Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 207-220.
GENERALIZED HARDY-TYPE INEQUALITY VIA LIDSTONE INTERPOLATING POLYNOMIAL AND NEW GREEN FUNCTIONS
Dora Pokaz
Faculty of Civil Engineering, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: dora.pokaz@grad.unizg.hr
Abstract. For a given general setting, involving measure spaces with
positive σ-finite measures, we present new results regarding Hardy-type
inequality. We established a connection between the difference operator
obtained from Hardy-type inequality and the expression that includes Lidstone
interpolating polynomial and four new Green functions. We discuss
about 2n convexity of the function and consider the main result depending
on the parity of the part of exponent and index n. Applying Hölder inequality
for conjugate exponents p and q we get some consequential results.
Finally, we derived bounds for the identity using Čebyšev functional and
Ostrowski-type bound for the generalized Hardy's inequality.
2020 Mathematics Subject Classification.
26D10, 26D15, 39B62.
Key words and phrases. Convex function, Hardy-type inequality, Lidstone interpolating
polynomial, Green function, Čebyšev functional.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/90836c2p8y
References:
- R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and
Their Applications, Kluwer Academic Publishers, Dordrecht, 1993.
MathSciNet
CrossRef
- R. P. Agarwal and P. J. Y.Wong, Lidstone polynomials and boundary value problems,
Comput. Math. Appl. 17 (1989), 1397-1421
MathSciNet
CrossRef
- A. Aglić Aljinović, J. Pečarić and A. Vukelić, On some Ostrowski type inequalities via
Montgomery identity and Taylor's formula. II, Tamkang J. Math. 36 (2005), 279-301.
MathSciNet
- G. Aras-Gazić, V. Čuljak, J. Pečarić and A. Vukelić, Generalization of Jensen's inequality
by Lidstone's polynomial and related results, Math. Inequal. Appl. 16 (2013),
1243-1267.
MathSciNet
CrossRef
- P. Cerone and S. S. Dragomir, Some new Ostrowski-type bounds for the Čebyšev functional
and applications, J. Math. Inequal. 8 (2014), 159-170.
MathSciNet
CrossRef
- G. H. Hardy, Notes on some points in the integral calculus LX: An inequality between
integrals, Messenger of Math. 54 (1925), 150-156.
- S. Iqbal, K. Krulić Himmelreich, J. Pečarić and D. Pokaz, Hardy type inequalities involving
Lidstone interpolation polynomials, submitted.
- S. Kaijser, L. Nikolova, L.-E. Persson and A. Wedestig, Hardy-type inequalities via
convexity, Math. Inequal. Appl. 8 (2005), 403-417.
MathSciNet
CrossRef
- K. Krulić Himmelreich, J. Pečarić and D. Pokaz, Inequalities of Hardy and Jensen,
Element, Zagreb, 2013.
MathSciNet
- K. Krulić Himmelreich, J. Pečarić, D. Pokaz and M. Praljak, Generalizations of
Hardy-type inequalities by Montgomery identity and new Green functions, Axioms 12 (2003),
434.
CrossRef
- K. Krulić Himmelreich, J. Pečarić, D. Pokaz, D. and M. Praljak, Generalizations of
Hardy type inequalities by Abel-Gontscharoff's interpolating polynomial, Mathematics
9 (2021), 1724.
MathSciNet
- A. Kufner, L. Maligranda and L.-E. Persson, The Hardy Inequality. About its History
and Some Related Results, Vydavatelsky Servis Publishing House, Pilsen, 2007.
MathSciNet
- A. Kufner, L. Maligranda and L.-E. Persson, The prehistory of the Hardy inequality,
Amer. Math. Monthly 113 (2006), 715-732.
MathSciNet
CrossRef
- J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and
Statistical Applications, Mathematics in Science and Engineering 187, Academic Press,
Boston, 1992.
MathSciNet
- J. M. Whittaker, On Lidstone series and two-point expansions of analytic functions,
Proc. Lond. Math. Soc. (2) 36 (1934), 451-469.
MathSciNet
CrossRef
- D. V. Widder, Completely convex function and Lidstone series, Trans. Amer. Math.
Soc. 51 (1942), 387-398.
MathSciNet
CrossRef
Rad HAZU Home Page