Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 145-186.
GENERALIZED HERMITE-HADAMARD INEQUALITIES FOR
(α, η, γ, δ)-p CONVEX FUNCTIONS
Muhammad Bilal, Silvestru Sever Dragomir and Asif Raza Khan
Department of Mathematics, University of Karachi, University Road, Karachi-75270, Pakistan
e-mail: mbilalfawad@gmail.com
Mathematics, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia
DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
e-mail: sever.dragomir@vu.edu.au
Department of Mathematics, University of Karachi, University Road, Karachi-75270, Pakistan
e-mail: asifrk@uok.edu.pk
Abstract. In this article, we would like to introduce another generalized
class of convex functions which we call as
(α, η, γ, δ)-p convex functions.
This new class contains another two new classes namely,
(α, η)-p
convex functions of the 1st and 2nd kinds. Further, we also generalize some
results related to famous Hermite-Hadamard type inequality stated in [2]
for the aforementioned class of functions with distinct techniques. Hence
various existed and new results would be captured as special case of our
obtained results. Moreover, application to midpoint formula has also been
established.
2020 Mathematics Subject Classification.
26A46, 26A51, 26D07, 26D99.
Key words and phrases. Hermite-Hadamard type inequities, p-convex functions,
(α, η)-convex function of the 1st kind,
(α, η)-convex function of the 2nd kind,
(α, η, γ, δ)-convex function.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/mzvkptoj19
References:
- A. Arshad and A. R. Khan, Hermite-Hadamard-Fejer type inequalities for s-p-convex
functions of several senses, Transylv. J. Math. Mech. 11 (2019), 25-40.
- M. Bilal and A. R. Khan, New generalized Hermite-Hadamard inequalities for p-convex
functions in the mixed kind, Eur. J. Pure Appl. Math. 14 (2021), 863-880.
MathSciNet
CrossRef
- M. Bilal and A. R. Khan, On some new Hermite-Hadamard dual inequalities, JMCMS
16(7) (2021), 93-98.
CrossRef
- M. Bilal and A. R. Khan, New Hermite-Hadamard dual inequality for s-p-convex functions
in mixed kind, Bull. Karag. Univ. (2022), (Accepted).
- M. Bilal, M. Imtiaz, A. R. Khan, I. U. Khan and M. Zafran, Generalized Hermite-
Hadamard inequalities for s-convex functions in the mixed kind, (2021) (Submitted).
- E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439-460.
MathSciNet
CrossRef
- M. Klaričić Bakula and J. E. Pečarić, Note on some Hadamard-type inequalities,
JIPAM. J. Inequal. Pure Appl. Math. 5(3) (2004), Article 74.
MathSciNet
- S. S. Dragomir, J. Pečarić and L. Persson, Some inequalities of Hadamard type, Soochow
J. Math. 21 (1995), 335-341.
MathSciNet
- A. Hassan and A. R. Khan, Generalized fractional Ostrowski type inequalities via
(α, β, γ, δ)-convex functions, Fract. Differ. Calc. 11 (2022), 13-36.
MathSciNet
CrossRef
- C. Hermite, Sur deux limites d'une intégrale définie, Mathesis 3 (1883), 82.
- I. Iscan, Hermite-Hadamard and Simpson like inequalities for differentiable harmonically
convex functions, J. Math. 2014 (2014), Article 346305.
MathSciNet
CrossRef
- I. Iscan, Ostrowski type inequalities for p-convex functions, New Trends Math. Sci.
4(3) (2016), 140-150.
MathSciNet
CrossRef
- I. Iscan, Hermite-Hadamard type inequality for p-convex functions, Int. J. Anal. Appl.
11(2) (2016), 137-145.
- A. R. Khan, I. U. Khan and S. Muhammad, Hermite-Hadamard type fractional inequalities
for s-convex functions of mixed kind, Transactions in Mathematical and Computational Sciences 1 (2021), 25-37.
MathSciNet
- M. Kunt and I. Iscan, Hermite-Hadamard-Fejér type inequalities for p-convex functions,
Arab. J. Math. 23(1) (2017), 215-230.
MathSciNet
CrossRef
- U. S. Kiramaci, Inequalities for differentiable mappings and applications to special
means of real numbers and to midpoint formula, Appl. Math. Comput. 147 (2004),
137-146.
MathSciNet
CrossRef
- U. S. Kiramaci, M. Klaričić Bakula, M. E. Özdemir and J. E. Pečarić, Hadamard-type
inequalities for s-convex functions, Appl. Math. Comput. 193 (2007), 26-35.
MathSciNet
CrossRef
- F. Mehmood, A. R. Khan, M. Khan and M. A. Shaikh, Generalization of some weighted
Čebyšev-type inequalities, Journal of Mechanics of Continua and Mathematical Sciences
15 (2020), no. 4, 13-20.
- D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and new inequalities in
analysis, Kluwer Academic Publishers, Dordrecht, 1993.
MathSciNet
CrossRef
- M. A. Noor and M. U. Awan, Some integral inequalities for two kinds of convexities
via fractional integrals, Transylv. J. Math. Mech. 5 (2013), 129-136.
MathSciNet
- M. A. Noor, M. U. Awan, M. V. Mihai and K. I. Noor, Hermite-Hadamard inequalities
for differentiable p-convex functions using hypergeometric functions, Publ. Inst. Math.
(Beograd) (N.S.) 100 (2016), 251-257.
MathSciNet
CrossRef
- M. E. Özdemir, M. Avci and H. Kavurmaci, Hermite-Hadamard-type inequalities via
(α, m) convexity, Comput. Math. App. 61(2011), 2614-2620.
MathSciNet
CrossRef
- M. E. Özdemir, M. Avci and E. Set, On some inequalities of Hermite-Hadamard type
via m-convexity, Appl. Math. Lett. 23 (2010), 1065-1070.
MathSciNet
CrossRef
- S. Özcan and I. Iscan, Some new Hermite-Hadamard type inequalities for s-convex
functions and their applications, J. Inequal. Appl. 2019, Paper No. 201, 11 pp.
MathSciNet
CrossRef
- J. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and
Statistical Applications, Academic Press, New York, 1992.
MathSciNet
- S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303-311.
MathSciNet
CrossRef
- J. Wang, X. Li, M. Fečkan and Y. Zhou, Hermite-Hadamard-type inequalities for
Riemann-Liouville fractional integrals via two kinds of convexity, Applicable Analysis
92(11) (2013), 2241-2253.
MathSciNet
CrossRef
Rad HAZU Home Page