Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 243-259.
OPTIMAL CONTROL OF A FRICTIONAL CONTACT PROBLEM FOR LOCKING MATERIALS
Rachid Guettaf and Arezki Touzaline
Laboratory of Dynamical systems, Faculty of Mathematics, University of Science and Technology Houari Boumediene,
BP 32 EL Alia, 16111, Algiers, Algeria
e-mail: ra_guettaf@univ-boumerdes.dz
e-mail: ttouzaline@yahoo.fr
Abstract. In this paper, we consider a bilateral contact with Tresca's
friction law between a locking material and a rigid foundation. The goal
is to study an optimal control problem which consists of leading the stress
tensor as close as possible to a given target, by acting with a control on the
boundary of the body. We state an optimal control problem that admits at
least one solution. We also introduce the penalized and regularized optimal
control problem for which we study the convergence when the penalization
and regularization parameter tends to zero.
2020 Mathematics Subject Classification.
49J20, 49J40, 74M10, 74M15.
Key words and phrases. Optimal control, variational inequalities, locking materials,
Tresca's friction law.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/m16wjcwzw9
References:
- A. Amassad, D. Chenais and C. Fabre, Optimal control of an elastic contact problem
involving Tresca friction law, Nonlinear Anal. 48 (2002), 1107-1135.
MathSciNet
CrossRef
- V. Barbu, Optimal Control of Variational Inequalities, Pitman Advanced Publishing,
Boston, 1984.
MathSciNet
- K. Bartosz and P. Kalita, Optimal control for a class of dynamic viscoelastic contact
problems with adhesion, Dynam. Systems Appl. 21 (2012), 269-292.
MathSciNet
- J. F. Bonnans and D. Tiba, Pontryagin's principle in the control of semilinear elliptic
variational inequalities, Appl. Math. Optim. 23 (1991) 299-312.
MathSciNet
CrossRef
- A. Capatina and C. Timofte, Boundary optimal control for quasistatic bilateral frictional
contact problems, Nonlinear Anal. 94 (2014), 84-99.
MathSciNet
CrossRef
- F. Demengel and P. Suquet, On locking materials, Acta Appl. Math. 6 (1986), 185-21.
MathSciNet
CrossRef
- F. Demengel, Déplacements à déformations bornées et champs de contrainte mesures,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 243-318.
MathSciNet
- Z. Denkowski, S. Migórski and A. Ochal, Optimal control for a class of mechanical
thermoviscoelastic frictional contact problems, Control Cybernet. 36 (2007), 611-632.
MathSciNet
- Z. Denkowski, S. Migórski and A. Ochal, A class of optimal control problems for
piezoelectric frictional contact models, Nonlinear Anal. Real World Appl. 12 (2011),
1883-1895.
MathSciNet
CrossRef
- G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Dunod,
Paris, 1972.
MathSciNet
- A. Friedman, Optimal control for variational inequalities, SIAM J. Control Optim. 24
(1986), 439-451.
MathSciNet
CrossRef
- S. J. Kimmerle and R. Moritz, Optimal control of an elastic tyre-damper system with
road contact, Proc. Appl. Math. Mech. 14 (2014), 875-876.
CrossRef
- J.-L. Lions, Controle optimal des systèmes gouvernés par des équations aux dérivées
partielles. Dunod, Paris, 1968.
MathSciNet
- A. Matei and S. Micu, Boundary optimal control for a frictional contact problem with
normal compliance, Appl. Math. Optim. 78 (2017), 379-401.
MathSciNet
CrossRef
- A. Matei and S. Micu, Boundary optimal control for nonlinear antiplane problems,
Nonlinear Anal. 74 (2011), 1641-1652.
MathSciNet
CrossRef
- R. Mignot, Controle dans les inéquations variationnelles elliptiques, J. Func. Anal. 22
(1976), 130-185.
MathSciNet
CrossRef
- F. Mignot and J.P. Puel, Optimal control in some variational inequalities, SIAM J.
Control Optim. 22 (1984), 466-476.
MathSciNet
CrossRef
- P. D. Panagiatopoulos, Inequality Problems in Mechanics and Applications,
Birkhäuser, Basel, 1985.
MathSciNet
CrossRef
- W. Prager, On ideal-locking materials, Trans. Soc. Rheol. 1 (1957), 169-175.
CrossRef
- W. Prager, Elastic solids of limited compressibility, Proc. Int. Congr. Appl. Mech.
Brussels 1956 (1956), 205-211.
MathSciNet
- W. Prager, On elastic, perfectly locking materials,
in: Applied Mechanics (ed. H. Görtler), Springer, Berlin, 1966.
CrossRef
- M. Sofonea, A. Benraouda and H. Hechaichi, Optimal control of a two-dimensional
contact problem, Appl. Anal. 97 (2018), 1281-1298.
MathSciNet
CrossRef
- M. Sofonea and A. Matei, Variational Inequalities with Applications. A Study of Antiplane
Frictional Contact Problems, Advances in Mechanics and Mathematics 18,
Springer, New York, 2009.
MathSciNet
- M. Sofonea and Y. B. Xiao, Boundary optimal control of a nonsmooth frictionless
contact problem, Comput. Math. Appl. 78 (2019), 152-165, .
MathSciNet
CrossRef
- R. Temam, Problèmes mathématiques en plasticité, Méthodes mathématiques pour
l'informatique, Gauthiers-Villars, Paris, 1983.
MathSciNet
- A. Touzaline, Optimal control of a frictional contact problem, Acta Math. Appl. Sin.
Engl. Ser. 31 (2015), 991-1000.
MathSciNet
CrossRef
- A. Touzaline, Study of an optimal control of a frictionless contact problem, An. Univ.
Oradea Fasc. Mat. 26 (2019), 105-115.
MathSciNet
Rad HAZU Home Page