Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 89-96.

ON DEGREES IN FAMILY OF MAPS CONSTRUCTED VIA MODULAR FORMS

Goran Muić

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
e-mail: gmuic@math.hr


Abstract.   This paper is a continuation of our previous works (see Muić, Monatsh. Math. 180 (2016), 607-629 and Kodrnja, Muić, Ramanujan J. 55 (2021), 393-420) where we have studied maps from X0(N) into P2 (and more general) constructed via modular forms of the same weight. In this short note we study how degrees of the maps and degrees of the resulting curve change when we let modular forms vary.

2020 Mathematics Subject Classification.   11F11.

Key words and phrases.   Modular forms, modular curves, Riemann surfaces, birational equivalence.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/yk3jwh7g89


References:

  1. S. Anni, E. Assaf and E. L. Garcia, On smooth plane models for modular curves of Shimura type, Res. Number Theory 9 (2023), no. 2, Paper No. 21, 20 pp.
    MathSciNet     CrossRef

  2. R. Bröker, K. Lauter and A. V. Sutherland, Modular polynomials via isogeny volcanoes, Math. Comp. 81 (2012), 1201-1231.
    MathSciNet     CrossRef

  3. B. Cho, N. M. Kim and J. K. Koo, Affine models of the modular curves X(p) and its application, Ramanujan J. 24 (2011), 235-257.
    MathSciNet     CrossRef

  4. S. Galbraith, Equations for modular curves, Ph.D. thesis, Oxford, 1996.

  5. N. Ishida, Generators and equations for modular function fields of principal congruence subgroups, Acta Arith. 85 (1998), 197-207.
    MathSciNet     CrossRef

  6. I. Kodrnja, On a simple model of X0(N), Monatsh. Math. 186 (2018), 653-661.
    MathSciNet     CrossRef

  7. I. Kodrnja and G. Muić, On primitive elements of algebraic function fields and models of X0(N), Ramanujan J. 55 (2021), 393-420.
    MathSciNet     CrossRef

  8. D. Krumm and N. Sutherland, Galois groups over rational functional fields and explicit Hilbert irreducibility, J. Symbolic Comput. 103 (2021), 108-126.
    MathSciNet     CrossRef

  9. D. Mikoč and G. Muić, Birational maps of X(1) into P2, Glas. Mat. Ser. III 48 (2013), 301-312.
    MathSciNet     CrossRef

  10. R. Miranda, Algebraic Curves and Riemann Surfaces, Grad. Stud. Math. 5, American Mathematical Society, Providence, 1995.
    MathSciNet     CrossRef

  11. T. Miyake, Modular forms, Springer-Verlag, Berlin, 2006.
    MathSciNet     CrossRef

  12. G. Muić, Modular curves and bases for the spaces of cuspidal modular forms, Ramanujan J. 27 (2012), 181-208.
    MathSciNet     CrossRef

  13. G. Muić, On embeddings of modular curves in projective spaces, Monatsh. Math. 173 (2014), 239-256.
    MathSciNet     CrossRef

  14. G. Muić, On degrees and birationality of the maps X0(N) → P2 constructed via modular forms, Monatsh. Math. 180 (2016), 607-629.
    MathSciNet     CrossRef

  15. A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462.
    MathSciNet     CrossRef

  16. K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, CBMS Reg. Conf. Ser. Math. 102, American Mathematical Society, Providence, 2004.
    MathSciNet

  17. Sage Mathematics Software (Version 8.8), The Sage Developers, 2019, https://www.sagemath.org.

  18. G. Shimura, Introduction to the arithmetic theory of automorphic functions. Kano Memorial Lectures, No. 1, Publ. Math. Soc. Japan, No. 11, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, 1971.
    MathSciNet

  19. M. Shimura, Defining equations of modular curves X0(N), Tokyo J. Math. 18 (1995), 443-456.
    MathSciNet     CrossRef

  20. Y. Yifan, Defining equations of modular curves, Adv. Math. 204 (2006), 481-508.
    MathSciNet     CrossRef


Rad HAZU Home Page