Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 129-143.
CONICS IN CUBIC STRUCTURE
Vladimir Volenec, Ružica Kolar-Šuper and Zdenka Kolar-Begović
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: volenec@math.hr
Faculty of Education, University of Osijek, 31 000 Osijek, Croatia
e-mail: rkolar@foozos.hr
School of Applied Mathematics and Informatics and Faculty of Education, University of Osijek, 31 000 Osijek, Croatia
e-mail: zkolar@mathos.hr
Abstract. By using ternary relation, in this paper we introduce the
concept of a conic in a general cubic structure, and study the properties
of the conics in cubic structures of ranks 1, 2, and 3. By means of points
of a conic, we construct different configurations of points and conics, lines
and conics, as well as some well-known configurations of points and lines.
2020 Mathematics Subject Classification.
20N05.
Key words and phrases. Cubic structure, inflection point, tangential, conic.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/9xn31cw8zy
References:
- L. Cremona, Einleitung in eine geometrische Theorie der ebenen Kurven, Greifswald,
1865.
- H. Durège, Die ebenen Curven dritter Ordnung, Teubner, Leipzig 1871.
- G. Majcen, Über eine Abbildung der allgemeinen Fläche 3. Ordnung und einige daraus
abgeleitete Eigenschaften der rationalen ebenen Kurven 3. und 4. Ordnung, Sitzungsber.
Akad. Wiss. Wien 117 (1908), 631-644.
- G. Salmon, A treatise on the higher plane curves, 2. ed., Dublin, 1879.
MathSciNet
- H. Schroeter, Die Theorie der ebenen Kurven dritter Ordnung auf synthetischgeometrischem
Wege, Teubner, Leipzig, 1888.
MathSciNet
- A. S. Smogorževs'kiĭ and E. S. Stolova, Handbook of the theory of plane curves of
third order, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961. 263 pp. (in Russian).
MathSciNet
- V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Inflection points in cubic structures,
Mathematics 9 (2021), 2819.
CrossRef
- V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Cubic structure, Glas. Mat. Ser. III
52 (2017), 247-256.
MathSciNet
CrossRef
- V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Tangentials in cubic structures, Glas.
Mat. Ser. III 55 (2020), 337-349.
MathSciNet
CrossRef
- B. L. van der Waerden, Einführung in die algebraische Geometrie, 2. Aufl., Springer-Verlag,
1973.
MathSciNet
- H. Wieleitner, Theorie der ebenen algebraischen Kurven höherer Ordnung, Göschen,
Leipzig, 1905.
- M. Zacharias, Streifzüge im Reich der Konfigurationen: Eine Reyesche Konfiguration
(153), Stern- und Kettenkonfigurationen, Math. Nachr. 5 (1951), 329-345.
MathSciNet
CrossRef
Rad HAZU Home Page