Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 207-220.

GENERALIZED HARDY-TYPE INEQUALITY VIA LIDSTONE INTERPOLATING POLYNOMIAL AND NEW GREEN FUNCTIONS

Dora Pokaz

Faculty of Civil Engineering, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: dora.pokaz@grad.unizg.hr


Abstract.   For a given general setting, involving measure spaces with positive σ-finite measures, we present new results regarding Hardy-type inequality. We established a connection between the difference operator obtained from Hardy-type inequality and the expression that includes Lidstone interpolating polynomial and four new Green functions. We discuss about 2n convexity of the function and consider the main result depending on the parity of the part of exponent and index n. Applying Hölder inequality for conjugate exponents p and q we get some consequential results. Finally, we derived bounds for the identity using Čebyšev functional and Ostrowski-type bound for the generalized Hardy's inequality.

2020 Mathematics Subject Classification.   26D10, 26D15, 39B62.

Key words and phrases.   Convex function, Hardy-type inequality, Lidstone interpolating polynomial, Green function, Čebyšev functional.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/90836c2p8y


References:

  1. R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and Their Applications, Kluwer Academic Publishers, Dordrecht, 1993.
    MathSciNet     CrossRef

  2. R. P. Agarwal and P. J. Y.Wong, Lidstone polynomials and boundary value problems, Comput. Math. Appl. 17 (1989), 1397-1421
    MathSciNet     CrossRef

  3. A. Aglić Aljinović, J. Pečarić and A. Vukelić, On some Ostrowski type inequalities via Montgomery identity and Taylor's formula. II, Tamkang J. Math. 36 (2005), 279-301.
    MathSciNet

  4. G. Aras-Gazić, V. Čuljak, J. Pečarić and A. Vukelić, Generalization of Jensen's inequality by Lidstone's polynomial and related results, Math. Inequal. Appl. 16 (2013), 1243-1267.
    MathSciNet     CrossRef

  5. P. Cerone and S. S. Dragomir, Some new Ostrowski-type bounds for the Čebyšev functional and applications, J. Math. Inequal. 8 (2014), 159-170.
    MathSciNet     CrossRef

  6. G. H. Hardy, Notes on some points in the integral calculus LX: An inequality between integrals, Messenger of Math. 54 (1925), 150-156.

  7. S. Iqbal, K. Krulić Himmelreich, J. Pečarić and D. Pokaz, Hardy type inequalities involving Lidstone interpolation polynomials, submitted.

  8. S. Kaijser, L. Nikolova, L.-E. Persson and A. Wedestig, Hardy-type inequalities via convexity, Math. Inequal. Appl. 8 (2005), 403-417.
    MathSciNet     CrossRef

  9. K. Krulić Himmelreich, J. Pečarić and D. Pokaz, Inequalities of Hardy and Jensen, Element, Zagreb, 2013.
    MathSciNet

  10. K. Krulić Himmelreich, J. Pečarić, D. Pokaz and M. Praljak, Generalizations of Hardy-type inequalities by Montgomery identity and new Green functions, Axioms 12 (2003), 434.
    CrossRef

  11. K. Krulić Himmelreich, J. Pečarić, D. Pokaz, D. and M. Praljak, Generalizations of Hardy type inequalities by Abel-Gontscharoff's interpolating polynomial, Mathematics 9 (2021), 1724.
    MathSciNet

  12. A. Kufner, L. Maligranda and L.-E. Persson, The Hardy Inequality. About its History and Some Related Results, Vydavatelsky Servis Publishing House, Pilsen, 2007.
    MathSciNet

  13. A. Kufner, L. Maligranda and L.-E. Persson, The prehistory of the Hardy inequality, Amer. Math. Monthly 113 (2006), 715-732.
    MathSciNet     CrossRef

  14. J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Mathematics in Science and Engineering 187, Academic Press, Boston, 1992.
    MathSciNet

  15. J. M. Whittaker, On Lidstone series and two-point expansions of analytic functions, Proc. Lond. Math. Soc. (2) 36 (1934), 451-469.
    MathSciNet     CrossRef

  16. D. V. Widder, Completely convex function and Lidstone series, Trans. Amer. Math. Soc. 51 (1942), 387-398.
    MathSciNet     CrossRef


Rad HAZU Home Page