Rad HAZU, Matematičke znanosti, Vol. 30 (2026), 1-34. \( \)
COMPUTABLE SUBCONTINUA OF CIRCULARLY CHAINABLE CONTINUA
David Tarandek
Faculty of Architecture, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:david.tarandek@gmail.com
Abstract.
This paper explores, in computable metric spaces, circularly chainable
continua which are not chainable. Given such a continuum \(K\), if we endow it with semicomputability, its computability follows. Conditions under which semicomputability implies computability, typically topological, are extensively studied in the literature. When these conditions are not satisfied, it is natural to explore approximate approaches. In this article we investigate specific computable subcontinua of \(K\). The main result establishes that, given two points on a semicomputable, circularly chainable, but non-chainable continuum \( K \), one can approximate them by computable points such that there exists a computable subcontinuum connecting these approximations. As a consequence, given disjoint computably enumerable open sets \( U \) and \( V \) intersected by \(K\), the intersection of \( K \) with the complement of their union necessarily contains a computable point, provided that this intersection is totally disconnected.
2020 Mathematics Subject Classification. 03D78
Key words and phrases. Computable metric space, circularly chainable continuum, semicomputable set, computable set
Full text (PDF) (free access)
https://doi.org/10.21857/y54jof5x0m
References:
-
D. E. Amir and M. Hoyrup, Strong computable type, Computability 12 (2023), 227–269.
MathSciNet
CrossRef
-
C. E. Burgess, Chainable continua and indecomposability, Pacific J. Math. 9 (1959), 653–659.
MathSciNet
-
V. Čačić, M. Horvat and Z. Iljazović, Computable subcontinua of semicomputable chainable Hausdorff continua, Theoret. Comput. Sci. 892 (2021), 155–169.
MathSciNet
CrossRef
-
C. O. Christenson and W. L. Voxman, Aspects of Topology, Marcel Dekker, New York, 1977.
MathSciNet
-
E. Čičković, Z. Iljazović and L. Validžić, Chainable and circularly chainable semicomputable sets in computable topological spaces, Arch. Math. Logic 58 (2019), 885–897.
MathSciNet
CrossRef
-
Z. Iljazović, Chainable and circularly chainable co-r.e. sets in computable metric spaces, J.UCS 15 (2009), 1206–1235.
MathSciNet
-
Z. Iljazović, Compact manifolds with computable boundaries, Log. Methods Comput. Sci. 9 (2013), no. 4, 4:19, 22 pp.
MathSciNet
CrossRef
-
Z. Iljazović and M. Jelić, Computable approximations of a chainable continuum with a computable endpoint, Arch. Math. Logic 63 (2024), 181–201.
MathSciNet
CrossRef
-
Z. Iljazović and B. Pažek, Computable intersection points, Computability 7 (2018), 57–99.
MathSciNet
CrossRef
-
Z. Iljazović and I. Sušić, Semicomputable manifolds in computable topological spaces, J. Complexity 45 (2018), 83–114.
MathSciNet
CrossRef
-
T. Kihara, Incomputability of simply connected planar continua, Computability 1 (2012), 131–152.
MathSciNet
CrossRef
-
J. S. Miller, Effectiveness for embedded spheres and balls, Electronic Notes in Theoretical Computer Science 66 (2002), 127–138.
CrossRef
-
S. B. Nadler, Continuum theory, Marcel Dekker, New York, 1992.
MathSciNet
-
M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics, Springer, Berlin, 1989.
MathSciNet
CrossRef
-
E. Specker, Der Satz vom Maximum in der rekursiven Analysis, in: A. Heyting (ed.), Constructivity in Mathematics, North Holland Publ. Comp., Amsterdam, 1959, pp. 254–265.
MathSciNet
-
K. Weihrauch, Computability on computable metric spaces, Theoret. Comput. Sci. 113 (1993), 191–210.
MathSciNet
CrossRef
-
K. Weihrauch, Computable Analysis, Springer, Berlin, 2000.
MathSciNet
CrossRef
Rad HAZU Home Page