Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 405-423.
JACQUET TENSORS
Dubravka Ban
School of Mathematical and Statistical Sciences, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, U.S.A.
e-mail: dban@siu.edu
Abstract. Let G be a split reductive p-adic group.
The category of admissible p-adic Banach space representations of G
is equivalent to the corresponding category of finitely generated Iwasawa modules, via the duality map
V ↦ V'.
In this paper, we define certain tensors on Iwasawa modules, which are intended to play the role of Jacquet modules.
We describe some properties of Jacquet tensors and show how they can be applied to the study of principal series representations.
2020 Mathematics Subject Classification.
22E50, 11F70.
Key words and phrases. p-adic Banach space representations, p-adic groups,
Iwasawa modules, Jacquet modules.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/mjrl3uo0x9
References:
- N. Abe and F. Herzig, On the irreducibility of p-adic Banach principal series of p-adic
reductive groups, preprint.
- W. Alsibiani and D. Ban, Filtrations of smooth principal series and Iwasawa modules,
Bull. Iranian Math. Soc. 43 (2017), 3-16.
MathSciNet
- K. Ardakov and K. A. Brown, Ring-theoretic properties of Iwasawa algebras: a survey,
Doc. Math., Extra Vol. (2006), 7-33.
MathSciNet
- D. Ban, p-adic Banach Space Representations: With Applications to Principal Series,
Lecture Notes in Math. 2325, Springer, Cham, 2023.
MathSciNet
CrossRef
- D. Ban and J. Hundley, On reducibility of p-adic principal series representations of
p-adic groups, Represent. Theory 20 (2016), 249-262.
MathSciNet
CrossRef
- D. Ban and C. Jantzen, Degenerate principal series for even-orthogonal groups, Represent.
Theory 7 (2003), 440-480.
MathSciNet
CrossRef
- D. Ban and J. Roberts, Compactly supported distributions on p-adic Lie groups,
preprint.
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic
groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441-472.
MathSciNet
- A. Borel, Linear algebraic groups, Grad. Texts in Math. 126, second edition,
Springer-Verlag, New York, 1991.
MathSciNet
CrossRef
- W. Casselman, Introduction to the theory of admissible representations of p-adic reductive
groups, preprint.
- D. S. Dummit and R. M. Foote, Abstract algebra, third edition, John Wiley & Sons,
Inc., Hoboken, NJ, 2004.
MathSciNet
- M. Emerton, Jacquet modules of locally analytic representations of p-adic reductive
groups. I. Construction and first properties, Ann. Sci. École Norm. Sup. (4) 39 (2006),
775-839.
MathSciNet
- M. Emerton, Ordinary parts of admissible representations of p-adic reductive groups
I. Definition and first properties, Astérisque (2010), no. 331, 355-402.
MathSciNet
- C. Jantzen, On supports of induced representations for symplectic and odd-orthogonal
groups, Amer. J. Math. 119 (1997), 1213-1262.
MathSciNet
- T. Y. Lam, Lectures on modules and rings, Grad. Texts in Math. 189,
Springer-Verlag, New York, 1999.
MathSciNet
CrossRef
- C. Mœglin and M. Tadić, Construction of discrete series for classical p-adic groups,
J. Amer. Math. Soc. 15 (2002), 715-786.
MathSciNet
CrossRef
- P. Schneider, Nonarchimedean functional analysis, Springer Monogr. Math.,
Springer-Verlag, Berlin, 2002.
MathSciNet
CrossRef
- P. Schneider, p-adic Lie groups, Grundlehren Math. Wiss.,
Springer, Heidelberg, 2011.
MathSciNet
CrossRef
- P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory,
Israel J. Math. 127 (2002), 359-380.
MathSciNet
CrossRef
- M. Tadić, Structure arising from induction and Jacquet modules of representations of
classical p-adic groups, J. Algebra 177 (1995), 1-33.
MathSciNet
CrossRef
- A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible
representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210.
MathSciNet
Rad HAZU Home Page