Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 23-35.
SELECTION METHOD FOR INTERPRETABILITY LOGIC IL WITH RESPECT TO VERBRUGGE SEMANTICS
Sebastijan Horvat and Tin Perkov
University of Zagreb, Faculty of Science, Department of Mathematics, Bijenička c. 30, 10 000 Zagreb, Croatia
e-mail: sebastijan.horvat@math.hr
University of Zagreb, Faculty of Teacher Education, Savska c. 77, 10 000 Zagreb, Croatia
e-mail: tin.perkov@ufzg.hr
Abstract. Interpretability logic is a modal logic which formalizes
the notion of relative interpretability between first-order arithmetical theories.
Veltman semantics is the basic semantics for interpretability logic.
Verbrugge semantics is a generalization of Veltman semantics. Selection
is one of the methods to establish finite model property of a logical system,
as a step towards showing that the system is decidable. In this paper
we show that selection method can be applied to Verbrugge models, by
adapting techniques used for Kripke models to this more complex setting.
2020 Mathematics Subject Classification.
03F45.
Key words and phrases. Interpretability logic, Verbrugge models, finite model property,
selection method.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/moxpjhzdem
References:
- P. Blackburn, M. de Rijke and Y. Venema, Modal Logic, Cambridge University Press,
2001.
MathSciNet
CrossRef
- V. Čačić and M. Vuković, Interpretability logic IL does not have finite subtree property,
Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 18 (2014), 1-5.
MathSciNet
- V. Goranko and M. Otto, Model theory for modal logic, in: Handbook of Modal Logic
(eds. P. Blackburn, J. van Benthem and F. Wolter), Elsevier, 2007, 249-329.
MathSciNet
- S. Horvat, T. Perkov and M. Vuković, Bisimulations and bisimulation games between
Verbrugge models, MLQ Math. Log. Q. 69 (2023), 231-243.
MathSciNet
CrossRef
- L. Mikec, T. Perkov and M. Vuković, Decidability of interpretability logics ILM0 and
ILW*, Log. J. IGPL 25 (2017), 758-772.
MathSciNet
CrossRef
- L. Mikec and M. Vuković, Interpretability logics and generalized Veltman semantics,
J. Symb. Log. 85 (2020), 749-772.
MathSciNet
CrossRef
- T. Perkov and M. Vuković, Filtrations of generalized Veltman models, MLQ Math.
Log. Q. 62 (2016), 412-419
MathSciNet
CrossRef
- A. Visser, An overview of interpretability logic, in: Advances in Modal Logic
(ed. M. Kracht), Volume 1, CSLI Publications 87, Stanford, 1998, 307-359.
MathSciNet
- D. Vrgoč and M. Vuković, Bisimulations and bisimulation quotients of generalized
Veltman models, Log. J. IGPL 18 (2010), 870-880.
MathSciNet
CrossRef
Rad HAZU Home Page