Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 83-87.

A QUESTION OF ERDŐS ON 3-POWERFUL NUMBERS AND AN ELLIPTIC CURVE ANALOGUE OF THE ANKENY-ARTIN-CHOWLA CONJECTURE

P. G. Walsh

Department of Mathematics, University of Ottawa, Canada
e-mail: gwalsh@uottawa.ca


Abstract.   We describe how the Mordell-Weil group of rational points on a certain family of elliptic curves give rise to solutions to a conjecture of Erdős on 3-powerful numbers, and state a related conjecture which can be viewed as an elliptic curve analogue of the famous Ankeny-Artin-Chowla conjecture.

2020 Mathematics Subject Classification.   11D25, 11G05.

Key words and phrases.   Powerful number, diophantine equation, elliptic curve.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/y7v64t4jky


References:

  1. N. C. Ankeny, E. Artin and S. Chowla, The class-number of real quadratic number fields, Ann. of Math. (2) 56 (1952), 479-493.
    MathSciNet     CrossRef

  2. P. Bajpai, M. A. Bennett and T. H. Chan, Arithmetic progressions in squarefull numbers, Int. J. Number Theory 20 (2024), 19-45.
    MathSciNet     CrossRef

  3. J. H. E. Cohn, A conjecture of Erdős on 3-powerful numbers, Math. Comp. 67 (1998), 439-440.
    MathSciNet     CrossRef

  4. P. Erdős, Consecutive integers, Eureka Archimedeans J. 38 (1975/76), 3-8.

  5. P. Erdős, Problems and results on consecutive integers, Publ. Math. Debrecen 23 (1976), 272-282.
    MathSciNet     CrossRef

  6. P. Erdős, Problems and results on number theoretic properties of consecutive integers and related questions, in: Proceedings of the Fifth Manitoba Conference on Numerical Mathematics, (Univ. Manitoba, Winnipeg, 1975), Congress Numer. XVI, pp. 25-44, Utilitas Math., Winnipeg, 1976.
    MathSciNet

  7. J.-M. de Koninck and F. Luca, Analytic number theory. Exploring the anatomy of integers, Graduate Studies in Mathematics 134, American Mathematical Society, Providence, 2012.
    MathSciNet     CrossRef

  8. L. J. Mordell, On a Pellian equation conjecture. II, J. London Math. Soc. 36 (1961), 282-288.
    MathSciNet     CrossRef

  9. A. Nitaj, On a conjecture of Erdős on 3-powerful numbers, Bull. London Math. Soc. 27 (1995), 317-318.
    MathSciNet     CrossRef

  10. A. Reinhart, A counterexample to the Pellian equation conjecture of Mordell, Acta Arith. 215 (2024), 85-95.
    MathSciNet     CrossRef

  11. J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106, Springer-Verlag, New York, 1986.
    MathSciNet     CrossRef

  12. A. J. Stephens and H. C. Williams, Some computational results on a problem concerning powerful numbers, Math. Comp. 50 (1988), 619-632.
    MathSciNet     CrossRef


Rad HAZU Home Page