Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 187-205.
THE HERMITE-HADAMARD INEQUALITY FOR MφMψ-h-CONVEX FUNCTIONS AND RELATED INTERPOLATIONS
Sanja Varošanec
University of Zagreb, Faculty of Science, Department of Mathematics, Bijenička 30, 10000 Zagreb, Croatia
e-mail: varosans@math.hr
Abstract. In this paper we consider the Hermite-Hadamard inequality
for MφMψ-h-convex functions.
An MφMψ-h-convexity covers
several particular types of generalized convexity such as a harmonic-h-convexity,
a log-h-convexity, (h, p)-convexity, MpA-h-convexity,
MφMψ-convexity etc. The Hermite-Hadamard type inequalities with two and
with n nodes are given. Special attention is paid to a dyadic partition
of an interval and related interpolations.
2020 Mathematics Subject Classification.
26A51, 26A15.
Key words and phrases. Hermite-Hadamard inequality,
MφMψ-h-convex function,
quasi-arithmetic mean, dyadic partition.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/9e31lhzoqm
References:
- M. W. Alomari, Some properties of h-MN-convexity and Jensen's type inequalities,
Journal of Interdisciplinary Mathematics 22(8) (2019), 1349-1395.
CrossRef
- H. Bai, M. S. Saleem, W. Nazeer, M. S. Zahoor and T. Zhao, Hermite-Hadamard- and
Jensen-type inequalities for interval (h1, h2) nonconvex function, J. Math.
2020 (2020), Article ID 3945384.
MathSciNet
CrossRef
- I. A. Baloch, M. de la Sen and I. Iscan, Characterizations of classes of harmonic convex
functions and applications, International Journal of Analysis and Applications 17(5)
(2019), 722-733.
- M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the
Hermite-Hadamard-Féjer inequalities, Comput. Math. Appl. 58 (2009), 1869-1877.
MathSciNet
CrossRef
- F. Chen and X. Liu, Refinements on the Hermite-Hadamard inequalities for r-convex
functions, J. Appl. Math. 2013 (2013), Article ID 978493.
MathSciNet
CrossRef
- T. H. Dinh and K. T. B. Vo, Some inequalities for operator (p, h)-convex functions,
Linear and Multilinear Algebra 66 (2018), 580-592.
MathSciNet
CrossRef
- S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on
linear spaces, Proyecciones 34 (2015), 323-341.
MathSciNet
CrossRef
- S. S. Dragomir, n-points inequalities of Hermite-Hadamard type for h-convex functions
on linear spaces, Armen. J. Math. 8 (2016), 38-57.
MathSciNet
- A. El Farrisi, Simple proof and refinement of Hermite-Hadamard inequality, J. Math.
Inequal. 4 (2010), 365-369.
MathSciNet
CrossRef
- Z. B. Fang and R. Shi, On the (p, h)-convex function and some integral inequalities,
J. Inequal. Appl. 2014:45 (2014).
MathSciNet
CrossRef
- L. V. Hap and N. V. Vinh, On some Hadamard-type inequalities for (h, r)-convex
functions, Int. J. Math. Anal. (Ruse) 7 (2013), no. 41-44, 2067-2075.
MathSciNet
CrossRef
- M. Idris, A note on the refinement of Hermite-Hadamard inequality, J. Phys: Conf.
Ser. 2106 (2021), 012006.
CrossRef
- I. Iscan, Some new Hermite-Hadamard type inequalities for geometrically convex functions,
Mathematics and Statistics 1(2) (2013), 86-91.
CrossRef
- F. C. Mitroi and C. I. Spiridon, Hermite-Hadamard type inequalities of convex functions
with respect to a pair of quasi-arithmetic means, Math. Rep. (Bucur.) 14(64)
(2012), 291-295.
MathSciNet
- C. Niculescu, and L. E. Persson, Convex Functions and Their Applications. A Contemporary
Approach, CMS Books in Mathematics 23, Springer, New York, 2006.
MathSciNet
CrossRef
- M. A. Noor, K. I. Noor and M. U. Awan, Some characterizations of harmonically log-convex
functions, Proc. Jangjeon Math. Soc. 17 (2014), 51-61.
MathSciNet
- M. A. Noor, K. I. Noor and M. U. Awan, A new Hermite-Hadamard type inequality for
h-convex functions, Creat. Math. Inform. 24 (2015), 191-197.
MathSciNet
- M. A. Noor, K. I. Noor, and M. U. Awan, Integral inequalities for some new classes
of convex functions, American Journal of Applied Mathematics 3 (2015), 1-5.
CrossRef
- M. A. Noor, K. I. Noor, M. U. Awan and S. Costache, Some integral inequalities for
harmonically h-convex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl.
Math. Phys. 77 (2015), 5-16.
MathSciNet
- M. A. Noor, F. Qi and M. U. Awan, Some Hermite-Hadamard type inequalities for
log-h-convex functions, Analysis (Berlin) 33 (2013), 367-375.
MathSciNet
CrossRef
- M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for
h-convex function, J. Math. Inequal. 2 (2008), 335-341.
MathSciNet
CrossRef
- S. Turhan, M. Kunt and I. Iscan, Hermite-Hadamard type inequalities for MφA-convex
functions, Int. J. Math. Modelling and Computations 10 (2020), 57–75.
- S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303-311.
MathSciNet
CrossRef
- S. Varošanec, MφA-h-convexity and Hermite-Hadamard type inequalities, International
Journal of Analysis and Applications 20 (2022), 36.
CrossRef
Rad HAZU Home Page