Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 243-259.

OPTIMAL CONTROL OF A FRICTIONAL CONTACT PROBLEM FOR LOCKING MATERIALS

Rachid Guettaf and Arezki Touzaline

Laboratory of Dynamical systems, Faculty of Mathematics, University of Science and Technology Houari Boumediene, BP 32 EL Alia, 16111, Algiers, Algeria
e-mail: ra_guettaf@univ-boumerdes.dz
e-mail: ttouzaline@yahoo.fr


Abstract.   In this paper, we consider a bilateral contact with Tresca's friction law between a locking material and a rigid foundation. The goal is to study an optimal control problem which consists of leading the stress tensor as close as possible to a given target, by acting with a control on the boundary of the body. We state an optimal control problem that admits at least one solution. We also introduce the penalized and regularized optimal control problem for which we study the convergence when the penalization and regularization parameter tends to zero.

2020 Mathematics Subject Classification.   49J20, 49J40, 74M10, 74M15.

Key words and phrases.   Optimal control, variational inequalities, locking materials, Tresca's friction law.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/m16wjcwzw9


References:

  1. A. Amassad, D. Chenais and C. Fabre, Optimal control of an elastic contact problem involving Tresca friction law, Nonlinear Anal. 48 (2002), 1107-1135.
    MathSciNet     CrossRef

  2. V. Barbu, Optimal Control of Variational Inequalities, Pitman Advanced Publishing, Boston, 1984.
    MathSciNet

  3. K. Bartosz and P. Kalita, Optimal control for a class of dynamic viscoelastic contact problems with adhesion, Dynam. Systems Appl. 21 (2012), 269-292.
    MathSciNet

  4. J. F. Bonnans and D. Tiba, Pontryagin's principle in the control of semilinear elliptic variational inequalities, Appl. Math. Optim. 23 (1991) 299-312.
    MathSciNet     CrossRef

  5. A. Capatina and C. Timofte, Boundary optimal control for quasistatic bilateral frictional contact problems, Nonlinear Anal. 94 (2014), 84-99.
    MathSciNet     CrossRef

  6. F. Demengel and P. Suquet, On locking materials, Acta Appl. Math. 6 (1986), 185-21.
    MathSciNet     CrossRef

  7. F. Demengel, Déplacements à déformations bornées et champs de contrainte mesures, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 243-318.
    MathSciNet

  8. Z. Denkowski, S. Migórski and A. Ochal, Optimal control for a class of mechanical thermoviscoelastic frictional contact problems, Control Cybernet. 36 (2007), 611-632.
    MathSciNet

  9. Z. Denkowski, S. Migórski and A. Ochal, A class of optimal control problems for piezoelectric frictional contact models, Nonlinear Anal. Real World Appl. 12 (2011), 1883-1895.
    MathSciNet     CrossRef

  10. G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
    MathSciNet

  11. A. Friedman, Optimal control for variational inequalities, SIAM J. Control Optim. 24 (1986), 439-451.
    MathSciNet     CrossRef

  12. S. J. Kimmerle and R. Moritz, Optimal control of an elastic tyre-damper system with road contact, Proc. Appl. Math. Mech. 14 (2014), 875-876.
    CrossRef

  13. J.-L. Lions, Controle optimal des systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris, 1968.
    MathSciNet

  14. A. Matei and S. Micu, Boundary optimal control for a frictional contact problem with normal compliance, Appl. Math. Optim. 78 (2017), 379-401.
    MathSciNet     CrossRef

  15. A. Matei and S. Micu, Boundary optimal control for nonlinear antiplane problems, Nonlinear Anal. 74 (2011), 1641-1652.
    MathSciNet     CrossRef

  16. R. Mignot, Controle dans les inéquations variationnelles elliptiques, J. Func. Anal. 22 (1976), 130-185.
    MathSciNet     CrossRef

  17. F. Mignot and J.P. Puel, Optimal control in some variational inequalities, SIAM J. Control Optim. 22 (1984), 466-476.
    MathSciNet     CrossRef

  18. P. D. Panagiatopoulos, Inequality Problems in Mechanics and Applications, Birkhäuser, Basel, 1985.
    MathSciNet     CrossRef

  19. W. Prager, On ideal-locking materials, Trans. Soc. Rheol. 1 (1957), 169-175.
    CrossRef

  20. W. Prager, Elastic solids of limited compressibility, Proc. Int. Congr. Appl. Mech. Brussels 1956 (1956), 205-211.
    MathSciNet

  21. W. Prager, On elastic, perfectly locking materials, in: Applied Mechanics (ed. H. Görtler), Springer, Berlin, 1966.
    CrossRef

  22. M. Sofonea, A. Benraouda and H. Hechaichi, Optimal control of a two-dimensional contact problem, Appl. Anal. 97 (2018), 1281-1298.
    MathSciNet     CrossRef

  23. M. Sofonea and A. Matei, Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems, Advances in Mechanics and Mathematics 18, Springer, New York, 2009.
    MathSciNet

  24. M. Sofonea and Y. B. Xiao, Boundary optimal control of a nonsmooth frictionless contact problem, Comput. Math. Appl. 78 (2019), 152-165, .
    MathSciNet     CrossRef

  25. R. Temam, Problèmes mathématiques en plasticité, Méthodes mathématiques pour l'informatique, Gauthiers-Villars, Paris, 1983.
    MathSciNet

  26. A. Touzaline, Optimal control of a frictional contact problem, Acta Math. Appl. Sin. Engl. Ser. 31 (2015), 991-1000.
    MathSciNet     CrossRef

  27. A. Touzaline, Study of an optimal control of a frictionless contact problem, An. Univ. Oradea Fasc. Mat. 26 (2019), 105-115.
    MathSciNet


Rad HAZU Home Page