Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 425-433.
BERNSTEIN PROJECTOR OF COXETER DEPTH
Allen Moy and Gordan Savin
Department of Mathematics, HKUST, Clear Water Bay, Hong Kong
e-mail: amoy@ust.hk
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
e-mail: savin@math.utah.edu
Abstract. We decompose the Bernstein projector of Coxeter depth
as a sum of the Bernstein projector of depth 0 and the projector on simple
supercuspidal representations.
2020 Mathematics Subject Classification.
22E50, 22E35.
Key words and phrases. Simple groups over local fields, Bernstein projectors, simple
supercuspidal representations.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/yl4okf8179
References:
- J. Bernstein, Le "centre" de Bernstein, written by P. Deligne in Représentations des
Groupes Réductifs sur un Corps Local, Hermann, Paris, 1984.
MathSciNet
- M. Bestvina and G. Savin, Bounded contractions for affine buildings,
Proc. Amer. Math. Soc. 148 (2020), 875-883.
MathSciNet
CrossRef
- R. Bezrukavnikov, D. Kazhdan and V. Varshavsky, On the depth r Bernstein projector,
Selecta Math. (N.S.) 22 (2016), 2271-1311.
MathSciNet
CrossRef
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local I, Inst. Hautes Études Sci. Publ. Math.
(1972), no. 41, 5-251.
MathSciNet
- A. Moy and G. Prasad, Unrefined minimal K-types for p-adic groups, Invent. Math.
116 (1994), 393-408.
MathSciNet
CrossRef
- A. Moy and G. Prasad, Jacquet functors and unrefined minimal K-types, Comment.
Math. Helv. 71 (1996), 98-121.
MathSciNet
CrossRef
- A. Moy and G. Savin, Euler-Poincare formulae for positive depth Bernstein projectors,
arXiv:2006.14648.
- M. Reeder and J.-K. Yu, Epipelagic representations and invariant theory, J. Amer. Math.
Soc. 27 (2014), 437-477.
MathSciNet
CrossRef
Rad HAZU Home Page