Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 329-345.

ERROR ESTIMATES FOR AN EFFECTIVE MODEL FOR THE INTERACTION BETWEEN A THIN FLUID FILM AND AN ELASTIC PLATE

Andrijana Ćurković

Faculty of Science, University of Split, 21000 Split, Croatia
e-mail: andrijana@pmfst.hr


Abstract.   The non-steady flow of an incompressible fluid in a thin rectangle domain with an elastic plate as the upper part of the boundary is studied. The flow is modeled by the Stokes equations and governed by a pressure drop and an external force. Error estimates are obtained for the approximation by an effective model derived by studying the limiting case when the thickness of the fluid domain tends to zero.

2020 Mathematics Subject Classification.   74F10, 76D07, 76M45, 41A60.

Key words and phrases.   Fluid-structure interaction, Stokes equations, elastic plate, error estimates.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/ygjwrc27zy


References:

  1. G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolichyperbolic fluid-structure interactive system, Georgian Math. J. 15 (2008), 403-437.
    MathSciNet

  2. M. Bukal and B. Muha, Rigorous derivation of a linear sixth-order thin-film equation as a reduced model for thin fluid-thin structure interaction problems, Appl. Math. Optim. 84 (2021), 2245-2288.
    MathSciNet     CrossRef

  3. A. Ćurković and E. Marušić-Paloka, Existence and uniqueness of solution for fluid-plate interaction problem, Appl. Anal. 95 (2016), 715-730.
    MathSciNet     CrossRef

  4. A. Ćurković and E. Marušić-Paloka, Asymptotic analysis of a thin fluid layer-elastic plate interaction problem, Appl. Anal. 98 (2019), 2118-2143.
    MathSciNet     CrossRef

  5. C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Numer. Anal. 40 (2008), 716-737.
    MathSciNet     CrossRef

  6. C. Grandmont, M. Lukáčová-Medvid'ová and Š. Nečasová, Mathematical and numerical analysis of some FSI problems, in: Fluid-Structure Interaction and Biomedical Applications (eds. T. Bodnár, G. Galdi and Š. Nečasová), Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel, 2014, pp. 1-77.
    MathSciNet     CrossRef

  7. A. E. Hosoi and L. Mahadevan, Peeling, healing and bursting in a lubricated elastic sheet, Phys. Rev. Lett. 93 (2004), 137802
    CrossRef

  8. G. Panasenko and P. Konstantin, Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without boundary-layer-in-time, Nonlinear Anal. Theory Methods Appl. 122 (2015), 125-168.
    MathSciNet     CrossRef

  9. G. P. Panasenko and R. Stavre, Asymptotic analysis of a periodic flow in a thin channel with visco-elastic wall, J. Math. Pures Appl. (9) 85 (2006), 558-579.
    MathSciNet     CrossRef

  10. G. P. Panasenko and R. Stavre, Asymptotic analysis of a viscous fluid-thin plate interaction: Periodic flow, Math. Models Methods Appl. Sci. 24 (2014), 1781-1822.
    MathSciNet     CrossRef

  11. G. P. Panasenko and R. Stavre, Viscous fluid-thin elastic plate interaction: asymptotic analysis with respect to the rigidity and density of the plate, Appl. Math. Optim. 81 (2020), 141-194.
    MathSciNet     CrossRef


Rad HAZU Home Page