Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 145-186.

GENERALIZED HERMITE-HADAMARD INEQUALITIES FOR (α, η, γ, δ)-p CONVEX FUNCTIONS

Muhammad Bilal, Silvestru Sever Dragomir and Asif Raza Khan

Department of Mathematics, University of Karachi, University Road, Karachi-75270, Pakistan
e-mail: mbilalfawad@gmail.com

Mathematics, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia
DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
e-mail: sever.dragomir@vu.edu.au

Department of Mathematics, University of Karachi, University Road, Karachi-75270, Pakistan
e-mail: asifrk@uok.edu.pk


Abstract.   In this article, we would like to introduce another generalized class of convex functions which we call as (α, η, γ, δ)-p convex functions. This new class contains another two new classes namely, (α, η)-p convex functions of the 1st and 2nd kinds. Further, we also generalize some results related to famous Hermite-Hadamard type inequality stated in [2] for the aforementioned class of functions with distinct techniques. Hence various existed and new results would be captured as special case of our obtained results. Moreover, application to midpoint formula has also been established.

2020 Mathematics Subject Classification.   26A46, 26A51, 26D07, 26D99.

Key words and phrases.   Hermite-Hadamard type inequities, p-convex functions, (α, η)-convex function of the 1st kind, (α, η)-convex function of the 2nd kind, (α, η, γ, δ)-convex function.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/mzvkptoj19


References:

  1. A. Arshad and A. R. Khan, Hermite-Hadamard-Fejer type inequalities for s-p-convex functions of several senses, Transylv. J. Math. Mech. 11 (2019), 25-40.

  2. M. Bilal and A. R. Khan, New generalized Hermite-Hadamard inequalities for p-convex functions in the mixed kind, Eur. J. Pure Appl. Math. 14 (2021), 863-880.
    MathSciNet     CrossRef

  3. M. Bilal and A. R. Khan, On some new Hermite-Hadamard dual inequalities, JMCMS 16(7) (2021), 93-98.
    CrossRef

  4. M. Bilal and A. R. Khan, New Hermite-Hadamard dual inequality for s-p-convex functions in mixed kind, Bull. Karag. Univ. (2022), (Accepted).

  5. M. Bilal, M. Imtiaz, A. R. Khan, I. U. Khan and M. Zafran, Generalized Hermite- Hadamard inequalities for s-convex functions in the mixed kind, (2021) (Submitted).

  6. E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439-460.
    MathSciNet     CrossRef

  7. M. Klaričić Bakula and J. E. Pečarić, Note on some Hadamard-type inequalities, JIPAM. J. Inequal. Pure Appl. Math. 5(3) (2004), Article 74.
    MathSciNet

  8. S. S. Dragomir, J. Pečarić and L. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), 335-341.
    MathSciNet

  9. A. Hassan and A. R. Khan, Generalized fractional Ostrowski type inequalities via (α, β, γ, δ)-convex functions, Fract. Differ. Calc. 11 (2022), 13-36.
    MathSciNet     CrossRef

  10. C. Hermite, Sur deux limites d'une intégrale définie, Mathesis 3 (1883), 82.

  11. I. Iscan, Hermite-Hadamard and Simpson like inequalities for differentiable harmonically convex functions, J. Math. 2014 (2014), Article 346305.
    MathSciNet     CrossRef

  12. I. Iscan, Ostrowski type inequalities for p-convex functions, New Trends Math. Sci. 4(3) (2016), 140-150.
    MathSciNet     CrossRef

  13. I. Iscan, Hermite-Hadamard type inequality for p-convex functions, Int. J. Anal. Appl. 11(2) (2016), 137-145.

  14. A. R. Khan, I. U. Khan and S. Muhammad, Hermite-Hadamard type fractional inequalities for s-convex functions of mixed kind, Transactions in Mathematical and Computational Sciences 1 (2021), 25-37.
    MathSciNet

  15. M. Kunt and I. Iscan, Hermite-Hadamard-Fejér type inequalities for p-convex functions, Arab. J. Math. 23(1) (2017), 215-230.
    MathSciNet     CrossRef

  16. U. S. Kiramaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput. 147 (2004), 137-146.
    MathSciNet     CrossRef

  17. U. S. Kiramaci, M. Klaričić Bakula, M. E. Özdemir and J. E. Pečarić, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193 (2007), 26-35.
    MathSciNet     CrossRef

  18. F. Mehmood, A. R. Khan, M. Khan and M. A. Shaikh, Generalization of some weighted Čebyšev-type inequalities, Journal of Mechanics of Continua and Mathematical Sciences 15 (2020), no. 4, 13-20.

  19. D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht, 1993.
    MathSciNet     CrossRef

  20. M. A. Noor and M. U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, Transylv. J. Math. Mech. 5 (2013), 129-136.
    MathSciNet

  21. M. A. Noor, M. U. Awan, M. V. Mihai and K. I. Noor, Hermite-Hadamard inequalities for differentiable p-convex functions using hypergeometric functions, Publ. Inst. Math. (Beograd) (N.S.) 100 (2016), 251-257.
    MathSciNet     CrossRef

  22. M. E. Özdemir, M. Avci and H. Kavurmaci, Hermite-Hadamard-type inequalities via (α, m) convexity, Comput. Math. App. 61(2011), 2614-2620.
    MathSciNet     CrossRef

  23. M. E. Özdemir, M. Avci and E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett. 23 (2010), 1065-1070.
    MathSciNet     CrossRef

  24. S. Özcan and I. Iscan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl. 2019, Paper No. 201, 11 pp.
    MathSciNet     CrossRef

  25. J. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992.
    MathSciNet

  26. S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303-311.
    MathSciNet     CrossRef

  27. J. Wang, X. Li, M. Fečkan and Y. Zhou, Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Applicable Analysis 92(11) (2013), 2241-2253.
    MathSciNet     CrossRef


Rad HAZU Home Page