Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 261-281.
AUXILIARY PRINCIPLE TECHNIQUE FOR SOLVING TRIFUNCTION HARMONIC VARIATIONAL INEQUALITIES
Muhammad Aslam Noor and Khalida Inayat Noor
Mathematics, COMSATS University Islamabad, Islamabad, Pakistan
e-mail: noormaslam@gmail.com
e-mail: khalidan@gmail.com
Abstract. In this paper, we introduce and investigate some new
classes of trifunction harmonic variational inequalities. Several important
new problems are obtained as special cases. Some new harmonic Bregman
distance functions are derived for the Shannon entropy and Burg entropy
harmonic convex functions. The auxiliary principle technique involving
the harmonic Bregman distance function is applied to suggest and analyze
some hybrid inertial iterative methods for solving the trifunction harmonic
variational inequality. The convergence analysis of these iterative methods
is also considered under some mild conditions. Some special cases are also
pointed out. Results proved in this paper can be viewed as a refinement
and improvement of the known results.
2020 Mathematics Subject Classification.
49J40, 90C33, 26D15, 26A51.
Key words and phrases. Harmonic variational inequalities, harmonic convex functions,
auxiliary principle, proximal methods, convergence.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/yrvgqt31w9
References:
- A. A. AlShejari, M. A. Noor and K. I. Noor, Inertial algorithms for bifunction harmonic
variational inequalities, Int. J. Anal. Appl. 22 (2024), ID-46, 19 pp.
CrossRef
- F. Al-Azemi and O. Calin, Asian options with harmonic average, Appl. Math. Inf.
Sci. 9 (2015), 1-9.
MathSciNet
CrossRef
- F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point
algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim. 14 (2003),
773-782.
MathSciNet
CrossRef
- G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and
inequalities, J. Math. Anal. Appl. 335 (2007), 1294-1308.
MathSciNet
CrossRef
- L. M. Bregman, The relaxation method for finding the common point of convex sets
and its application to the solution of problems in convex programming, USSR Comput.
Math. Mathematical Physics 7(3) (1967), 200-217.
CrossRef
- F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York,
1983.
MathSciNet
- R. W. Cottle, J. S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston 1992.
MathSciNet
- G. Cristescu and L. Lupsa, Non-Connected Convexities and Applications, Kluwer Academic
Publishers, Dordrecht, Holland, 2002.
MathSciNet
CrossRef
- G. Cristescu and G. Mihail, Detecting the non-convex sets with Youness and Noor types
convexities, Bul. Stiint. Univ. Politeh. Timis. Ser. Mat. Fiz. 55(69) (2010), 20-27.
MathSciNet
- G. Cristescu and G. Mihail, Shape properties of Noor's g-convex sets, in: Proceedings of
the Twelfth Symposium of Mathematics and its Applications, Ed. Politeh., Timisoara,
2010, pp. 91-99.
MathSciNet
- F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium Problems: Nonsmooth Optimization
and Variational Inequality Models, Kluwer Academic, Dordrecht, Holland,
2001.
MathSciNet
- R. Glowinski, J.-L. Lions and R. Trémolières, Numerical Analysis of Variational Inequalities,
North-Holland, Amsterdam, Holland, 1981.
MathSciNet
- S. Karamardian, Generalized complementarity problems, J. Opt. Theory Appl. 8 (1971),
161-168
MathSciNet
CrossRef
- A. G. Khan, M. A. Noor, M. Pervez and K. I. Noor, Relative reciprocal variational
inequalities, Honam J. Math. 40 (2018), 509-519.
MathSciNet
- J.-L. Lions and G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math.
20 (1967), 493-519.
MathSciNet
CrossRef
- O. L. Mangasarian and R. R. Meyer, Absolute value equations, Linear Algebra Appl. 419
(2006), 359-367.
MathSciNet
CrossRef
- B. Martinet, Regularization d'inequations variationnelles par approximation successive,
Rev. Francaise Informat. Recherche Opérationnelle 4 (1970), 154-159.
MathSciNet
- C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer, New York, 2018.
MathSciNet
CrossRef
- M. A. Noor, On Variational Inequalities, PhD Thesis, Brunel University, London, 1975.
- M. A. Noor, Fixed point approach for complementarity problems, J. Math. Anal. Appl.
133 (1988), 437-448.
MathSciNet
CrossRef
- M. A. Noor, General variational inequalities, Appl. Math. Lett. 1 (1988), 119-122.
MathSciNet
CrossRef
- M. A. Noor, General algorithm for variational inequalities, J. Optim. Theory Appl. 73
(1992), 409-413.
MathSciNet
CrossRef
- M. A. Noor, New approximation schemes for general variational inequalities, J. Math.
Anal. Appl. 251 (2000), 217-229.
MathSciNet
CrossRef
- M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput.
152 (2004), 199-277.
MathSciNet
CrossRef
- M. A. Noor, Fundamentals of mixed quasi variational inequalities, Inter. J. Pure. Appl.
Math. 15 (2004), 137-258.
MathSciNet
- M. A. Noor, Hemivariational inequalities, J. Appl. Math. Comput. 17 (2005), 59-72.
MathSciNet
CrossRef
- M. A. Noor, Fundamentals of equilibrium problems, Math. Inequal. Appl. 9 (2006),
529-66.
MathSciNet
CrossRef
- M. A. Noor, Differentiable non-convex functions and general variational inequalities,
Appl. Math. Comput. 199 (2008), 623-630.
MathSciNet
CrossRef
- M. A. Noor, Extended general variational inequalities, Appl. Math. Lett. 22 (2009),
182-186.
MathSciNet
CrossRef
- M. A. Noor and K. I. Noor, From representation theorems to variational inequalities,
in: Computational Mathematics and Variational Analysis (eds. N. Daras and Th. M.
Rassias), Springer Optim. Appl. 159, Springer, Cham, 2020, pp. 261-277.
MathSciNet
CrossRef
- M. A. Noor and K. I. Noor, General biconvex functions and bivariational inequalities,
Numer. Algebra Control Optim. 13 (2023), 11-27.
MathSciNet
CrossRef
- M. A. Noor and K. I. Noor, Harmonic variational inequalities, Appl. Math. Inform.
Sci. 10 (2016), 1811-1814.
CrossRef
- M. A. Noor and K. I. Noor, Some implicit methods for solving harmonic variational inequalities,
Int. J. Anal. Appl. 12 (2016), 10-14.
- M. A. Noor and K. I. Noor, Some characterizations of exponentially harmonic convex
functions, J. Adv. Math. Stud. 13 (2020), 142-152.
MathSciNet
- M. A. Noor and K. I. Noor, Some new classes of harmonic hemivariational inequalities,
Earthline J. Math. Sci. 13 (2023), 473-495.
CrossRef
- M. A. Noor and K. I. Noor, Some novel aspects of general variational inequalities and
nonconvex optimization, preprint, 2023.
- M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities for differentiable p-harmonic
convex functions, Filomat 31 (2017), 6575-6584.
MathSciNet
CrossRef
- M. A. Noor, A. G. Khan, A. Pervaiz and K. I. Noor, Solution of harmonic variational
inequalities by two-step iterative scheme, Turk. J. Inequal. 1 (2017), 46-52.
- M. A. Noor and K. I. Noor, Higher order generalized variational inequalities and nonconvex
optimization, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 85
(2023), 77-88.
MathSciNet
- M. A. Noor, K. I. Noor and M. U. Awan, Exponentially harmonic general variational
inequalities, Montes Taurus J. Pure Appl. Math. 6(3) (2024), 110-118.
- M. A. Noor, K. I. Noor and S. Iftikhar, Some characterizations of harmonic convex
functions, Int. J. Anal. Appl. 15 (2017), 179-187.
CrossRef
- M. A. Noor, K. I. Noor, M. U. Awan and S. Costache, Some integral inequalities for
harmonically h-convex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl.
Math. Phys. 77 (2015), 5-16.
MathSciNet
- M. A. Noor, K. I. Noor, M. U. Awan and M. Th. Rassias, Nonlinear harmonic variational
inequalities and harmonic convex functions, in: Global Optimization, Computation,
Approximation and Applications (eds. P. M. Pardalos and Th. M. Rassias), World
Scientific Publishers, Singapure, 2024.
CrossRef
- M. A. Noor, K. I. Noor, A. Hamdi and E. H. El-Shemas, On difference of two monotone
operators, Optim. Lett. 3 (2009), 329-335.
MathSciNet
CrossRef
- M. A. Noor, K. I. Noor and M. Th. Rassias, New trends in general variational inequalities,
Acta Appl. Math. 170 (2020), 981-1064.
MathSciNet
CrossRef
- M. A. Noor, K. I. Noor and Th. M. Rassias, Some aspects of variational inequalities,
J. Comput. Appl. Math. 47 (1993), 285-312.
MathSciNet
CrossRef
- M. A. Noor and W. Oettli, On general nonlinear complementarity problems and quasi
equilibria, Matematiche (Catania) 49 (1994), 313-331.
MathSciNet
- P. D. Panagiotopoulos, Nonconvex energy functions, hemivariational inequalities and
substationary principles, Acta Mech. 48 (1983), 111-130.
MathSciNet
CrossRef
- P. D. Panagiotopolous, Hemivariational inequalities. Applications to Mechanics and
Engineering, Springer Verlag, Berlin, 1993.
MathSciNet
CrossRef
- M. Patriksson, Nonlinear Programming and Variational Inequalities. A Unified Approach,
Kluwer Academic Publishers, Dordrecht, 1999.
MathSciNet
CrossRef
- J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions and Statistical Applications,
Mathematics in Science and Engineering 187, Academic Press, Boston, 1992.
MathSciNet
- B. T. Polyak, Some methods of speeding up the convergence of iterative methods, USSR
Comput. Math. Math. Phys. 4 (1964), 1-17.
MathSciNet
- C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27
(1948), 379-423, 623-656.
MathSciNet
CrossRef
- G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad.
Sci. Paris 258 (1964), 4413-4416.
MathSciNet
- D. L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative
schemes for solving variational inequalities, SIAM J. Optim. 6 (1996), 714-726.
MathSciNet
CrossRef
Rad HAZU Home Page