Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 63-82.

A GENERALIZATION OF A THEOREM OF MURAT ALAN

Mariama Ndao Faye, Kouèssi Norbert Adédji and Alain Togbé

UFR of Applied Sciences and Technology, University Gaston Berger, Sénégal
e-mail: fayemariamandao@gmail.com

Institut de Mathématiques et de Sciences Physiques, Université d'Abomey-Calavi, Bénin
e-mail: adedjnorb1988@gmail.com

Department of Mathematics and Statistics, Purdue University Northwest, 2200 169th Street, Hammond, IN 46323 USA
e-mail: atogbe@pnw.edu


Abstract.   Let (Fn)n≥0 and (Ln)n≥0 be the Fibonacci and Lucas sequences respectively. In 2022, Murat Alan found all Fibonacci and Lucas numbers which are concatenations of two terms of the other sequence. Let b ≥ 2 be an integer. In this paper, we generalize the results of Murat Alan by considering the following Diophantine equations Fn = bdLm + Lk and Ln = bdFm + Fk in non-negative integers (n, m, k), where d denotes the number of digits of Lk and Fk in base b, respectively.

2020 Mathematics Subject Classification.   11B36, 11J68, 11J86.

Key words and phrases.   Fibonacci numbers, Lucas numbers, b-concatenation, logarithmic height, reduction method.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/yl4okf8no9


References:

  1. K. N. Adédji, Balancing numbers which are products of three repdigits in base b, Bol. Soc. Mat. Mex. (3) 29 (2023), no. 2, Paper No. 45, 15 pp.
    MathSciNet     CrossRef

  2. K. N. Adédji, A. Filipin and A. Togbé, Fibonacci and Lucas numbers as products of three repdigits in base g, Rend. Circ. Mat. Palermo (2) 72 (2023), 4003-4021.
    MathSciNet     CrossRef

  3. K. N. Adédji, F. Luca and A. Togbé, On the solutions of the Diophantine equation Fn ± a(10m − 1)/9 = k!, J. Number Theory 240 (2022), 593-610.
    MathSciNet     CrossRef

  4. K. N. Adédji, F. Luca and A. Togbé, On the solutions of the Diophantine equation Pn ± a(10m − 1)/9 = k!, Eur. J. Math. 9 (2023), no. 2, Paper No. 34, 19 pp.
    MathSciNet     CrossRef

  5. M. Alan, On concatenations of Fibonacci and Lucas numbers, Bull. Iran. Math. Soc. 48 (2022), 2725-2741.
    MathSciNet     CrossRef

  6. W. D. Banks and F. Luca, Concatenations with binary recurrent sequences, J. Integer Seq. 8 (2005), no. 1, Article 05.1.3, 19 pp.
    MathSciNet

  7. Y. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers (with Appendix by Mignotte), J. Reine Angew. Math. 539 (2001), 75-122.
    MathSciNet     CrossRef

  8. Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers, Ann. of Math. (2) 163 (2006), 969-1018.
    MathSciNet     CrossRef

  9. M. Ddamulira, Tribonacci numbers that are concatenations of two repdigits, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, Paper No. 203, 10 pp.
    MathSciNet     CrossRef

  10. A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxf. Ser. (2) 49 (1998), 291-306.
    MathSciNet     CrossRef

  11. F. Erduvan, R. Keskin and Z. Siar, Repdigits base b as products of two Pell numbers or Pell-Lucas numbers, Bol. Soc. Mat. Mex. (3) 27 (2021), no. 3, Paper No. 70, 17 pp.
    MathSciNet     CrossRef

  12. S. Guzmán Sanchez and F. Luca, Linear combinations of factorials and s-units in a binary recurrence sequence, Ann. Math. Qué. 38 (2014), 169-188.
    MathSciNet     CrossRef

  13. F. Luca, Fibonacci and Lucas numbers with only one distinct digit, Portugal. Math. 57 (2000), 243-254.
    MathSciNet

  14. E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II, Izv. Math. 64 (2000), 1217-1269.
    MathSciNet     CrossRef

  15. Z. Siar, F. Erduvan and R. Keskin, Repdigits as product of two Pell or Pell-Lucas numbers, Acta Math. Univ. Comenian. (N.S.) 88 (2019), 247-256.
    MathSciNet


Rad HAZU Home Page