Rad HAZU, Matematičke znanosti, Vol. 29 (2025), 1-22.
COMPUTABILITY OF CHAINABLE GRAPHS
Zvonko Iljazović and Matea Jelić
Department of Mathematics, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: zilj@math.hr
Faculty of Civil Engineering, Architecture and Geodesy, University of Split, 21 000 Split, Croatia
e-mail: matea.jelic@gradst.hr
Abstract. If every semicomputable set, in arbitrary computable
topological space, which is homeomorphic to a topological space A is computable,
then we say that A has computable type. A topological pair
(A, B), B ⊆ A, has computable type if for all semicomputable sets S
and T, in arbitrary computable topological space, such that S is homeomorphic
to A by a homeomorphism which maps T to B, it holds that S is
computable. It is known that (G, E) has computable type, where G is a
certain kind of topological graph and E is the set of its endpoints. In this
paper, we consider more general graphs G~ obtained by taking edges of G~
to be chainable continua (instead of arcs) and we prove that (G~, E) has
computable type, where E is the set of all endpoints of G~.
2020 Mathematics Subject Classification.
03D78, 03F60.
Key words and phrases. Computable topological space, semicomputable set, computable
set, computable type, chainable continuum, chainable graph.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/y6zolb4zom
References:
- D. E. Amir and M. Hoyrup, Computability of finite simplicial complexes, in: 49th
International Colloquium on Automata, Languages, and Programming (ICALP 2022)
(eds. M. BojaĆczyk et al.), Art. No. 111, 16 pp, Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2022.
MathSciNet
CrossRef
- V. Brattka, Plottable real number functions and the computable graph theorem, SIAM
J. Comput. 38 (2008), 303-328.
MathSciNet
CrossRef
- V. Brattka and G. Presser, Computability on subsets of metric spaces, Theoret. Comput.
Sci. 305 (2003), 43-76.
MathSciNet
CrossRef
- V. Brattka and K. Weihrauch, Computability on subsets of Euclidean space I. Closed
and compact subsets, Theoret. Comput. Sci. 219 (1999), 65-93.
MathSciNet
CrossRef
- C. E. Burgess, Chainable continua and indecomposability, Pacific J. Math. 9 (1959),
653-659.
MathSciNet
CrossRef
- K. Burnik and Z. Iljazović, Computability of 1-manifolds, Log. Methods Comput. Sci.
10 (2014), no. 2, (2:8), 28 pp.
MathSciNet
CrossRef
- V. Čačić, M. Horvat and Z. Iljazović, Computable subcontinua of semicomputable
chainable Hausdorff continua, Theoret. Comput. Sci. 892 (2021), 155-169.
MathSciNet
CrossRef
- M. Čelar and Z. Iljazović, Computability of products of chainable continua, Theory
Comput. Syst. 65 (2021), 410-427.
MathSciNet
CrossRef
- M. Čelar and Z. Iljazović, Computability of glued manifolds, J. Logic Comput. 32
(2022), 65-97.
MathSciNet
CrossRef
- E. Čičković, Z. Iljazović and L. Validžić, Chainable and circularly chainable
semicomputable sets in computable topological spaces, Arch. Math. Logic 58 (2019), 885-897.
MathSciNet
CrossRef
- M. Horvat, Z. Iljazović and B. Pažek, Computability of pseudo-cubes, Ann. Pure Appl.
Logic 171 (2020), no. 8, 102823, 21 pp.
MathSciNet
CrossRef
- Z. Iljazović, Chainable and circularly chainable co-r.e. sets in computable metric
spaces, J. UCS 15 (2009), 1206-1235.
MathSciNet
- Z. Iljazović, Co-c.e. spheres and cells in computable metric spaces, Log. Methods
Comput. Sci. 7 (2011), no. 3, 3:05, 21 pp.
MathSciNet
CrossRef
- Z. Iljazović, Compact manifolds with computable boundaries, Log. Methods Comput.
Sci. 9 (2013), no. 4, 4:19, 22 pp.
MathSciNet
CrossRef
- Z. Iljazović, Computability of graphs, MLQ Math. Log. Q. 66 (2020), 51-64.
MathSciNet
CrossRef
- Z. Iljazović and B. Pažek, Computable intersection points, Computability 7 (2018),
57-99.
MathSciNet
CrossRef
- Z. Iljazović and B. Pažek, Warsaw discs and semicomputability, Topology Appl. 239
(2018), 308-323.
MathSciNet
CrossRef
- Z. Iljazović and I. Sušić, Semicomputable manifolds in computable topological spaces,
J. Complexity 45 (2018), 83-114.
MathSciNet
CrossRef
- T. Kihara, Incomputability of simply connected planar continua, Computability 1(2)
(2012), 131-152.
MathSciNet
CrossRef
- J. S. Miller, Effectiveness for embedded spheres and balls, Electronic Notes in Theoretical
Computer Science 66 (2002), 127-138.
CrossRef
- M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics, Springer-Verlag,
Berlin, 1989.
MathSciNet
CrossRef
- E. Specker, Der satz vom maximum in der rekursiven analysis, in: Constructivity in
Mathematics (ed. A. Heyting), North Holland Publ. Comp., Amsterdam, 1959, pp.
254-265.
MathSciNet
- H. Tanaka, On a Π01
set of positive measure, Nagoya Math. J. 38 (1970), 139-144.
MathSciNet
- A. M. Turing, On computable numbers, with an application to the entscheidungsproblem,
Proc. London Math. Soc. (2) 42 (1936), 230-265.
MathSciNet
CrossRef
- K. Weihrauch, Computability on computable metric spaces, Theoret. Comput. Sci. 113
(1993), 191-210.
MathSciNet
CrossRef
- K. Weihrauch, Computable Analysis, Springer-Verlag, Berlin, 2000.
MathSciNet
CrossRef
- K. Weihrauch, Computable separation in topology, from T0 to T2, J.UCS 16 (2010),
2733-2753.
MathSciNet
- K. Weihrauch and T. Grubba, Elementary computable topology, J.UCS 15 (2009),
1381-1422.
MathSciNet
Rad HAZU Home Page