Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 425-433.

BERNSTEIN PROJECTOR OF COXETER DEPTH

Allen Moy and Gordan Savin

Department of Mathematics, HKUST, Clear Water Bay, Hong Kong
e-mail: amoy@ust.hk

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
e-mail: savin@math.utah.edu


Abstract.   We decompose the Bernstein projector of Coxeter depth as a sum of the Bernstein projector of depth 0 and the projector on simple supercuspidal representations.

2020 Mathematics Subject Classification.   22E50, 22E35.

Key words and phrases.   Simple groups over local fields, Bernstein projectors, simple supercuspidal representations.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/yl4okf8179


References:

  1. J. Bernstein, Le "centre" de Bernstein, written by P. Deligne in Représentations des Groupes Réductifs sur un Corps Local, Hermann, Paris, 1984.
    MathSciNet

  2. M. Bestvina and G. Savin, Bounded contractions for affine buildings, Proc. Amer. Math. Soc. 148 (2020), 875-883.
    MathSciNet     CrossRef

  3. R. Bezrukavnikov, D. Kazhdan and V. Varshavsky, On the depth r Bernstein projector, Selecta Math. (N.S.) 22 (2016), 2271-1311.
    MathSciNet     CrossRef

  4. F. Bruhat and J. Tits, Groupes réductifs sur un corps local I, Inst. Hautes Études Sci. Publ. Math. (1972), no. 41, 5-251.
    MathSciNet

  5. A. Moy and G. Prasad, Unrefined minimal K-types for p-adic groups, Invent. Math. 116 (1994), 393-408.
    MathSciNet     CrossRef

  6. A. Moy and G. Prasad, Jacquet functors and unrefined minimal K-types, Comment. Math. Helv. 71 (1996), 98-121.
    MathSciNet     CrossRef

  7. A. Moy and G. Savin, Euler-Poincare formulae for positive depth Bernstein projectors, arXiv:2006.14648.

  8. M. Reeder and J.-K. Yu, Epipelagic representations and invariant theory, J. Amer. Math. Soc. 27 (2014), 437-477.
    MathSciNet     CrossRef


Rad HAZU Home Page