Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 299-318.
CHARACTERIZING STRONG INFINITE-DIMENSION, WEAK INFINITE-DIMENSION, AND DIMENSION IN INVERSE SYSTEMS
Matthew Lynam and Leonard R. Rubin
Department of Mathematics, East Central University,Ada, Oklahoma 74820, USA
e-mail: mlynam@ecok.edu
Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019, USA
e-mail: lrubin@ou.edu
Abstract. We present internal characterizations for an inverse
system of compact Hausdorff spaces that show when its limit will be
strongly infinite-dimensional, weakly infinite-dimensional, or have its dimension
dim ∈ N≥ 0. The technique involves essential families.
2020 Mathematics Subject Classification.
54F45.
Key words and phrases. Dimension, essential family, inverse system, strong infinite-dimension,
weak infinite-dimension.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/y54jof4wpm
References:
- R. Engelking, General Topology, PWN-Polish Scientific Publishers, Warsaw, 1977.
MathSciNet
- L. Rubin, R. Schori and J. Walsh, New dimension-theory techniques for constructing
infinite-dimensional examples, General Topology Appl. 10 (1979), 93-103.
MathSciNet
CrossRef
- L. Rubin, Hereditarily strongly infinite-dimensional spaces, Michigan Math. J. 27
(1980), 65-73.
MathSciNet
CrossRef
- L. Rubin, Noncompact hereditarily strongly infinite dimensional spaces, Proc.
Amer. Math. Soc. 79 (1980), 153-154.
MathSciNet
CrossRef
- L. Rubin, Totally disconnected spaces and infinite cohomological dimension, Topology
Proc. 7 (1982), 157-166.
MathSciNet
- L. Rubin, More compacta of infinite cohomological dimension, Contemp. Math.
44 (1985), 221-226.
MathSciNet
CrossRef
- K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics,
Springer, Tokyo, 2013.
MathSciNet
CrossRef
- J. Walsh, Infinite-dimensional compacta containing no n-dimensional (n ≥ 1)
subsets, Topology 18 (1979), 91-95.
MathSciNet
CrossRef
Rad HAZU Home Page