Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 283-297.

A HUREWICZ-TYPE FORMULA FOR ASYMPTOTIC-DIMENSION-LOWERING SYMMETRIC QUASIMORPHISMS OF COUNTABLE APPROXIMATE GROUPS

Vera Tonić

Faculty of Mathematics, University of Rijeka, 51 000 Rijeka, Croatia
e-mail: vera.tonic@math.uniri.hr


Abstract.   A well-known Hurewicz-type formula for asymptotic-dimension-lowering group homomorphisms, due to A. Dranishnikov and J. Smith, states that if f : GH is a group homomorphism, then asdim G ≤ asdim H + asdim (ker f). In this paper we establish a similar formula for certain quasimorphisms of countable approximate groups: if (Ξ, Ξ) and (Λ, Λ) are countable approximate groups and if f : (Ξ, Ξ) → (Λ, Λ) is a symmetric unital quasimorphism, we show that asdim Ξ ≤ asdim Λ + asdim (f -1(D(f))), where D(f) is the defect set of f.

2020 Mathematics Subject Classification.   Primary: 51F30, 20F69; Secondary: 20N99.

Key words and phrases.   Asymptotic dimension, approximate group, quasimorphism.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/yvjrdcdjly


References:

  1. G. Bell and A. Dranishnikov, On asymptotic dimension of groups, Algebr. Geom. Topol. 1 (2001), 57-71.
    MathSciNet     CrossRef

  2. G. Bell and A. Dranishnikov, A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory, Trans. Amer. Math. Soc. 358 (2006), 4749-4764.
    MathSciNet     CrossRef

  3. G. Bell and A. Dranishnikov, Asymptotic dimension, Topology Appl. 155 (2008), 1265-1296.
    MathSciNet     CrossRef

  4. N. Brodskiy, J. Dydak, M. Levin and A. Mitra, A Hurewicz theorem for the Assouad-Nagata dimension, J. Lond. Math. Soc. (2) 77 (2008), 741-756.
    MathSciNet     CrossRef

  5. N. Brooks, Some remarks on bounded cohomology, in: Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, NJ, 1981, pp. 53-63.
    MathSciNet

  6. M. Brandenbursky and M. Verbitsky, Non-commutative Barge-Ghys quasimorphisms, Int. Math. Res. Not. IMRN 2024 (2024), no. 15, 11135-11158.
    MathSciNet     CrossRef

  7. Y. Cornulier and P. de la Harpe, Metric geometry of locally compact groups, EMS Tracts in Mathematics 25, European Mathematical Society (EMS), Zürich, 2016.
    MathSciNet     CrossRef

  8. M. Cordes, T. Hartnick and V. Tonić, Foundations of geometric approximate group theory, preprint, 2024, arxiv:2012.15303, to appear in Mem. Amer. Math. Soc.

  9. A. Dranishnikov and J. Smith, Asymptotic dimension of discrete groups, Fund. Math. 189 (2006), 27-34.
    MathSciNet     CrossRef

  10. R. Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Mathematics 10, Heldermann Verlag, Lemgo, 1995.
    MathSciNet

  11. K. Fujiwara and M. Kapovich, On quasihomomorphisms with noncommutative targets, Geom. Funct. Anal. 26 (2016), 478-519.
    MathSciNet     CrossRef

  12. T. Hartnick and V. Tonić, Hurewicz and Dranishnikov-Smith theorems for asymptotic dimension of countable approximate groups, Topology Appl. 349 (2024), Paper No. 108905, 16 pp.
    MathSciNet     CrossRef

  13. N. Heuer, Low-dimensional bounded cohomology and extensions of groups, Math. Scand. 126 (2020), 5-31.
    MathSciNet     CrossRef

  14. T. Tao, Product set estimates for non-commutative groups, Combinatorica 28 (2008), 547-594.
    MathSciNet     CrossRef

  15. S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics 8, Interscience Publishers, New York-London, 1960.
    MathSciNet


Rad HAZU Home Page