Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 231-241.

ASYMPTOTIC BEHAVIOUR OF THE QUASI-ARITHMETIC MEANS

Neven Elezović and Lenka Mihoković

Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia
e-mail: neven@element.hr
e-mail: lenka.mihokovic@fer.hr


Abstract.   In this paper we study the asymptotic behaviour of the quasi-arithmetic means Mφ, for large values of its arguments. We extend and simplify known results form the literature. Asymptotic expansions of these means are derived under very weak assumptions on a given function φ. The coefficients in the asymptotic expansions are defined by recursive formulas, and the general algorithms for their calculation are then demonstrated on some interesting examples of means.

2020 Mathematics Subject Classification.   41A60, 26E60.

Key words and phrases.   Asymptotic expansion, quasi-arithmetic mean, digamma function.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/ydkx2cvdg9


References:

  1. U. Abel and M. Ivan, A complete asymptotic expansion of power means, J. Math. Anal. Appl. 325 (2007), 554-559.
    MathSciNet     CrossRef

  2. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, vol 55, Washington, D.C., 1972.
    MathSciNet

  3. R. P. Boas and J. L. Brenner, The asymptotic behavior of inhomogeneous means, J. Math. Anal. Appl. 123 (1987), 262-264.
    MathSciNet     CrossRef

  4. T. Burić, Asymptotic analysis of iterative power means, J. Math. Anal. Appl. 433 (2016), 701-705.
    MathSciNet     CrossRef

  5. T. Burić and N. Elezović, Asymptotic expansion of the arithmetic-geometric mean and related inequalities, J. Math. Inequal. 9 (2015), 1181-1190.
    MathSciNet     CrossRef

  6. T. Burić and N. Elezović, Computation and analysis of the asymptotic expansions of the compound means, Appl. Math. Comput. 303 (2017), 48-54.
    MathSciNet     CrossRef

  7. T. Burić, N. Elezović and L. Mihoković, Expectations of large data means, J. Math. Inequal. 17 (2023), 403-418.
    MathSciNet     CrossRef

  8. C.-P. Chen, N. Elezović and L. Vukšić, Asymptotic formulae associated with the Wallis power function and digamma function, J. Class. Anal. 2 (2013), 151-166.
    MathSciNet     CrossRef

  9. N. Elezović, Asymptotic expansions of gamma and related functions, binomial coefficients, inequalities and means, J. Math. Inequal. 9 (2015), 1001-1054.
    MathSciNet     CrossRef

  10. N. Elezović, Asymptotic inequalities and comparison of classical means, J. Math. Inequal. 9 (2015), 177-196.
    MathSciNet     CrossRef

  11. N. Elezović and L. Mihoković, Asymptotic behavior of power means, Math. Inequal. Appl. 19 (2016), 1399-1412.
    MathSciNet     CrossRef

  12. N. Elezović and L. Vukšić, Asymptotic expansions and comparison of bivariate parameter means, Math. Inequal. Appl. 17 (2014), 1225-1244.
    MathSciNet     CrossRef

  13. N. Elezović and L. Vukšić, Asymptotic expansions of bivariate classical means and related inequalities, J. Math. Inequal. 8 (2014), 707-724.
    MathSciNet     CrossRef

  14. N. Elezović and L. Vukšić, Asymptotic expansions of integral means and applications to the ratio of gamma functions, Appl. Math. Comput. 235 (2014), 187-200.
    MathSciNet     CrossRef

  15. N. Elezović and L. Vukšić, Neuman-Sándor mean, asymptotic expansions and related inequalities, J. Math. Inequal. 9 (2015), 1337-1348.
    MathSciNet     CrossRef

  16. P. Gigante, On the asymptotic behaviour of φ-means, J. Math. Anal. Appl. 192 (1995), 915-919.
    MathSciNet     CrossRef

  17. L. Hoehn and I. Niven, Averages on the move, Math. Mag. 58 (1985), 151-156.
    MathSciNet     CrossRef


Rad HAZU Home Page