Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 89-96.
ON DEGREES IN FAMILY OF MAPS CONSTRUCTED VIA MODULAR FORMS
Goran Muić
Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
e-mail: gmuic@math.hr
Abstract. This paper is a continuation of our previous works (see
Muić, Monatsh. Math. 180 (2016), 607-629 and Kodrnja, Muić, Ramanujan
J. 55 (2021), 393-420) where we have studied maps from X0(N) into
P2 (and more general) constructed via modular forms of the same weight.
In this short note we study how degrees of the maps and degrees of the
resulting curve change when we let modular forms vary.
2020 Mathematics Subject Classification.
11F11.
Key words and phrases. Modular forms, modular curves, Riemann surfaces, birational
equivalence.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/yk3jwh7g89
References:
- S. Anni, E. Assaf and E. L. Garcia, On smooth plane models for modular curves
of Shimura type, Res. Number Theory 9 (2023), no. 2, Paper No. 21, 20 pp.
MathSciNet
CrossRef
- R. Bröker, K. Lauter and A. V. Sutherland, Modular polynomials via isogeny
volcanoes, Math. Comp. 81 (2012), 1201-1231.
MathSciNet
CrossRef
- B. Cho, N. M. Kim and J. K. Koo, Affine models of the modular curves X(p) and
its application, Ramanujan J. 24 (2011), 235-257.
MathSciNet
CrossRef
- S. Galbraith, Equations for modular curves, Ph.D. thesis, Oxford, 1996.
- N. Ishida, Generators and equations for modular function fields of principal congruence
subgroups, Acta Arith. 85 (1998), 197-207.
MathSciNet
CrossRef
- I. Kodrnja, On a simple model of X0(N), Monatsh. Math. 186 (2018), 653-661.
MathSciNet
CrossRef
- I. Kodrnja and G. Muić, On primitive elements of algebraic function fields and
models of X0(N), Ramanujan J. 55 (2021), 393-420.
MathSciNet
CrossRef
- D. Krumm and N. Sutherland, Galois groups over rational functional fields and
explicit Hilbert irreducibility, J. Symbolic Comput. 103 (2021), 108-126.
MathSciNet
CrossRef
- D. Mikoč and G. Muić, Birational maps of X(1) into P2,
Glas. Mat. Ser. III 48 (2013), 301-312.
MathSciNet
CrossRef
- R. Miranda, Algebraic Curves and Riemann Surfaces, Grad. Stud. Math. 5,
American Mathematical Society, Providence, 1995.
MathSciNet
CrossRef
- T. Miyake, Modular forms, Springer-Verlag, Berlin, 2006.
MathSciNet
CrossRef
- G. Muić, Modular curves and bases for the spaces of cuspidal modular forms,
Ramanujan J. 27 (2012), 181-208.
MathSciNet
CrossRef
- G. Muić, On embeddings of modular curves in projective spaces, Monatsh. Math.
173 (2014), 239-256.
MathSciNet
CrossRef
- G. Muić, On degrees and birationality of the maps
X0(N) → P2 constructed via
modular forms, Monatsh. Math. 180 (2016), 607-629.
MathSciNet
CrossRef
- A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974),
449-462.
MathSciNet
CrossRef
- K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms
and q-Series, CBMS Reg. Conf. Ser. Math. 102, American
Mathematical Society, Providence, 2004.
MathSciNet
- Sage Mathematics Software (Version 8.8), The Sage Developers, 2019,
https://www.sagemath.org.
- G. Shimura, Introduction to the arithmetic theory of automorphic functions. Kano
Memorial Lectures, No. 1, Publ. Math. Soc. Japan, No. 11,
Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, 1971.
MathSciNet
- M. Shimura, Defining equations of modular curves X0(N),
Tokyo J. Math. 18 (1995), 443-456.
MathSciNet
CrossRef
- Y. Yifan, Defining equations of modular curves, Adv. Math. 204 (2006), 481-508.
MathSciNet
CrossRef
Rad HAZU Home Page