Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 283-297.
A HUREWICZ-TYPE FORMULA FOR ASYMPTOTIC-DIMENSION-LOWERING SYMMETRIC QUASIMORPHISMS OF COUNTABLE APPROXIMATE
GROUPS
Vera Tonić
Faculty of Mathematics, University of Rijeka, 51 000 Rijeka, Croatia
e-mail: vera.tonic@math.uniri.hr
Abstract. A well-known Hurewicz-type formula for asymptotic-dimension-lowering group homomorphisms,
due to A. Dranishnikov and J. Smith, states that if f : G → H is a group homomorphism,
then asdim G ≤ asdim H + asdim (ker f). In this paper we establish a similar formula
for certain quasimorphisms of countable approximate groups: if (Ξ, Ξ∞)
and (Λ, Λ∞) are countable approximate groups and if
f : (Ξ, Ξ∞) →
(Λ, Λ∞) is a symmetric unital quasimorphism,
we show that asdim Ξ ≤ asdim Λ +
asdim (f -1(D(f))), where D(f) is the defect set of f.
2020 Mathematics Subject Classification.
Primary: 51F30, 20F69; Secondary: 20N99.
Key words and phrases. Asymptotic dimension, approximate group, quasimorphism.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/yvjrdcdjly
References:
- G. Bell and A. Dranishnikov, On asymptotic dimension of groups, Algebr. Geom.
Topol. 1 (2001), 57-71.
MathSciNet
CrossRef
- G. Bell and A. Dranishnikov, A Hurewicz-type theorem for asymptotic dimension and
applications to geometric group theory, Trans. Amer. Math. Soc. 358 (2006), 4749-4764.
MathSciNet
CrossRef
- G. Bell and A. Dranishnikov, Asymptotic dimension, Topology Appl. 155 (2008),
1265-1296.
MathSciNet
CrossRef
- N. Brodskiy, J. Dydak, M. Levin and A. Mitra, A Hurewicz theorem for the Assouad-Nagata
dimension, J. Lond. Math. Soc. (2) 77 (2008), 741-756.
MathSciNet
CrossRef
- N. Brooks, Some remarks on bounded cohomology, in: Riemann surfaces and related
topics: Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Stud. 97,
Princeton Univ. Press, Princeton, NJ, 1981, pp. 53-63.
MathSciNet
- M. Brandenbursky and M. Verbitsky, Non-commutative Barge-Ghys quasimorphisms,
Int. Math. Res. Not. IMRN 2024 (2024), no. 15, 11135-11158.
MathSciNet
CrossRef
- Y. Cornulier and P. de la Harpe, Metric geometry of locally compact groups, EMS
Tracts in Mathematics 25, European Mathematical Society (EMS), Zürich, 2016.
MathSciNet
CrossRef
- M. Cordes, T. Hartnick and V. Tonić, Foundations of geometric approximate group
theory, preprint, 2024, arxiv:2012.15303, to appear in Mem. Amer. Math. Soc.
- A. Dranishnikov and J. Smith, Asymptotic dimension of discrete groups, Fund. Math.
189 (2006), 27-34.
MathSciNet
CrossRef
- R. Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Mathematics
10, Heldermann Verlag, Lemgo, 1995.
MathSciNet
- K. Fujiwara and M. Kapovich, On quasihomomorphisms with noncommutative targets,
Geom. Funct. Anal. 26 (2016), 478-519.
MathSciNet
CrossRef
- T. Hartnick and V. Tonić, Hurewicz and Dranishnikov-Smith theorems for asymptotic
dimension of countable approximate groups, Topology Appl. 349 (2024), Paper No.
108905, 16 pp.
MathSciNet
CrossRef
- N. Heuer, Low-dimensional bounded cohomology and extensions of groups, Math.
Scand. 126 (2020), 5-31.
MathSciNet
CrossRef
- T. Tao, Product set estimates for non-commutative groups, Combinatorica 28 (2008),
547-594.
MathSciNet
CrossRef
- S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and
Applied Mathematics 8, Interscience Publishers, New York-London, 1960.
MathSciNet
Rad HAZU Home Page