Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 353-403.

SÉRIES DISCRÈTES DES ESPACES SYMÉTRIQUES ET PAQUETS D'ARTHUR

Colette Moeglin and David Renard

CNRS, Institut Mathématique de Jussieu, Paris, France
e-mail: colette.moeglin@imj-prg.fr

Centre de Mathématiques Laurent Schwartz, Ecole Polytechnique, Palaiseau, France
e-mail: david.renard@polytechnique.edu


Abstract.   We check Sakellaridis-Venkatesh conjectures giving a description of the discrete spectrum of a spherical variety X = G/H in the Langlands-Arthur formalism when G is a classical real group and X is a symmetric space. Then, we compute explicitly the representations in the relevant Arthur paquets which appear in the discrete spectrum, and we establish some multiplicity one results.

2020 Mathematics Subject Classification.   22E50, 11F67.

Key words and phrases.   Discrete spectrum, symmetric spaces, Arthur parameters.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/moxpjhzvwm


References:

  1. J. Adams, D. Barbasch and D. A. Vogan, Jr., The Langlands classification and irreducible characters for real reductive groups, Progr. Math., vol. 104, Birkhäuser Boston, Inc., Boston, MA, 1992.
    MathSciNet     CrossRef

  2. J. Arthur, On some problems suggested by the trace formula, in: Lie group representations, II (College Park, Md., 1982/1983), Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 1-49.
    MathSciNet     CrossRef

  3. D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993.
    MathSciNet

  4. M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of Math. (2) 111 (1980), 253-311.
    MathSciNet     CrossRef

  5. A. W. Knapp and D. A. Vogan, Jr., Cohomological induction and unitary representations, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995.
    MathSciNet     CrossRef

  6. F. Knop and B. Schalke, The dual group of a spherical variety, Trans. Moscow Math. Soc. 78 (2017), 187-216.
    MathSciNet     CrossRef

  7. B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329-387.
    MathSciNet     CrossRef

  8. R. P. Langlands, On the classification of irreducible representations of real algebraic groups, in: Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101-170.
    MathSciNet     CrossRef

  9. C. Mœglin and D. Renard, Sur les paquets d'Arthur des groupes unitaires et quelques conséquences pour les groupes classiques, Pacific J. Math. 299 (2019), 53-88.
    MathSciNet     CrossRef

  10. C. Mœglin and D. Renard, Sur les paquets d'Arthur des groupes classiques réels, J. Eur. Math. Soc. (JEMS) 22 (2020), 1827-1892.
    MathSciNet     CrossRef

  11. T. Oshima and T. Matsuki, A description of discrete series for semisimple symmetric spaces, in: Group representations and systems of differential equations (Tokyo, 1982), Adv. Stud. Pure Math., vol. 4, North-Holland, Amsterdam, 1984, pp. 331-390.
    MathSciNet     CrossRef

  12. Y. Sakellaridis and A. Venkatesh, Periods and harmonic analysis on spherical varieties, Astérisque (2017), no. 396, p. viii+360.
    MathSciNet

  13. H. Schlichtkrull, The Langlands parameters of Flensted-Jensen’s discrete series for semisimple symmetric spaces, J. Functional Analysis 50 (1983), 133-150.
    MathSciNet     CrossRef

  14. B. Speh and D. A. Vogan, Jr., Reducibility of generalized principal series representations, Acta Math. 145 (1980), 227-299.
    MathSciNet     CrossRef

  15. D. A. Vogan, Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981.
    MathSciNet

  16. D. A. Vogan, Jr., The unitary dual of GL(n) over an Archimedean field, Invent. Math. 83 (1986), 449-505.
    MathSciNet     CrossRef

  17. D. A. Vogan, Jr., Irreducibility of discrete series representations for semisimple symmetric spaces, in: Representations of Lie groups, Kyoto, Hiroshima, 1986, Adv. Stud. Pure Math., vol. 14, Academic Press, Boston, MA, 1988, pp. 191-221.
    MathSciNet     CrossRef

  18. J.-L. Waldspurger, Les facteurs de transfert pour les groupes classiques: un formulaire, Manuscripta Math. 133 (2010), pp. 41-82.
    MathSciNet     CrossRef

  19. Wikipedia, Symmetric spaces, https://en.wikipedia.org/wiki/Symmetric_space#Classification_results.


Rad HAZU Home Page