Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 329-345.
ERROR ESTIMATES FOR AN EFFECTIVE MODEL FOR THE INTERACTION BETWEEN A THIN FLUID FILM AND
AN ELASTIC PLATE
Andrijana Ćurković
Faculty of Science, University of Split, 21000 Split, Croatia
e-mail: andrijana@pmfst.hr
Abstract. The non-steady flow of an incompressible fluid in a thin
rectangle domain with an elastic plate as the upper part of the boundary
is studied. The flow is modeled by the Stokes equations and governed by
a pressure drop and an external force. Error estimates are obtained for the
approximation by an effective model derived by studying the limiting case
when the thickness of the fluid domain tends to zero.
2020 Mathematics Subject Classification.
74F10, 76D07, 76M45, 41A60.
Key words and phrases. Fluid-structure interaction, Stokes equations, elastic plate,
error estimates.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/ygjwrc27zy
References:
- G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolichyperbolic
fluid-structure interactive system, Georgian Math. J. 15 (2008), 403-437.
MathSciNet
- M. Bukal and B. Muha, Rigorous derivation of a linear sixth-order thin-film equation
as a reduced model for thin fluid-thin structure interaction problems, Appl. Math.
Optim. 84 (2021), 2245-2288.
MathSciNet
CrossRef
- A. Ćurković and E. Marušić-Paloka, Existence and uniqueness of solution for fluid-plate
interaction problem, Appl. Anal. 95 (2016), 715-730.
MathSciNet
CrossRef
- A. Ćurković and E. Marušić-Paloka, Asymptotic analysis of a thin fluid layer-elastic
plate interaction problem, Appl. Anal. 98 (2019), 2118-2143.
MathSciNet
CrossRef
- C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous
fluid with an elastic plate, SIAM J. Numer. Anal. 40 (2008), 716-737.
MathSciNet
CrossRef
- C. Grandmont, M. Lukáčová-Medvid'ová and Š. Nečasová,
Mathematical and numerical
analysis of some FSI problems, in: Fluid-Structure Interaction and Biomedical
Applications (eds. T. Bodnár, G. Galdi and Š. Nečasová), Advances in Mathematical
Fluid Mechanics. Birkhäuser, Basel, 2014, pp. 1-77.
MathSciNet
CrossRef
- A. E. Hosoi and L. Mahadevan, Peeling, healing and bursting in a lubricated elastic
sheet, Phys. Rev. Lett. 93 (2004), 137802
CrossRef
- G. Panasenko and P. Konstantin, Asymptotic analysis of the non-steady Navier-Stokes
equations in a tube structure. I. The case without boundary-layer-in-time, Nonlinear
Anal. Theory Methods Appl. 122 (2015), 125-168.
MathSciNet
CrossRef
- G. P. Panasenko and R. Stavre, Asymptotic analysis of a periodic flow in a thin channel
with visco-elastic wall, J. Math. Pures Appl. (9) 85 (2006), 558-579.
MathSciNet
CrossRef
- G. P. Panasenko and R. Stavre, Asymptotic analysis of a viscous fluid-thin plate interaction:
Periodic flow, Math. Models Methods Appl. Sci. 24 (2014), 1781-1822.
MathSciNet
CrossRef
- G. P. Panasenko and R. Stavre, Viscous fluid-thin elastic plate interaction: asymptotic
analysis with respect to the rigidity and density of the plate, Appl. Math. Optim. 81 (2020), 141-194.
MathSciNet
CrossRef
Rad HAZU Home Page