Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 353-403.
SÉRIES DISCRÈTES DES ESPACES SYMÉTRIQUES ET PAQUETS D'ARTHUR
Colette Moeglin and David Renard
CNRS, Institut Mathématique de Jussieu, Paris, France
e-mail: colette.moeglin@imj-prg.fr
Centre de Mathématiques Laurent Schwartz, Ecole Polytechnique, Palaiseau, France
e-mail: david.renard@polytechnique.edu
Abstract. We check Sakellaridis-Venkatesh conjectures giving a description
of the discrete spectrum of a spherical variety X = G/H
in the Langlands-Arthur formalism when G is a classical real group and X is a symmetric space.
Then, we compute explicitly the representations in the relevant Arthur paquets
which appear in the discrete spectrum, and we establish some multiplicity
one results.
2020 Mathematics Subject Classification.
22E50, 11F67.
Key words and phrases. Discrete spectrum, symmetric spaces, Arthur parameters.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/moxpjhzvwm
References:
- J. Adams, D. Barbasch and D. A. Vogan, Jr., The Langlands classification and
irreducible characters for real reductive groups, Progr. Math., vol.
104, Birkhäuser Boston, Inc., Boston, MA, 1992.
MathSciNet
CrossRef
- J. Arthur, On some problems suggested by the trace formula, in: Lie group representations,
II (College Park, Md., 1982/1983), Lecture Notes in Math., vol. 1041,
Springer, Berlin, 1984, pp. 1-49.
MathSciNet
CrossRef
- D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie
algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold
Co., New York, 1993.
MathSciNet
- M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of
Math. (2) 111 (1980), 253-311.
MathSciNet
CrossRef
- A. W. Knapp and D. A. Vogan, Jr., Cohomological induction and unitary representations,
Princeton Mathematical Series, vol. 45, Princeton University Press,
Princeton, NJ, 1995.
MathSciNet
CrossRef
- F. Knop and B. Schalke, The dual group of a spherical variety, Trans. Moscow
Math. Soc. 78 (2017), 187-216.
MathSciNet
CrossRef
- B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of
Math. (2) 74 (1961), 329-387.
MathSciNet
CrossRef
- R. P. Langlands, On the classification of irreducible representations of real algebraic
groups, in: Representation theory and harmonic analysis on semisimple
Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI,
1989, pp. 101-170.
MathSciNet
CrossRef
- C. Mœglin and D. Renard, Sur les paquets d'Arthur des groupes unitaires et
quelques conséquences pour les groupes classiques, Pacific J. Math. 299 (2019),
53-88.
MathSciNet
CrossRef
- C. Mœglin and D. Renard, Sur les paquets d'Arthur des groupes classiques réels,
J. Eur. Math. Soc. (JEMS) 22 (2020), 1827-1892.
MathSciNet
CrossRef
- T. Oshima and T. Matsuki, A description of discrete series for semisimple symmetric
spaces, in: Group representations and systems of differential equations
(Tokyo, 1982), Adv. Stud. Pure Math., vol. 4, North-Holland, Amsterdam, 1984,
pp. 331-390.
MathSciNet
CrossRef
- Y. Sakellaridis and A. Venkatesh, Periods and harmonic analysis on spherical
varieties, Astérisque (2017), no. 396, p. viii+360.
MathSciNet
- H. Schlichtkrull, The Langlands parameters of Flensted-Jensen’s discrete series
for semisimple symmetric spaces, J. Functional Analysis 50 (1983), 133-150.
MathSciNet
CrossRef
- B. Speh and D. A. Vogan, Jr., Reducibility of generalized principal series representations,
Acta Math. 145 (1980), 227-299.
MathSciNet
CrossRef
- D. A. Vogan, Jr., Representations of real reductive Lie groups, Progress in Mathematics,
vol. 15, Birkhäuser, Boston, Mass., 1981.
MathSciNet
- D. A. Vogan, Jr., The unitary dual of GL(n) over an Archimedean field, Invent.
Math. 83 (1986), 449-505.
MathSciNet
CrossRef
- D. A. Vogan, Jr., Irreducibility of discrete series representations for semisimple
symmetric spaces, in: Representations of Lie groups, Kyoto, Hiroshima, 1986,
Adv. Stud. Pure Math., vol. 14, Academic Press, Boston, MA, 1988, pp. 191-221.
MathSciNet
CrossRef
- J.-L. Waldspurger, Les facteurs de transfert pour les groupes classiques: un formulaire,
Manuscripta Math. 133 (2010), pp. 41-82.
MathSciNet
CrossRef
- Wikipedia, Symmetric spaces,
https://en.wikipedia.org/wiki/Symmetric_space#Classification_results.
Rad HAZU Home Page