Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 129-143.

CONICS IN CUBIC STRUCTURE

Vladimir Volenec, Ružica Kolar-Šuper and Zdenka Kolar-Begović

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: volenec@math.hr

Faculty of Education, University of Osijek, 31 000 Osijek, Croatia
e-mail: rkolar@foozos.hr

School of Applied Mathematics and Informatics and Faculty of Education, University of Osijek, 31 000 Osijek, Croatia
e-mail: zkolar@mathos.hr


Abstract.   By using ternary relation, in this paper we introduce the concept of a conic in a general cubic structure, and study the properties of the conics in cubic structures of ranks 1, 2, and 3. By means of points of a conic, we construct different configurations of points and conics, lines and conics, as well as some well-known configurations of points and lines.

2020 Mathematics Subject Classification.   20N05.

Key words and phrases.   Cubic structure, inflection point, tangential, conic.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/9xn31cw8zy


References:

  1. L. Cremona, Einleitung in eine geometrische Theorie der ebenen Kurven, Greifswald, 1865.

  2. H. Durège, Die ebenen Curven dritter Ordnung, Teubner, Leipzig 1871.

  3. G. Majcen, Über eine Abbildung der allgemeinen Fläche 3. Ordnung und einige daraus abgeleitete Eigenschaften der rationalen ebenen Kurven 3. und 4. Ordnung, Sitzungsber. Akad. Wiss. Wien 117 (1908), 631-644.

  4. G. Salmon, A treatise on the higher plane curves, 2. ed., Dublin, 1879.
    MathSciNet

  5. H. Schroeter, Die Theorie der ebenen Kurven dritter Ordnung auf synthetischgeometrischem Wege, Teubner, Leipzig, 1888.
    MathSciNet

  6. A. S. Smogorževs'kiĭ and E. S. Stolova, Handbook of the theory of plane curves of third order, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961. 263 pp. (in Russian).
    MathSciNet

  7. V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Inflection points in cubic structures, Mathematics 9 (2021), 2819.
    CrossRef

  8. V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Cubic structure, Glas. Mat. Ser. III 52 (2017), 247-256.
    MathSciNet     CrossRef

  9. V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Tangentials in cubic structures, Glas. Mat. Ser. III 55 (2020), 337-349.
    MathSciNet     CrossRef

  10. B. L. van der Waerden, Einführung in die algebraische Geometrie, 2. Aufl., Springer-Verlag, 1973.
    MathSciNet

  11. H. Wieleitner, Theorie der ebenen algebraischen Kurven höherer Ordnung, Göschen, Leipzig, 1905.

  12. M. Zacharias, Streifzüge im Reich der Konfigurationen: Eine Reyesche Konfiguration (153), Stern- und Kettenkonfigurationen, Math. Nachr. 5 (1951), 329-345.
    MathSciNet     CrossRef


Rad HAZU Home Page