Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 261-281.

AUXILIARY PRINCIPLE TECHNIQUE FOR SOLVING TRIFUNCTION HARMONIC VARIATIONAL INEQUALITIES

Muhammad Aslam Noor and Khalida Inayat Noor

Mathematics, COMSATS University Islamabad, Islamabad, Pakistan
e-mail: noormaslam@gmail.com
e-mail: khalidan@gmail.com


Abstract.   In this paper, we introduce and investigate some new classes of trifunction harmonic variational inequalities. Several important new problems are obtained as special cases. Some new harmonic Bregman distance functions are derived for the Shannon entropy and Burg entropy harmonic convex functions. The auxiliary principle technique involving the harmonic Bregman distance function is applied to suggest and analyze some hybrid inertial iterative methods for solving the trifunction harmonic variational inequality. The convergence analysis of these iterative methods is also considered under some mild conditions. Some special cases are also pointed out. Results proved in this paper can be viewed as a refinement and improvement of the known results.

2020 Mathematics Subject Classification.   49J40, 90C33, 26D15, 26A51.

Key words and phrases.   Harmonic variational inequalities, harmonic convex functions, auxiliary principle, proximal methods, convergence.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/yrvgqt31w9


References:

  1. A. A. AlShejari, M. A. Noor and K. I. Noor, Inertial algorithms for bifunction harmonic variational inequalities, Int. J. Anal. Appl. 22 (2024), ID-46, 19 pp.
    CrossRef

  2. F. Al-Azemi and O. Calin, Asian options with harmonic average, Appl. Math. Inf. Sci. 9 (2015), 1-9.
    MathSciNet     CrossRef

  3. F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim. 14 (2003), 773-782.
    MathSciNet     CrossRef

  4. G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007), 1294-1308.
    MathSciNet     CrossRef

  5. L. M. Bregman, The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Mathematical Physics 7(3) (1967), 200-217.
    CrossRef

  6. F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983.
    MathSciNet

  7. R. W. Cottle, J. S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston 1992.
    MathSciNet

  8. G. Cristescu and L. Lupsa, Non-Connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht, Holland, 2002.
    MathSciNet     CrossRef

  9. G. Cristescu and G. Mihail, Detecting the non-convex sets with Youness and Noor types convexities, Bul. Stiint. Univ. Politeh. Timis. Ser. Mat. Fiz. 55(69) (2010), 20-27.
    MathSciNet

  10. G. Cristescu and G. Mihail, Shape properties of Noor's g-convex sets, in: Proceedings of the Twelfth Symposium of Mathematics and its Applications, Ed. Politeh., Timisoara, 2010, pp. 91-99.
    MathSciNet

  11. F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, Kluwer Academic, Dordrecht, Holland, 2001.
    MathSciNet

  12. R. Glowinski, J.-L. Lions and R. Trémolières, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, Holland, 1981.
    MathSciNet

  13. S. Karamardian, Generalized complementarity problems, J. Opt. Theory Appl. 8 (1971), 161-168
    MathSciNet     CrossRef

  14. A. G. Khan, M. A. Noor, M. Pervez and K. I. Noor, Relative reciprocal variational inequalities, Honam J. Math. 40 (2018), 509-519.
    MathSciNet

  15. J.-L. Lions and G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math. 20 (1967), 493-519.
    MathSciNet     CrossRef

  16. O. L. Mangasarian and R. R. Meyer, Absolute value equations, Linear Algebra Appl. 419 (2006), 359-367.
    MathSciNet     CrossRef

  17. B. Martinet, Regularization d'inequations variationnelles par approximation successive, Rev. Francaise Informat. Recherche Opérationnelle 4 (1970), 154-159.
    MathSciNet

  18. C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer, New York, 2018.
    MathSciNet     CrossRef

  19. M. A. Noor, On Variational Inequalities, PhD Thesis, Brunel University, London, 1975.

  20. M. A. Noor, Fixed point approach for complementarity problems, J. Math. Anal. Appl. 133 (1988), 437-448.
    MathSciNet     CrossRef

  21. M. A. Noor, General variational inequalities, Appl. Math. Lett. 1 (1988), 119-122.
    MathSciNet     CrossRef

  22. M. A. Noor, General algorithm for variational inequalities, J. Optim. Theory Appl. 73 (1992), 409-413.
    MathSciNet     CrossRef

  23. M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217-229.
    MathSciNet     CrossRef

  24. M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 152 (2004), 199-277.
    MathSciNet     CrossRef

  25. M. A. Noor, Fundamentals of mixed quasi variational inequalities, Inter. J. Pure. Appl. Math. 15 (2004), 137-258.
    MathSciNet

  26. M. A. Noor, Hemivariational inequalities, J. Appl. Math. Comput. 17 (2005), 59-72.
    MathSciNet     CrossRef

  27. M. A. Noor, Fundamentals of equilibrium problems, Math. Inequal. Appl. 9 (2006), 529-66.
    MathSciNet     CrossRef

  28. M. A. Noor, Differentiable non-convex functions and general variational inequalities, Appl. Math. Comput. 199 (2008), 623-630.
    MathSciNet     CrossRef

  29. M. A. Noor, Extended general variational inequalities, Appl. Math. Lett. 22 (2009), 182-186.
    MathSciNet     CrossRef

  30. M. A. Noor and K. I. Noor, From representation theorems to variational inequalities, in: Computational Mathematics and Variational Analysis (eds. N. Daras and Th. M. Rassias), Springer Optim. Appl. 159, Springer, Cham, 2020, pp. 261-277.
    MathSciNet     CrossRef

  31. M. A. Noor and K. I. Noor, General biconvex functions and bivariational inequalities, Numer. Algebra Control Optim. 13 (2023), 11-27.
    MathSciNet     CrossRef

  32. M. A. Noor and K. I. Noor, Harmonic variational inequalities, Appl. Math. Inform. Sci. 10 (2016), 1811-1814.
    CrossRef

  33. M. A. Noor and K. I. Noor, Some implicit methods for solving harmonic variational inequalities, Int. J. Anal. Appl. 12 (2016), 10-14.

  34. M. A. Noor and K. I. Noor, Some characterizations of exponentially harmonic convex functions, J. Adv. Math. Stud. 13 (2020), 142-152.
    MathSciNet

  35. M. A. Noor and K. I. Noor, Some new classes of harmonic hemivariational inequalities, Earthline J. Math. Sci. 13 (2023), 473-495.
    CrossRef

  36. M. A. Noor and K. I. Noor, Some novel aspects of general variational inequalities and nonconvex optimization, preprint, 2023.

  37. M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities for differentiable p-harmonic convex functions, Filomat 31 (2017), 6575-6584.
    MathSciNet     CrossRef

  38. M. A. Noor, A. G. Khan, A. Pervaiz and K. I. Noor, Solution of harmonic variational inequalities by two-step iterative scheme, Turk. J. Inequal. 1 (2017), 46-52.

  39. M. A. Noor and K. I. Noor, Higher order generalized variational inequalities and nonconvex optimization, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 85 (2023), 77-88.
    MathSciNet

  40. M. A. Noor, K. I. Noor and M. U. Awan, Exponentially harmonic general variational inequalities, Montes Taurus J. Pure Appl. Math. 6(3) (2024), 110-118.

  41. M. A. Noor, K. I. Noor and S. Iftikhar, Some characterizations of harmonic convex functions, Int. J. Anal. Appl. 15 (2017), 179-187.
    CrossRef

  42. M. A. Noor, K. I. Noor, M. U. Awan and S. Costache, Some integral inequalities for harmonically h-convex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 77 (2015), 5-16.
    MathSciNet

  43. M. A. Noor, K. I. Noor, M. U. Awan and M. Th. Rassias, Nonlinear harmonic variational inequalities and harmonic convex functions, in: Global Optimization, Computation, Approximation and Applications (eds. P. M. Pardalos and Th. M. Rassias), World Scientific Publishers, Singapure, 2024.
    CrossRef

  44. M. A. Noor, K. I. Noor, A. Hamdi and E. H. El-Shemas, On difference of two monotone operators, Optim. Lett. 3 (2009), 329-335.
    MathSciNet     CrossRef

  45. M. A. Noor, K. I. Noor and M. Th. Rassias, New trends in general variational inequalities, Acta Appl. Math. 170 (2020), 981-1064.
    MathSciNet     CrossRef

  46. M. A. Noor, K. I. Noor and Th. M. Rassias, Some aspects of variational inequalities, J. Comput. Appl. Math. 47 (1993), 285-312.
    MathSciNet     CrossRef

  47. M. A. Noor and W. Oettli, On general nonlinear complementarity problems and quasi equilibria, Matematiche (Catania) 49 (1994), 313-331.
    MathSciNet

  48. P. D. Panagiotopoulos, Nonconvex energy functions, hemivariational inequalities and substationary principles, Acta Mech. 48 (1983), 111-130.
    MathSciNet     CrossRef

  49. P. D. Panagiotopolous, Hemivariational inequalities. Applications to Mechanics and Engineering, Springer Verlag, Berlin, 1993.
    MathSciNet     CrossRef

  50. M. Patriksson, Nonlinear Programming and Variational Inequalities. A Unified Approach, Kluwer Academic Publishers, Dordrecht, 1999.
    MathSciNet     CrossRef

  51. J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions and Statistical Applications, Mathematics in Science and Engineering 187, Academic Press, Boston, 1992.
    MathSciNet

  52. B. T. Polyak, Some methods of speeding up the convergence of iterative methods, USSR Comput. Math. Math. Phys. 4 (1964), 1-17.
    MathSciNet

  53. C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 379-423, 623-656.
    MathSciNet     CrossRef

  54. G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.
    MathSciNet

  55. D. L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim. 6 (1996), 714-726.
    MathSciNet     CrossRef


Rad HAZU Home Page