Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 187-205.

THE HERMITE-HADAMARD INEQUALITY FOR MφMψ-h-CONVEX FUNCTIONS AND RELATED INTERPOLATIONS

Sanja Varošanec

University of Zagreb, Faculty of Science, Department of Mathematics, Bijenička 30, 10000 Zagreb, Croatia
e-mail: varosans@math.hr


Abstract.   In this paper we consider the Hermite-Hadamard inequality for MφMψ-h-convex functions. An MφMψ-h-convexity covers several particular types of generalized convexity such as a harmonic-h-convexity, a log-h-convexity, (h, p)-convexity, MpA-h-convexity, MφMψ-convexity etc. The Hermite-Hadamard type inequalities with two and with n nodes are given. Special attention is paid to a dyadic partition of an interval and related interpolations.

2020 Mathematics Subject Classification.   26A51, 26A15.

Key words and phrases.   Hermite-Hadamard inequality, MφMψ-h-convex function, quasi-arithmetic mean, dyadic partition.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/9e31lhzoqm


References:

  1. M. W. Alomari, Some properties of h-MN-convexity and Jensen's type inequalities, Journal of Interdisciplinary Mathematics 22(8) (2019), 1349-1395.
    CrossRef

  2. H. Bai, M. S. Saleem, W. Nazeer, M. S. Zahoor and T. Zhao, Hermite-Hadamard- and Jensen-type inequalities for interval (h1, h2) nonconvex function, J. Math. 2020 (2020), Article ID 3945384.
    MathSciNet     CrossRef

  3. I. A. Baloch, M. de la Sen and I. Iscan, Characterizations of classes of harmonic convex functions and applications, International Journal of Analysis and Applications 17(5) (2019), 722-733.

  4. M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Féjer inequalities, Comput. Math. Appl. 58 (2009), 1869-1877.
    MathSciNet     CrossRef

  5. F. Chen and X. Liu, Refinements on the Hermite-Hadamard inequalities for r-convex functions, J. Appl. Math. 2013 (2013), Article ID 978493.
    MathSciNet     CrossRef

  6. T. H. Dinh and K. T. B. Vo, Some inequalities for operator (p, h)-convex functions, Linear and Multilinear Algebra 66 (2018), 580-592.
    MathSciNet     CrossRef

  7. S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones 34 (2015), 323-341.
    MathSciNet     CrossRef

  8. S. S. Dragomir, n-points inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Armen. J. Math. 8 (2016), 38-57.
    MathSciNet

  9. A. El Farrisi, Simple proof and refinement of Hermite-Hadamard inequality, J. Math. Inequal. 4 (2010), 365-369.
    MathSciNet     CrossRef

  10. Z. B. Fang and R. Shi, On the (p, h)-convex function and some integral inequalities, J. Inequal. Appl. 2014:45 (2014).
    MathSciNet     CrossRef

  11. L. V. Hap and N. V. Vinh, On some Hadamard-type inequalities for (h, r)-convex functions, Int. J. Math. Anal. (Ruse) 7 (2013), no. 41-44, 2067-2075.
    MathSciNet     CrossRef

  12. M. Idris, A note on the refinement of Hermite-Hadamard inequality, J. Phys: Conf. Ser. 2106 (2021), 012006.
    CrossRef

  13. I. Iscan, Some new Hermite-Hadamard type inequalities for geometrically convex functions, Mathematics and Statistics 1(2) (2013), 86-91.
    CrossRef

  14. F. C. Mitroi and C. I. Spiridon, Hermite-Hadamard type inequalities of convex functions with respect to a pair of quasi-arithmetic means, Math. Rep. (Bucur.) 14(64) (2012), 291-295.
    MathSciNet

  15. C. Niculescu, and L. E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics 23, Springer, New York, 2006.
    MathSciNet     CrossRef

  16. M. A. Noor, K. I. Noor and M. U. Awan, Some characterizations of harmonically log-convex functions, Proc. Jangjeon Math. Soc. 17 (2014), 51-61.
    MathSciNet

  17. M. A. Noor, K. I. Noor and M. U. Awan, A new Hermite-Hadamard type inequality for h-convex functions, Creat. Math. Inform. 24 (2015), 191-197.
    MathSciNet

  18. M. A. Noor, K. I. Noor, and M. U. Awan, Integral inequalities for some new classes of convex functions, American Journal of Applied Mathematics 3 (2015), 1-5.
    CrossRef

  19. M. A. Noor, K. I. Noor, M. U. Awan and S. Costache, Some integral inequalities for harmonically h-convex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 77 (2015), 5-16.
    MathSciNet

  20. M. A. Noor, F. Qi and M. U. Awan, Some Hermite-Hadamard type inequalities for log-h-convex functions, Analysis (Berlin) 33 (2013), 367-375.
    MathSciNet     CrossRef

  21. M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for h-convex function, J. Math. Inequal. 2 (2008), 335-341.
    MathSciNet     CrossRef

  22. S. Turhan, M. Kunt and I. Iscan, Hermite-Hadamard type inequalities for MφA-convex functions, Int. J. Math. Modelling and Computations 10 (2020), 57–75.

  23. S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303-311.
    MathSciNet     CrossRef

  24. S. Varošanec, MφA-h-convexity and Hermite-Hadamard type inequalities, International Journal of Analysis and Applications 20 (2022), 36.
    CrossRef


Rad HAZU Home Page