Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 405-423.

JACQUET TENSORS

Dubravka Ban

School of Mathematical and Statistical Sciences, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, U.S.A.
e-mail: dban@siu.edu


Abstract.   Let G be a split reductive p-adic group. The category of admissible p-adic Banach space representations of G is equivalent to the corresponding category of finitely generated Iwasawa modules, via the duality map VV'. In this paper, we define certain tensors on Iwasawa modules, which are intended to play the role of Jacquet modules. We describe some properties of Jacquet tensors and show how they can be applied to the study of principal series representations.

2020 Mathematics Subject Classification.   22E50, 11F70.

Key words and phrases.   p-adic Banach space representations, p-adic groups, Iwasawa modules, Jacquet modules.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/mjrl3uo0x9


References:

  1. N. Abe and F. Herzig, On the irreducibility of p-adic Banach principal series of p-adic reductive groups, preprint.

  2. W. Alsibiani and D. Ban, Filtrations of smooth principal series and Iwasawa modules, Bull. Iranian Math. Soc. 43 (2017), 3-16.
    MathSciNet

  3. K. Ardakov and K. A. Brown, Ring-theoretic properties of Iwasawa algebras: a survey, Doc. Math., Extra Vol. (2006), 7-33.
    MathSciNet

  4. D. Ban, p-adic Banach Space Representations: With Applications to Principal Series, Lecture Notes in Math. 2325, Springer, Cham, 2023.
    MathSciNet     CrossRef

  5. D. Ban and J. Hundley, On reducibility of p-adic principal series representations of p-adic groups, Represent. Theory 20 (2016), 249-262.
    MathSciNet     CrossRef

  6. D. Ban and C. Jantzen, Degenerate principal series for even-orthogonal groups, Represent. Theory 7 (2003), 440-480.
    MathSciNet     CrossRef

  7. D. Ban and J. Roberts, Compactly supported distributions on p-adic Lie groups, preprint.

  8. I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441-472.
    MathSciNet

  9. A. Borel, Linear algebraic groups, Grad. Texts in Math. 126, second edition, Springer-Verlag, New York, 1991.
    MathSciNet     CrossRef

  10. W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint.

  11. D. S. Dummit and R. M. Foote, Abstract algebra, third edition, John Wiley & Sons, Inc., Hoboken, NJ, 2004.
    MathSciNet

  12. M. Emerton, Jacquet modules of locally analytic representations of p-adic reductive groups. I. Construction and first properties, Ann. Sci. École Norm. Sup. (4) 39 (2006), 775-839.
    MathSciNet

  13. M. Emerton, Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties, Astérisque (2010), no. 331, 355-402.
    MathSciNet

  14. C. Jantzen, On supports of induced representations for symplectic and odd-orthogonal groups, Amer. J. Math. 119 (1997), 1213-1262.
    MathSciNet

  15. T. Y. Lam, Lectures on modules and rings, Grad. Texts in Math. 189, Springer-Verlag, New York, 1999.
    MathSciNet     CrossRef

  16. C. Mœglin and M. Tadić, Construction of discrete series for classical p-adic groups, J. Amer. Math. Soc. 15 (2002), 715-786.
    MathSciNet     CrossRef

  17. P. Schneider, Nonarchimedean functional analysis, Springer Monogr. Math., Springer-Verlag, Berlin, 2002.
    MathSciNet     CrossRef

  18. P. Schneider, p-adic Lie groups, Grundlehren Math. Wiss., Springer, Heidelberg, 2011.
    MathSciNet     CrossRef

  19. P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002), 359-380.
    MathSciNet     CrossRef

  20. M. Tadić, Structure arising from induction and Jacquet modules of representations of classical p-adic groups, J. Algebra 177 (1995), 1-33.
    MathSciNet     CrossRef

  21. A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210.
    MathSciNet


Rad HAZU Home Page