Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 63-82.
A GENERALIZATION OF A THEOREM OF MURAT ALAN
Mariama Ndao Faye, Kouèssi Norbert Adédji and Alain Togbé
UFR of Applied Sciences and Technology, University Gaston Berger, Sénégal
e-mail: fayemariamandao@gmail.com
Institut de Mathématiques et de Sciences Physiques, Université d'Abomey-Calavi, Bénin
e-mail: adedjnorb1988@gmail.com
Department of Mathematics and Statistics, Purdue University Northwest,
2200 169th Street, Hammond, IN 46323 USA
e-mail: atogbe@pnw.edu
Abstract. Let (Fn)n≥0 and
(Ln)n≥0 be the Fibonacci and Lucas
sequences respectively. In 2022, Murat Alan found all Fibonacci and Lucas
numbers which are concatenations of two terms of the other sequence. Let
b ≥ 2 be an integer. In this paper, we generalize the results of Murat Alan
by considering the following Diophantine equations
Fn = bdLm + Lk and
Ln = bdFm + Fk
in non-negative integers (n, m, k), where d denotes the
number of digits of Lk and Fk in base b, respectively.
2020 Mathematics Subject Classification.
11B36, 11J68, 11J86.
Key words and phrases. Fibonacci numbers, Lucas numbers, b-concatenation, logarithmic
height, reduction method.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/yl4okf8no9
References:
- K. N. Adédji, Balancing numbers which are products of three repdigits in base b, Bol.
Soc. Mat. Mex. (3) 29 (2023), no. 2, Paper No. 45, 15 pp.
MathSciNet
CrossRef
- K. N. Adédji, A. Filipin and A. Togbé, Fibonacci and Lucas numbers as products of
three repdigits in base g, Rend. Circ. Mat. Palermo (2) 72 (2023), 4003-4021.
MathSciNet
CrossRef
- K. N. Adédji, F. Luca and A. Togbé, On the solutions of the Diophantine equation
Fn ± a(10m − 1)/9 = k!, J. Number Theory 240 (2022),
593-610.
MathSciNet
CrossRef
- K. N. Adédji, F. Luca and A. Togbé, On the solutions of the Diophantine equation
Pn ± a(10m − 1)/9 = k!,
Eur. J. Math. 9 (2023), no. 2, Paper No. 34, 19 pp.
MathSciNet
CrossRef
- M. Alan, On concatenations of Fibonacci and Lucas numbers, Bull. Iran. Math. Soc.
48 (2022), 2725-2741.
MathSciNet
CrossRef
- W. D. Banks and F. Luca, Concatenations with binary recurrent sequences, J. Integer Seq.
8 (2005), no. 1, Article 05.1.3, 19 pp.
MathSciNet
- Y. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer
numbers (with Appendix by Mignotte), J. Reine Angew. Math. 539 (2001), 75-122.
MathSciNet
CrossRef
- Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential
Diophantine equations I. Fibonacci and Lucas powers, Ann. of Math. (2) 163
(2006), 969-1018.
MathSciNet
CrossRef
- M. Ddamulira, Tribonacci numbers that are concatenations of two repdigits, Rev. R.
Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, Paper No.
203, 10 pp.
MathSciNet
CrossRef
- A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport,
Quart. J. Math. Oxf. Ser. (2) 49 (1998), 291-306.
MathSciNet
CrossRef
- F. Erduvan, R. Keskin and Z. Siar, Repdigits base b as products of two Pell numbers
or Pell-Lucas numbers, Bol. Soc. Mat. Mex. (3) 27 (2021), no. 3, Paper No. 70, 17 pp.
MathSciNet
CrossRef
- S. Guzmán Sanchez and F. Luca, Linear combinations of factorials and s-units in a binary
recurrence sequence, Ann. Math. Qué. 38 (2014), 169-188.
MathSciNet
CrossRef
- F. Luca, Fibonacci and Lucas numbers with only one distinct digit, Portugal. Math.
57 (2000), 243-254.
MathSciNet
- E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in
logarithms of algebraic numbers II, Izv. Math. 64 (2000), 1217-1269.
MathSciNet
CrossRef
- Z. Siar, F. Erduvan and R. Keskin, Repdigits as product of two Pell or Pell-Lucas
numbers, Acta Math. Univ. Comenian. (N.S.) 88 (2019), 247-256.
MathSciNet
Rad HAZU Home Page