Rad HAZU, Matematičke znanosti, Vol. 30 (2026), 1-34. \( \)

COMPUTABLE SUBCONTINUA OF CIRCULARLY CHAINABLE CONTINUA

David Tarandek

Faculty of Architecture, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:david.tarandek@gmail.com


Abstract.   This paper explores, in computable metric spaces, circularly chainable continua which are not chainable. Given such a continuum \(K\), if we endow it with semicomputability, its computability follows. Conditions under which semicomputability implies computability, typically topological, are extensively studied in the literature. When these conditions are not satisfied, it is natural to explore approximate approaches. In this article we investigate specific computable subcontinua of \(K\). The main result establishes that, given two points on a semicomputable, circularly chainable, but non-chainable continuum \( K \), one can approximate them by computable points such that there exists a computable subcontinuum connecting these approximations. As a consequence, given disjoint computably enumerable open sets \( U \) and \( V \) intersected by \(K\), the intersection of \( K \) with the complement of their union necessarily contains a computable point, provided that this intersection is totally disconnected.

2020 Mathematics Subject Classification.   03D78

Key words and phrases.   Computable metric space, circularly chainable continuum, semicomputable set, computable set


Full text (PDF) (free access)

https://doi.org/10.21857/y54jof5x0m


References:

  1. D. E. Amir and M. Hoyrup, Strong computable type, Computability 12 (2023), 227–269.
    MathSciNet    CrossRef

  2. C. E. Burgess, Chainable continua and indecomposability, Pacific J. Math. 9 (1959), 653–659.
    MathSciNet

  3. V. Čačić, M. Horvat and Z. Iljazović, Computable subcontinua of semicomputable chainable Hausdorff continua, Theoret. Comput. Sci. 892 (2021), 155–169.
    MathSciNet    CrossRef

  4. C. O. Christenson and W. L. Voxman, Aspects of Topology, Marcel Dekker, New York, 1977.
    MathSciNet

  5. E. Čičković, Z. Iljazović and L. Validžić, Chainable and circularly chainable semicomputable sets in computable topological spaces, Arch. Math. Logic 58 (2019), 885–897.
    MathSciNet    CrossRef

  6. Z. Iljazović, Chainable and circularly chainable co-r.e. sets in computable metric spaces, J.UCS 15 (2009), 1206–1235.
    MathSciNet

  7. Z. Iljazović, Compact manifolds with computable boundaries, Log. Methods Comput. Sci. 9 (2013), no. 4, 4:19, 22 pp.
    MathSciNet    CrossRef

  8. Z. Iljazović and M. Jelić, Computable approximations of a chainable continuum with a computable endpoint, Arch. Math. Logic 63 (2024), 181–201.
    MathSciNet    CrossRef

  9. Z. Iljazović and B. Pažek, Computable intersection points, Computability 7 (2018), 57–99.
    MathSciNet    CrossRef

  10. Z. Iljazović and I. Sušić, Semicomputable manifolds in computable topological spaces, J. Complexity 45 (2018), 83–114.
    MathSciNet    CrossRef

  11. T. Kihara, Incomputability of simply connected planar continua, Computability 1 (2012), 131–152.
    MathSciNet    CrossRef

  12. J. S. Miller, Effectiveness for embedded spheres and balls, Electronic Notes in Theoretical Computer Science 66 (2002), 127–138.
    CrossRef

  13. S. B. Nadler, Continuum theory, Marcel Dekker, New York, 1992.
    MathSciNet

  14. M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics, Springer, Berlin, 1989.
    MathSciNet    CrossRef

  15. E. Specker, Der Satz vom Maximum in der rekursiven Analysis, in: A. Heyting (ed.), Constructivity in Mathematics, North Holland Publ. Comp., Amsterdam, 1959, pp. 254–265.
    MathSciNet

  16. K. Weihrauch, Computability on computable metric spaces, Theoret. Comput. Sci. 113 (1993), 191–210.
    MathSciNet    CrossRef

  17. K. Weihrauch, Computable Analysis, Springer, Berlin, 2000.
    MathSciNet    CrossRef

Rad HAZU Home Page