRef
-
M. Ddamulira, Tribonacci numbers that are concatenations of two repdigits, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, Paper No. 203, 10 pp.
MathSciNet
CrossRef
-
A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxf. Ser. (2) 49 (1998), 291–306.
MathSciNet
CrossRef
-
F. Erduvan, R. Keskin and Z. Şiar, Repdigits base \(b\) as products of two Pell numbers or Pell-Lucas numbers, Bol. Soc. Mat. Mex. (3) 27 (2021), no. 3, Paper No. 70, 17 pp.
MathSciNet
CrossRef
-
J. C. Gómez and F. Luca, Product of repdigits with consecutive lengths in the Fibonacci sequence, Bol. Soc. Mat. Mex. (3) 27, (2021), no. 2, Paper No. 31, 9 pp.
MathSciNet
CrossRef
-
S. Guzmán and F. Luca, Linear combinations of factorials and \(s\)-units in a binary recurrence sequence, Ann. Math. Qué. 38 (2014), 169–188.
MathSciNet
CrossRef
-
F. Luca, Fibonacci and Lucas numbers with only one distinct digit, Portugal. Math. 57 (2000), 243–254.
MathSciNet
-
D. Marques, On the intersection of two distinct \(k\)-generalized Fibonacci sequences, Math. Bohem. 137 (2012), 403–413.
MathSciNet
-
E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125–180. In Russian. English translation in: Izv. Math. 64 (2000), 1217–1269.
MathSciNet
CrossRef
-
S. G. Rayaguru and G. K. Panda, Repdigits as products of consecutive balancing or Lucas-balancing numbers, Fibonacci Quart. 56 (2018), 319–324.
MathSciNet
CrossRef
-
Z. Şiar, F. Erduvan and R. Keskin, Repdigits as product of two Pell or Pell-Lucas numbers, Acta Math. Univ. Comenian. (N.S.) 88 (2019), 247–256.
MathSciNet
-
N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2019. Available at
https://oeis.org.
-
P. Trojovsky, On repdigits as sums of Fibonacci and Tribonacci Numbers, Symmetry 12(11) (2020), 1774.
CrossRef
Rad HAZU Home Page